

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18854-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Digital Peripherals (Cont.)

- Cyclical Redundancy Check (CRC/SCAN):
 - 16-bit CRC
- Scans memory for NVM integrity
- Communication:
 - EUSART, RS-232, RS-485, LIN compatible
 - Two SPI
 - Two I²C, SMBus, PMBus™ compatible
- Up to 25 I/O Pins:
 - Individually programmable pull-ups
 - Slew rate control
 - Interrupt-on-change with edge-select
 - Input level selection control (ST or TTL)
 - Digital open-drain enable
 - Current mode enable
- Peripheral Pin Select (PPS):
- Enables pin mapping of digital I/O
- Data Signal Modulator (DSM)
 - Modulates a carrier signal with digital data to create custom carrier synchronized output waveforms

Analog Peripherals

- Analog-to-Digital Converter with Computation (ADC²):
 - 10-bit with up to 24 external channels
 - Automated post-processing
 - Automates math functions on input signals: averaging, filter calculations, oversampling and threshold comparison
 - Operates in Sleep
- Two Comparators (COMP):
 - Fixed Voltage Reference at (non) inverting input(s)
- Comparator outputs externally accessible
- 5-Bit Digital-to-Analog Converter (DAC):
- 5-bit resolution, rail-to-rail
- Positive Reference Selection
- Unbuffered I/O pin output
- Internal connections to ADCs and comparators
- Voltage Reference:
 - Fixed Voltage Reference with 1.024V, 2.048V and 4.096V output levels

Flexible Oscillator Structure

- High-Precision Internal Oscillator:
 - Software selectable frequency range up to 32 MHz, ±1% typical
 - x2/x4 PLL with Internal and External Sources
- Low-Power Internal 32 kHz Oscillator (LFINTOSC)
- External 32 kHz Crystal Oscillator (SOSC)
- External Oscillator Block with:
 - Three crystal/resonator modes up to 20 MHz
 - Three external clock modes up to 20 MHz
- Fail-Safe Clock Monitor:
 - Allows for safe shutdown if peripheral clock stops
- Oscillator Start-up Timer (OST)
- Ensures stability of crystal oscillator resources

3.1.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The HIGH directive will set bit 7 if a label points to a location in the program memory.

EXAMPLE 3-2: ACCESSING PROGRAM MEMORY VIA FSR

constants				
RETLW	DATA0	;Ind	ex0 data	1
RETLW	DATA1	;Ind	ex1 data	1
RETLW	DATA2			
RETLW	DATA3			
my_functi	on			
; LO	IS OF CODE.			
MOVLW	LOW cons	tants		
MOVWF	FSR1L			
MOVLW	HIGH con	stants		
MOVWF	FSR1H			
MOVIW	0[FSR1]			
; THE PROG	RAM MEMORY	IS IN W	V	

3.2 Data Memory Organization

The data memory is partitioned into 32 memory banks with 128 bytes in each bank. Each bank consists of (Figure 3-2):

- 12 core registers
- 20 Special Function Registers (SFR)
- Up to 80 bytes of General Purpose RAM (GPR)
- · 16 bytes of common RAM

The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as '0'. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See **Section 3.5** "Indirect **Addressing**" for more information.

Data memory uses a 12-bit address. The upper five bits of the address define the Bank address and the lower seven bits select the registers/RAM in that bank.

3.2.1 CORE REGISTERS

The core registers contain the registers that directly affect the basic operation. The core registers occupy the first 12 addresses of every data memory bank (addresses x00h/x08h through x0Bh/x8Bh). These registers are listed below in Table 3-2. For detailed information, see Table 3-10.

