

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18854-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Digital Peripherals (Cont.)

- Cyclical Redundancy Check (CRC/SCAN):
 - 16-bit CRC
- Scans memory for NVM integrity
- Communication:
 - EUSART, RS-232, RS-485, LIN compatible
 - Two SPI
 - Two I²C, SMBus, PMBus™ compatible
- Up to 25 I/O Pins:
 - Individually programmable pull-ups
 - Slew rate control
 - Interrupt-on-change with edge-select
 - Input level selection control (ST or TTL)
 - Digital open-drain enable
 - Current mode enable
- Peripheral Pin Select (PPS):
- Enables pin mapping of digital I/O
- Data Signal Modulator (DSM)
 - Modulates a carrier signal with digital data to create custom carrier synchronized output waveforms

Analog Peripherals

- Analog-to-Digital Converter with Computation (ADC²):
 - 10-bit with up to 24 external channels
 - Automated post-processing
 - Automates math functions on input signals: averaging, filter calculations, oversampling and threshold comparison
 - Operates in Sleep
- Two Comparators (COMP):
 - Fixed Voltage Reference at (non) inverting input(s)
- Comparator outputs externally accessible
- 5-Bit Digital-to-Analog Converter (DAC):
- 5-bit resolution, rail-to-rail
- Positive Reference Selection
- Unbuffered I/O pin output
- Internal connections to ADCs and comparators
- Voltage Reference:
 - Fixed Voltage Reference with 1.024V, 2.048V and 4.096V output levels

Flexible Oscillator Structure

- High-Precision Internal Oscillator:
 - Software selectable frequency range up to 32 MHz, ±1% typical
 - x2/x4 PLL with Internal and External Sources
- Low-Power Internal 32 kHz Oscillator (LFINTOSC)
- External 32 kHz Crystal Oscillator (SOSC)
- External Oscillator Block with:
 - Three crystal/resonator modes up to 20 MHz
 - Three external clock modes up to 20 MHz
- Fail-Safe Clock Monitor:
 - Allows for safe shutdown if peripheral clock stops
- Oscillator Start-up Timer (OST)
- Ensures stability of crystal oscillator resources

1.1 Register and Bit naming conventions

1.1.1 REGISTER NAMES

When there are multiple instances of the same peripheral in a device, the peripheral control registers will be depicted as the concatenation of a peripheral identifier, peripheral instance, and control identifier. The control registers section will show just one instance of all the register names with an 'x' in the place of the peripheral instance number. This naming convention may also be applied to peripherals when there is only one instance of that peripheral in the device to maintain compatibility with other devices in the family that contain more than one.

1.1.2 BIT NAMES

There are two variants for bit names:

- · Short name: Bit function abbreviation
- Long name: Peripheral abbreviation + short name

1.1.2.1 Short Bit Names

Short bit names are an abbreviation for the bit function. For example, some peripherals are enabled with the EN bit. The bit names shown in the registers are the short name variant.

Short bit names are useful when accessing bits in C programs. The general format for accessing bits by the short name is *RegisterName*bits. *ShortName*. For example, the enable bit, EN, in the COG1CON0 register can be set in C programs with the instruction COG1CON0bits.EN = 1.

Short names are generally not useful in assembly programs because the same name may be used by different peripherals in different bit positions. When this occurs, during the include file generation, all instances of that short bit name are appended with an underscore plus the name of the register in which the bit resides to avoid naming contentions.

1.1.2.2 Long Bit Names

Long bit names are constructed by adding a peripheral abbreviation prefix to the short name. The prefix is unique to the peripheral thereby making every long bit name unique. The long bit name for the COG1 enable bit is the COG1 prefix, G1, appended with the enable bit short name, EN, resulting in the unique bit name G1EN.

Long bit names are useful in both C and assembly programs. For example, in C the COG1CON0 enable bit can be set with the G1EN = 1 instruction. In assembly, this bit can be set with the BSF COG1CON0, G1EN instruction.

1.1.2.3 Bit Fields

Bit fields are two or more adjacent bits in the same register. Bit fields adhere only to the short bit naming convention. For example, the three Least Significant bits of the COG1CON0 register contain the mode control bits. The short name for this field is MD. There is no long bit name variant. Bit field access is only possible in C programs. The following example demonstrates a C program instruction for setting the COG1 to the Push-Pull mode:

COG1CON0bits.MD = 0x5;

Individual bits in a bit field can also be accessed with long and short bit names. Each bit is the field name appended with the number of the bit position within the field. For example, the Most Significant mode bit has the short bit name MD2 and the long bit name is G1MD2. The following two examples demonstrate assembly program sequences for setting the COG1 to Push-Pull mode:

Example 1:

MOVLW	~(1< <g1md1)< th=""><th></th></g1md1)<>	
ANDWF	COG1CON0,F	
MOVLW	1< <g1md2 1<<g1md0<="" td="" =""><td></td></g1md2>	
IORWF	COG1CON0, F	

Example 2:

	COCLONIO CIMDO
BSF	COGICONO,GIMDZ
BCF	COG1CON0,G1MD1
BSF	COG1CON0.G1MD0

1.1.3 REGISTER AND BIT NAMING EXCEPTIONS

1.1.3.1 Status, Interrupt, and Mirror Bits

Status, interrupt enables, interrupt flags, and mirror bits are contained in registers that span more than one peripheral. In these cases, the bit name shown is unique so there is no prefix or short name variant.