TABLE 3-2:	CORE REGISTERS
------------	----------------

Addresses	BANKx
x00h or x80h	INDF0
x01h or x81h	INDF1
x02h or x82h	PCL
x03h or x83h	STATUS
x04h or x84h	FSR0L
x05h or x85h	FSR0H
x06h or x86h	FSR1L
x07h or x87h	FSR1H
x08h or x88h	BSR
x09h or x89h	WREG
x0Ah or x8Ah	PCLATH
x0Bh or x8Bh	INTCON

IADLL	ABLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)												
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets		
Bank 1			•				•						
				c	PU CORE REGIS	TERS: see Table	3-2 for specifics						
08Ch	ADRESL				A	DRESL<7:0>				0000 0000	0000 0000		
08Dh	ADRESH				А	DRESH<7:0>				0000 0000	0000 0000		
08Eh	ADPREVL				A	DPREVL<7:0>				0000 0000	0000 0000		
08Fh	ADPREVH				AI	DPREVH<7:0>				0000 0000	0000 0000		
090h	ADACCL				xxxx xxxx	uuuu uuuu							
091h	ADACCH				xxxx xxxx	uuuu uuuu							
092h	_				U	nimplemented				-	—		
093h	ADCON0	ADON	ADCONT	_	ADCS	_	ADFRM0	—	ADGO	00-0 -0-0	00-0 -0-0		
094h	ADCON1	ADPPOL	ADIPEN	ADGPOL	—	_	_	—	ADDSEN	0000	0000		
095h	ADCON2	ADPSIS		ADCRS<2:0>	>	ADACLR		ADMD<2:0>	L	0000 0000	0000 0000		
096h	ADCON3	_		ADCALC<2:0	>	ADSOI		ADTMD<2:0>		-000 0000	-000 0000		
097h	ADSTAT	ADAOV	ADUTHR	ADLTHR	ADMATH	_		ADSTAT<2:0>		0000 -000	0000 -000		
098h	ADCLK	_	—			ADO	CCS<5:0>			00 0000	00 0000		
099h	ADACT	_	—	_			ADACT<4:0>			0 0000	0 0000		
09Ah	ADREF	_	_	_	ADNREF	_	_	ADPRE	EF<1:0>	000	000		
09Bh	ADCAP	_	—	_		•	ADCAP<4:0>	•		0 0000	0 0000		
09Ch	ADPRE					ADPRE<7:0>				0000 0000	0000 0000		
09Dh	ADACQ				/	ADACQ<7:0>				0000 0000	0000 0000		
09Eh	ADPCH	—	—			ADF	PCH<5:0>			00 0000	00 0000		
09Fh	—				U	nimplemented				-	_		

TABLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Register present on PIC16F18854 devices only.

2: Unimplemented, read as '1'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets	
Bank 6												
				c	PU CORE REGIS	TERS; see Table	3-2 for specifics					
30Ch	CCPR1L	Capture/Comp	are/PWM Regis	ster 1 (LSB)						xxxx xxxx	XXXX XXXX	
30Dh	CCPR1H	Capture/Comp	are/PWM Regis	ster 1 (MSB)						xxxx xxxx	XXXX XXXX	
30Eh	CCP1CON	EN	—	OUT	FMT		MODE	<3:0>		0-00 0000	0-00 0000	
30Fh	CCP1CAP	_	—	—	—	—		CTS<2:0>		0000	0000	
310h	CCPR2L	Capture/Comp	are/PWM Regis	/PWM Register 2 (LSB)								
311h	CCPR2H	Capture/Comp	are/PWM Regis	ster 2 (MSB)						xxxx xxxx	XXXX XXXX	
312h	CCP2CON	EN	—	OUT	FMT	MODE<3:0>				0-00 0000	0-00 0000	
313h	CCP2CAP	_	—	—	—	—		CTS<2:0>		0000	0000	
314h	CCPR3L	Capture/Comp	are/PWM Regis	ster 3 (LSB)						xxxx xxxx	xxxx xxxx	
315h	CCPR3H	Capture/Comp	are/PWM Regis	ster 3 (MSB)						xxxx xxxx	xxxx xxxx	
316h	CCP3CON	EN	—	OUT	FMT		MODE	<3:0>		0-00 0000	0-00 0000	
317h	CCP3CAP	—	_	—	_		CTS<	3:0>		0000	0000	
318h	CCPR4L	Capture/Comp	are/PWM Regis	ster 4 (LSB)						xxxx xxxx	XXXX XXXX	
319h	CCPR4H	Capture/Comp	are/PWM Regis	ster 4 (MSB)						xxxx xxxx	xxxx xxxx	
31Ah	CCP4CON	EN	—	OUT	FMT		MODE	<3:0>		0-00 0000	0-00 0000	
31Bh	CCP4CAP	—	—	-	_		CTS<	3:0>		0000	0000	
31Ch	CCPR5L	Capture/Comp	are/PWM Regis	ster 5 (LSB)						xxxx xxxx	XXXX XXXX	
31Dh	CCPR5H	Capture/Comp	are/PWM Regis	ster 5 (MSB)						xxxx xxxx	XXXX XXXX	
31Eh	CCP5CON	EN	—	OUT	FMT	MODE<3:0>				0-00 0000	0-00 0000	
31Fh	CCP5CAP	_		_	_		CTS<	3:0>		0000	0000	

TABLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED) 1

x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend: Note 1:

Register present on PIC16F18854 devices only.

2: Unimplemented, read as '1'.

PIC16(L)F18854

R/W/HS-0/0	R/W/HS-0/0	U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0			
OSFIF	CSWIF	_	_	_	_	ADTIF	ADIF			
bit 7	1						bit 0			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'				
u = Bit is und	hanged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets			
'1' = Bit is se	t	'0' = Bit is clea	ared	HS = Hardwa	ire set					
bit 7 OSFIF : Oscillator Fail-Safe Interrupt Flag bit 1 = Oscillator fail-safe interrupt has occurred (must be cleared in software) 0 = No oscillator fail-safe interrupt										
bit 6	CSWIF: Clock Switch Complete Interrupt Flag bit									
	1 = The clock		indicates an	interrupt condi	tion (must be cle tion	eared in softwa	ire)			
bit 5-2	Unimplemen	ted: Read as ')'							
bit 1	1 = An A/D m	• •	as beyond the	configured thr	mpare Interrupt eshold (must be threshold	•	tware)			
bit 0	1 = An A/D co	-to-Digital Conv onversion or co onversion or co	mplex operati	on has comple	ted (must be cle	eared in softwa	ire)			
cc its U aj	terrupt flag bits a ondition occurs, r s corresponding nable bit, GIE, c ser software opropriate interre	egardless of the enable bit or th of the INTCON should ensu upt flag bits a	e state of e Global register. ire the							

REGISTER 7-12: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

prior to enabling an interrupt.

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0				
CLC4IF	CLC3IF	CLC2IF	CLC1IF	_	TMR5GIF	TMR3GIF	TMR1GIF				
bit 7							bit (
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'					
u = Bit is uncł	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets				
'1' = Bit is set	-	'0' = Bit is clea	ared	HS = Hardwa	are set						
bit 7	CLC4IF: CLC4 Interrupt Flag bit										
		 1 = A CLC4OUT interrupt condition has occurred (must be cleared in software) 0 = No CLC4 interrupt event has occurred 									
		•		1							
bit 6	CLC3IF: CLC3 Interrupt Flag bit										
		 1 = A CLC4OUT interrupt condition has occurred (must be cleared in software) 0 = No CLC4 interrupt event has occurred 									
bit 5		CLC2IF: CLC2 Interrupt Flag bit									
		1 = A CLC4OUT interrupt condition has occurred (must be cleared in software)									
	0 = No CLC4 interrupt event has occurred										
bit 4	CLC1IF: CLC1 Interrupt Flag bit										
	 1 = A CLC4OUT interrupt condition has occurred (must be cleared in software) 0 = No CLC4 interrupt event has occurred 										
				1							
bit 3	-	ited: Read as '									
bit 2	TMR5GIF: Timer5 Gate Interrupt Flag bit										
	 The Timer5 Gate has gone inactive (the gate is closed) The Timer5 Gate has not gone inactive 										
bit 1	TMR3GIF: Timer3 Gate Interrupt Flag bit										
		er5 Gate has go		ne gate is close	ed)						
	0 = The Time	er5 Gate has no	t gone inactiv	e							
bit 0	TMR1GIF: Timer1 Gate Interrupt Flag bit										
	 1 = The Timer1 Gate has gone inactive (the gate is closed) 0 = The Timer1 Gate has not gone inactive 										
	0 = The Time	r'i Gate nas no	t gone inactiv	e							
Note: Int	errupt flag bits a	are set when an	interrunt								
	ndition occurs, r										
its	corresponding	enable bit or th	e Global								
En	able bit, GIE, c	of the INTCON	register.								