1.1.3.2 Legacy Peripherals

There are some peripherals that do not strictly adhere to these naming conventions. Peripherals that have existed for many years and are present in almost every device are the exceptions. These exceptions were necessary to limit the adverse impact of the new conventions on legacy code. Peripherals that do adhere to the new convention will include a table in the registers section indicating the long name prefix for each peripheral instance. Peripherals that fall into the exception category will not have this table. These peripherals include, but are not limited to, the following:

- EUSART
- MSSP

	BANK 16		BANK 17		BANK 18		BANK 19		BANK 20		BANK 21		BANK 22		BANK 23
800h		880h		900h		980h		A00h		A80h		B00h		B80h	
	Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers
80Bh	(18616-5-2)	88Bh	(10016-0-2)	90Bh	(10010-0-2)	98Bh	(10016-0-2)	A0Bh	(18516-5-2)	A8Bh	(18616-5-2)	B 0Bh	(18616-5-2)	B8Bh	(10010-2)
80Ch	WDTCON0	88Ch	CPUDOZE	90Ch	FVRCON	98Ch	_	AOCh		A8Ch		B0Ch		B8Ch	
80Dh	WDTCON1	88Dh	OSCCON1	90Dh	_	98Dh		710011		/ 10011		Boon		Boon	
80Eh	WDTPSL	88Eh	OSCCON2	90Eh	DAC1CON0	98Eh	_								
80Fh	WDTPSH	88Fh	OSCCON3	90Fh	DAC1CON1	98Fh	CMOUT								
810h	WDTTMR	890h	OSCSTAT	910h	_	990h	CM1CON0								
811h	BORCON	891h	OSCEN	911h	—	991h	CM1CON1								
812h	VREGCON ⁽¹⁾	892h	OSCTUNE	912h	_	992h	CM1NSEL								
813h	PCON0	893h	OSCFRQ	913h	_	993h	CM1PSEL								
814h	CCDCON	894h	_	914h	_	994h	CM2CON0								
815h	_	895h	CLKRCON	915h	_	995h	CM2CON1								
816h	_	896h	CLKRCLK	916h	—	996h	CM2NSEL								
817h	_	897h	MDCON0	917h	—	997h	CM2PSEL		Unimplemented		Unimplemented		Unimplemented		Unimplemented
818h	—	898h	MDCON1	918h	—	998h	—		Read as '0'		Read as '0'		Read as '0'		Read as '0'
819h	—	899h	MDSRC	919h	_	999h	—								
81Ah	NVMADRL	89Ah	MDCARL	91Ah	_	99Ah	—								
81Bh	NVMADRH	89Bh	MDCARH	91Bh		99Bh									
81Ch	NVMDATL	89Ch	—	91Ch	_	99Ch									
81Dh	NVMDATH	89Dh	_	91Dh	_	99Dh	_								
81Eh	NVMCON1	89Eh	_	91Eh		99Eh	_								
81Fh	NVMCON2	89Fh	—	91Fh	ZCDCON	99Fh	—								
820h		8A0h		920h		9A0h									
	Unimplemented		Unimplemented		Unimplemented		Unimplemented								
	Redu ds 0		Redu as 0		Redu ds 0		Redu as 0							DEEL	
86Fh		8EFh		96FN		9EFN		A6Fh		AEFh		B6Fh		BEFU	
8700	Common RAM	QLOU	Common RAM	9700	Common RAM	arou	Common RAM	Arun	Common RAM	AFUN	Common RAM	BINN	Common RAM	REAU	Common RAM
075	70h – 7Fh	0.5.5.1	70h – 7Fh	0751	70h – 7Fh		70h – 7Fh		70h – 7Fh	A	70h – 7Fh	DZE	70h – 7Fh	DEE	70h – 7Fh
87⊢h		8FFN		97FN		9FFN		A/Fh		AFFh		B/FU	1	внни	

TABLE 3-5: PIC16F18854 MEMORY MAP BANK 16-23

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: PIC16F18855/75 only.