REGISTER 7-16: PIR5: PERIPHERAL INTERRUPT REQUEST REGISTER 5

User software should ensure the appropriate interrupt flag bits are clear

prior to enabling an interrupt.

REGISTER 11-3: CRCDATH: CRC DATA HIGH BYTE REGISTER

R/W-xx	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	
			DAT<	15:8>				
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemer	nted bit, read as '0			
u = Bit is unchanged		x = Bit is unknown	n -n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is cleared						

bit 7-0 DAT<15:8>: CRC Input/Output Data bits

REGISTER 11-4: CRCDATL: CRC DATA LOW BYTE REGISTER

R/W-xx	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	
			DAT	<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemer	nted bit, read as '0	,		
u = Bit is unchanged		x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is cleared						

bit 7-0 DAT<7:0>

DAT<7:0>: CRC Input/Output Data bits Writing to this register fills the shifter.

REGISTER 11-5: CRCACCH: CRC ACCUMULATOR HIGH BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
ACC<15:8>											
bit 7							bit 0				
Legend:											
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0	,					
u = Bit is unchang	jed	x = Bit is unknown	n -n/n = Value at POR and BOR/Value at all other Resets								
'1' = Bit is set		'0' = Bit is cleared									

bit 7-0 ACC<15:8>: CRC Accumulator Register bits

Writing to this register writes to the CRC accumulator register. Reading from this register reads the CRC accumulator.

REGISTER 11-6: CRCACCL: CRC ACCUMULATOR LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
	ACC<7:0>										
bit 7	bit 7 bit 0										

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

ACC<7:0>: CRC Accumulator Register bits

Writing to this register writes to the CRC accumulator register through the CRC write bus. Reading from this register reads the CRC accumulator.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			LADR<	15:8>(1,2)			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unknown		-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 11-12: SCANLADRH: SCAN LOW ADDRESS HIGH BYTE REGISTER

bit 7-0 LADR<15:8>: Scan Start/Current Address bits^(1,2) Most Significant bits of the current address to be fetched from, value increments on each fetch of memory.

- **Note 1:** Registers SCANLADRH/L form a 16-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SCANGO = 0 (SCANCON0 register).
 - **2:** While SCANGO = 1 (SCANCON0 register), writing to this register is ignored.

REGISTER 11-13: SCANLADRL: SCAN LOW ADDRESS LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
LADR<7:0> ^(1,2)							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LADR<7:0>: Scan Start/Current Address bits^(1,2) Least Significant bits of the current address to be fetched from, value increments on each fetch of memory

- **Note 1:** Registers SCANLADRH/L form a 16-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SCANGO = 0 (SCANCON0 register).
 - 2: While SCANGO = 1 (SCANCON0 register), writing to this register is ignored.

REGISTER 12-25: ANSELC: PORTC ANALOG SELECT REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ANSC7 | ANSC6 | ANSC5 | ANSC4 | ANSC3 | ANSC2 | ANSC1 | ANSC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0	ANSC<7:0>: Analog Select between Analog or Digital Function on Pins RC<7:0>, respectively ⁽¹⁾
	0 = Digital I/O. Pin is assigned to port or digital special function.
	1 = Analog input. Pin is assigned as analog input ⁽¹⁾ . Digital input buffer disabled.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

REGISTER 12-26: WPUC: WEAK PULL-UP PORTC REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| WPUC7 | WPUC6 | WPUC5 | WPUC4 | WPUC3 | WPUC2 | WPUC1 | WPUC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUC<7:0>: Weak Pull-up Register bits⁽¹⁾

- 1 = Pull-up enabled
- 0 = Pull-up disabled

Note 1: The weak pull-up device is automatically disabled if the pin is configured as an output.

18.12 Register Definitions: Comparator Control

REGISTER 18-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0

R/W-0/0	R-0/0	U-0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
ON	OUT	_	POL	_	—	HYS	SYNC
bit 7						·	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
u = Bit is unch	anged	x = Bit is unki	nown	-n/n = Value a	at POR and BO	OR/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	1 = Comparat		and consumes	s no active pow	er		
bit 6	OUT: Comparator Output bit $\frac{If CxPOL = 1 (inverted polarity):}{1 = CxVP < CxVN}$ $0 = CxVP > CxVN$ $\frac{If CxPOL = 0 (non-inverted polarity):}{1 = CxVP > CxVN}$						
	0 = CxVP < 0						
bit 5	Unimplemented: Read as '0'						
bit 4	 POL: Comparator Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is not inverted 						
bit 3-2	•	ted: Read as '					
bit 1	 HYS: Comparator Hysteresis Enable bit 1 = Comparator hysteresis enabled 0 = Comparator hysteresis disabled 						
bit 0	1 = Compara Output u	pdated on the	Fimer1 and I/C falling edge of		ource.	ges on Timer1	clock source.

22.0 CONFIGURABLE LOGIC CELL (CLC)

The Configurable Logic Cell (CLCx) module provides programmable logic that operates outside the speed limitations of software execution. The logic cell takes up to 32 input signals and, through the use of configurable gates, reduces the 32 inputs to four logic lines that drive one of eight selectable single-output logic functions.

Input sources are a combination of the following:

- · I/O pins
- Internal clocks
- · Peripherals
- · Register bits

The output can be directed internally to peripherals and to an output pin.

The CLC modules available are shown in Table 22-1.

TABLE 22-1: AVAILABLE CLC MODULES

Device	CLC1	CLC2	CLC3	CLC4
PIC16(L)F18854	•	•	•	•

Note:	The CLC1, CLC2, CLC3 and CLC4 are
	four separate module instances of the
	same CLC module design. Throughout
	this section, the lower case 'x' in register
	and bit names is a generic reference to
	the CLC number (which should be substi-
	tuted with 1, 2, 3, or 4 during code devel-
	opment). For example, the control register
	is generically described in this chapter as
	CLCxCON, but the actual device registers
	are CLC1CON, CLC2CON, CLC3CON
	and CLC4CON. Similarly, the LCxEN bit
	represents the LC1EN, LC2EN, LC3EN
	and LC4EN bits.

Refer to Figure 22-1 for a simplified diagram showing signal flow through the CLCx.

Possible configurations include:

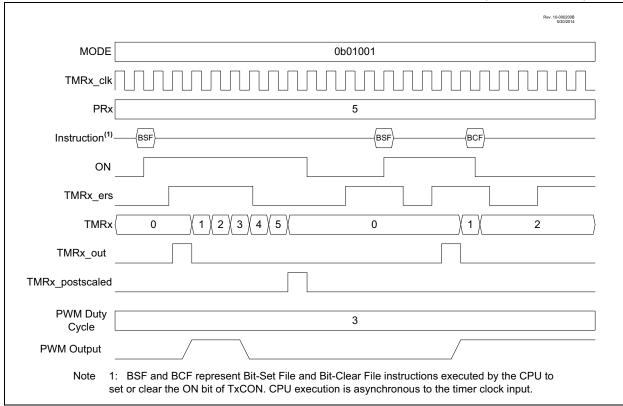
- Combinatorial Logic
 - AND
 - NAND
 - AND-OR
 - AND-OR-INVERT
 - OR-XOR
 - OR-XNOR
- Latches
 - S-R
 - Clocked D with Set and Reset
 - Transparent D with Set and Reset
 - Clocked J-K with Reset

Using the Auto-conversion Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met. See Table 23-2 for auto-conversion sources.

ADACT Value	Sour0x1Dce Peripher0x1Dal	Description		
0x00	Disabled	External Trigger Disabled		
0x01	ADACTPPS	Pin selected by ADACTPPS		
0x02	TMR0	Timer0 overflow condition		
0x03	TMR1	Timer1 overflow condition		
0x04	TMR2	Match between Timer2 postscaled value and PR2		
0x05	TMR3	Timer3 overflow condition		
0x06	TMR4	Match between Timer4 postscaled value and PR4		
0x07	TMR5	Timer5 overflow condition		
0x08	TMR6	Match between Timer6 postscaled value and PR6		
0x09	SMT1	Match between SMT1 and SMT1PR		
0x0A	SMT2	Match between SMT2 and SMT2PR		
0x0B	CCP1	CCP1 output		
0x0C	CCP2	CCP2 output		
0x0D	CCP3	CCP3 output		
0x0E	CCP4	CCP4 output		
0x0F	CCP5	CCP5 output		
0x10	PWM6	PWM6 output		
0x11	PWM7	PWM7 output		
0x12	C1	Comparator C1 output		
0x13	C2	Comparator C2 output		
0x14	IOC	Interrupt-on-change interrupt trigger		
0x15	CLC1	CLC1 output		
0x16	CLC2	CLC2 output		
0x17	CLC3	CLC3 output		
0x18	CLC4	CLC4 output		
0x19-0x1B	Reserved	Reserved, do not use		
0x1C	ADERR	Read of ADERR register		
0x1D	ADRESH	Read of ADRESH register		
0x1E	Reserved	Reserved, do not use		
0x1F	ADPCH	Read of ADPCH register		

TABLE 23-2: ADC AUTO-CONVERSION TABLE

29.5.6 EDGE-TRIGGERED ONE-SHOT MODE


The Edge-Triggered One-Shot modes start the timer on an edge from the external signal input, after the ON bit is set, and clear the ON bit when the timer matches the PRx period value. The following edges will start the timer:

- Rising edge (MODE<4:0> = 01001)
- Falling edge (MODE<4:0> = 01010)
- Rising or Falling edge (MODE<4:0> = 01011)

If the timer is halted by clearing the ON bit then another TMRx_ers edge is required after the ON bit is set to resume counting. Figure 29-9 illustrates operation in the rising edge One-Shot mode.

When Edge-Triggered One-Shot mode is used in conjunction with the CCP then the edge-trigger will activate the PWM drive and the PWM drive will deactivate when the timer matches the CCPRx pulse width value and stay deactivated when the timer halts at the PRx period count match.

FIGURE 29-9: EDGE-TRIGGERED ONE-SHOT MODE TIMING DIAGRAM (MODE = 01001)

29.5.7 EDGE-TRIGGERED HARDWARE LIMIT ONE-SHOT MODE

In Edge-Triggered Hardware Limit One-Shot modes the timer starts on the first external signal edge after the ON bit is set and resets on all subsequent edges. Only the first edge after the ON bit is set is needed to start the timer. The counter will resume counting automatically two clocks after all subsequent external Reset edges. Edge triggers are as follows:

- Rising edge start and Reset (MODE<4:0> = 01100)
- Falling edge start and Reset (MODE<4:0> = 01101)

The timer resets and clears the ON bit when the timer value matches the PRx period value. External signal edges will have no effect until after software sets the ON bit. Figure 29-10 illustrates the rising edge hardware limit one-shot operation.

When this mode is used in conjunction with the CCP then the first starting edge trigger, and all subsequent Reset edges, will activate the PWM drive. The PWM drive will deactivate when the timer matches the CCPRx pulse-width value and stay deactivated until the timer halts at the PRx period match unless an external signal edge resets the timer before the match occurs.

31.4 I²C MODE OPERATION

All MSSP I²C communication is byte oriented and shifted out MSb first. Six SFR registers and two interrupt flags interface the module with the $PIC^{\mbox{\sc end}}$ microcontroller and user software. Two pins, SDA and SCL, are exercised by the module to communicate with other external I²C devices.

31.4.1 BYTE FORMAT

All communication in I^2C is done in 9-bit segments. A byte is sent from a master to a slave or vice-versa, followed by an Acknowledge bit sent back. After the eighth falling edge of the SCL line, the device outputting data on the SDA changes that pin to an input and reads in an acknowledge value on the next clock pulse.

The clock signal, SCL, is provided by the master. Data is valid to change while the SCL signal is low, and sampled on the rising edge of the clock. Changes on the SDA line while the SCL line is high define special conditions on the bus, explained below.

31.4.2 DEFINITION OF I²C TERMINOLOGY

There is language and terminology in the description of I^2C communication that have definitions specific to I^2C . That word usage is defined below and may be used in the rest of this document without explanation. This table was adapted from the Philips I^2C specification.

31.4.3 SDA AND SCL PINS

Selection of any I²C mode with the SSPEN bit set, forces the SCL and SDA pins to be open-drain. These pins should be set by the user to inputs by setting the appropriate TRIS bits.

Note 1: Data is tied to output zero when an I²C mode is enabled.
2: Any device pin can be selected for SDA and SCL functions with the PPS peripheral. These functions are bidirectional. The SDA input is selected with the SSPDATPPS registers. The SCL input is selected with the SSPCLKPPS registers. Outputs are selected with the RxyPPS registers. It is the user's responsibility to make the selections so that both the input and the output for each function is on the same pin.

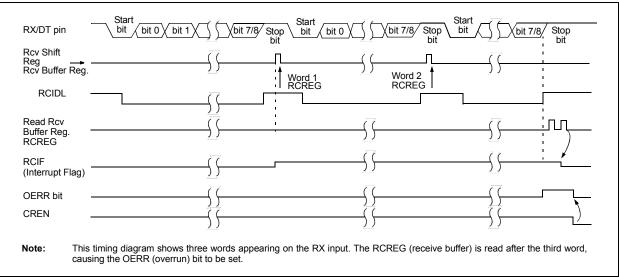
31.4.4 SDA HOLD TIME

The hold time of the SDA pin is selected by the SDAHT bit of the SSPxCON3 register. Hold time is the time SDA is held valid after the falling edge of SCL. Setting the SDAHT bit selects a longer 300 ns minimum hold time and may help on buses with large capacitance.

TABLE 31-1:I²C BUS TERMS

TABLE 31-1.	
TERM	Description
Transmitter	The device which shifts data out onto the bus.
Receiver	The device which shifts data in from the bus.
Master	The device that initiates a transfer, generates clock signals and termi- nates a transfer.
Slave	The device addressed by the master.
Multi-master	A bus with more than one device that can initiate data transfers.
Arbitration	Procedure to ensure that only one master at a time controls the bus. Winning arbitration ensures that the message is not corrupted.
Synchronization	Procedure to synchronize the clocks of two or more devices on the bus.
Idle	No master is controlling the bus, and both SDA and SCL lines are high.
Active	Any time one or more master devices are controlling the bus.
Addressed Slave	Slave device that has received a matching address and is actively being clocked by a master.
Matching Address	Address byte that is clocked into a slave that matches the value stored in SSPxADD.
Write Request	Slave receives a matching address with R/W bit clear, and is ready to clock in data.
Read Request	Master sends an address byte with the R/W bit set, indicating that it wishes to clock data out of the Slave. This data is the next and all following bytes until a Restart or Stop.
Clock Stretching	When a device on the bus hold SCL low to stall communication.
Bus Collision	Any time the SDA line is sampled low by the module while it is out- putting and expected high state.

REGISTER 32-3:	SMTxSTAT: SMT STATUS REGISTER
----------------	-------------------------------


R/W/HC-0/0	R/W/HC-0/0	R/W/HC-0/0	U-0	U-0	R-0/0	R-0/0	R-0/0
CPRUP	CPWUP	RST	_	_	TS	WS	AS
bit 7							bit 0
Legend:							
HC = Bit is clea	ared by hardwa	are		HS = Bit is se	et by hardware		
R = Readable bit W = Writable bit				U = Unimpler	mented bit, read	1 as '0'	
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set '0' = Bit is cleared				q = Value dep	pends on condit	tion	
bit 7 bit 6	1 = Request u 0 = SMTxPRx CPWUP: SM ⁻	Manual Perio update to SMT registers upda Manual Pulse update to SMT	kPRx registers ate is complete Width Buffer	e Update bit			
bit 5	0 = SMTxCPV RST: SMT Ma 1 = Request F	W registers upo anual Timer Re Reset to SMTx R registers upd	late is complet set bit TMR registers	e			
bit 4-3		ted: Read as '	•				
bit 2	TS: SMT GO Value Status bit 1 = SMT timer is incrementing 0 = SMT timer is not incrementing						
bit 1	WS : SMTxWI 1 = SMT wind 0 = SMT wind		bit				
bit 0	1 = SMT acqu	nal Value Statu uisition is in pro uisition is not in	gress				

- 33.1.2.8 Asynchronous Reception Setup:
- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 33.3 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 4. If interrupts are desired, set the RCIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit reception is desired, set the RX9 bit.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 8. Read the RC1STA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 9. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

33.1.2.9 9-bit Address Detection Mode Setup

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 33.3 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- If interrupts are desired, set the RCIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 5. Enable 9-bit reception by setting the RX9 bit.
- 6. Enable address detection by setting the ADDEN bit.
- 7. Enable reception by setting the CREN bit.
- The RCIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 9. Read the RC1STA register to get the error flags. The ninth data bit will always be set.
- 10. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register. Software determines if this is the device's address.
- 11. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 12. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

FIGURE 33-5: ASYNCHRONOUS RECEPTION

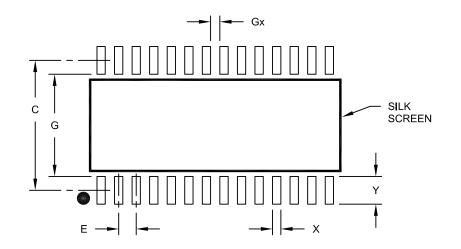
TABLE 36-3: GENERAL FORMAT FOR INSTRUCTIONS

000005	8		6	6 /EH = #	0
OPCODE		d		f (FILE #)	
d = 0 for des d = 1 for des f = 7-bit file r	tinatio	on f	ress		
Bit-oriented file r 13	egist e 10	-		ons 6	0
OPCODE		b (Bl	Γ#)	f (FILE #)	
b = 3-bit bit a f = 7-bit file r			ress		
_iteral and contro	ol ope	eratio	ns		
General			_		
13 OPCODE		8	7	k (literal)	0
k = 8-bit imm	odiat			it (intertal)	
k – o-bit inin	iculati	e vait			
CALL and GOTO in		ions c	only		0
13 11 OPCODE	10		k (l	iteral)	0
k = 11-bit im	media	te val	(
K = 11-011 III	ncula		uc		
NOVLP instruction	only	7	76		0
OPCODE				k (literal)	
k = 7-bit imm	nediate	e valu	ie		
MOVLB instruction	only				
13	only		5	5 4	0
OPCODE				k (literal)	
k = 5-bit imm	ediate	e valu	e		
BRA instruction on	ly				
13	ę	8			0
OPCODE				k (literal)	
k = 9-bit imn	nediat	e valı	le		
		e valı	le		
FSR Offset instruc		e valu 7		5	0
FSR Offset instruc				5k (literal)	-
FSR Offset instruc	ctions ate FS	7 SR	6 n		-
13 OPCODE n = appropri k = 6-bit imm	ate FS	7 SR se valu	6 n	k (literal)	-
FSR Offset instruct 13 OPCODE n = appropri	ate FS	7 SR se valu	6 n		0
13 OPCODE n = appropri k = 6-bit imm FSR Increment ins 13	ate FS nediat struction ate FS	7 SR SR SR SR	6 n	k (literal)	0
TSR Offset instruct 13 OPCODE n = appropri k = 6-bit imm FSR Increment inst 13 OPCODE n = appropri	ate FS nediat struction ate FS	7 SR SR SR SR	6 n	k (literal)	0

PIC16(L)F18854

TABLE 37-9: **PLL SPECIFICATIONS**

Standard Operating Conditions (unless otherwise stated) VDD ≥ 2.5 V							
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
PLL01	FPLLIN	PLL Input Frequency Range	4	—	8	MHz	
PLL02	FPLLOUT	PLL Output Frequency Range	16	—	32	MHz	Note 1
PLL03	TPLLST	PLL Lock Time from Start-up		200 /	$\langle - \rangle$	μ s	,
PLL04	FPLLJIT	PLL Output Frequency Stability (Jitter)	-0.25	\	0.25	-%	
*	These p	arameters are characterized but not tested.					


These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The output frequency of the PLL must meet the Fosc requirements listed in Parameter D002.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	Е		1.27 BSC	
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	Х			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0235-0

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.