							<u>, , , , , , , , , , , , , , , , , , , </u>							
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets			
Banks 1	7													
	CPU CORE REGISTERS; see Table 3-2 for specifics													
88Ch	CPUDOZE	IDLEN	DOZEN	ROI	DOE	-	DOZE2	DOZE1	DOZE0	0000 -000	0000 -000			
88Dh	OSCCON1	—		NOSC<2:0>			NDIV<	<3:0>		-ddd 0000	-ddd 0000			
88Eh	OSCCON2	—		COSC<2:0>			CDIV<	<3:0>		-বর্বর বর্ববর	-ववव वववव			
88Fh	OSCCON3	CSWHOLD	SOSCPWR	_	ORDY	NOSCR	—	_	—	00-0 0	00-0 0			
890h	OSCSTAT	EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	_	PLLR	d0-0 dd-0	d0-0 dd-0			
891h	OSCEN	EXTOEN	HFOEN	MFOEN	LFOEN	SOSCEN	ADOEN	—	—	00-0 00	00-0 00			
892h	OSCTUNE	—	—			HFT	10 0000	10 0000						
893h	OSCFRQ	—	-	—	—	-		HFFRQ<2:0>		ddd	ddd			
894h	_				Ur	nimplemented				—	—			
895h	CLKRCON	CLKREN	—	_	CLKRD	C<1:0>		CLKRDIV<2:0>		01 0000	01 0000			
896h	CLKRCLK	—	—	_	—		CLKRCL	K<3:0>		0000	0000			
897h	MDCON0	MDEN	—	MDOUT	MDOPOL	—	_	—	MDBIT	0-000	0-000			
898h	MDCON1	—	_	MDCHPOL	MDCHSYNC	-	—	MDCLPOL	MDCLSYNC	0000	0000			
899h	MDSRC	—	-	-	MDMS<4:0>						0 0000			
89Ah	MDCARL	—	-	-	— MDCLS<3:0>					0000	0000			
89Bh	MDCARH	—	-	-	— MDCHS<3:0>					0000	0000			
89Ch	_		Unimplemented							—	—			
89Dh	_		Unimplemented								_			
89Eh	_				U	nimplemented				_	—			
89Fh	_				Ur	nimplemented				_	-			

TABLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Register present on PIC16F18854 devices only.

2: Unimplemented, read as '1'.

10.4.7 NVMREG DATA EEPROM MEMORY, USER ID, DEVICE ID AND CONFIGURATION WORD ACCESS

Instead of accessing Program Flash Memory (PFM), the Data EEPROM Memory, the User ID's, Device ID/ Revision ID and Configuration Words can be accessed when NVMREGS = 1 in the NVMCON1 register. This is the region that would be pointed to by PC<15> = 1, but not all addresses are accessible. Different access may exist for reads and writes. Refer to Table 10-3.

When read access is initiated on an address outside the parameters listed in Table 10-3, the NVMDATH: NVMDATL register pair is cleared, reading back '0's.

FIGURE 10-7: FLASH PROGRAM MEMORY MODIFY

TABLE 10-3:EEPROM, USER ID, DEV/REV ID AND CONFIGURATION WORD ACCESS
(NVMREGS = 1)

Address	Function	Read Access	Write Access
8000h-8003h	User IDs	Yes	Yes
8005h-8006h	Device ID/Revision ID	Yes	No
8007h-800Bh	Configuration Words 1-5	Yes	No
F000h-F0FFh	EEPROM	Yes	Yes

© 2016 Microchip Technology Inc.

12.4.5 INPUT THRESHOLD CONTROL

The INLVLA register (Register 12-9) controls the input voltage threshold for each of the available PORTA input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTA register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 37-4 for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

12.4.6 ANALOG CONTROL

The ANSELA register (Register 12-5) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELA bits has no effect on digital output functions. A pin with its TRIS bit clear and its ANSEL bit set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELA bits default to the Analog							
	mode after Reset. To use any pins as							
	digital general purpose or peripheral							
	inputs, the corresponding ANSEL bits							
	must be initialized to '0' by user software.							

12.4.7 WEAK PULL-UP CONTROL

The WPUA register (Register 12-6) controls the individual weak pull-ups for each PORT pin.

12.4.8 CURRENT-CONTROL DRIVE MODE CONTROL

The CCDPA and CCDNA registers (Register 12-9) and (Register 12-10) control the Current-Controlled Drive mode for both the positive-going and negative-going drivers. When a CCDPA[y] or CCDNA[y] bit is set and the CCDEN bit of the CCDCON register is set, the current-controlled mode is enabled for the corresponding port pin. When the CCDPA[y] or CCDNA[y] bit is clear, the current-controlled mode for the corresponding port pin is disabled. If the CCDPA[y] or CCDNA[y] bit is set and the CCDEN bit is clear, operation of the port pin is undefined (see **Section 12.1.1 "Current-Controlled Drive"**).

12.4.9 PORTA FUNCTIONS AND OUTPUT PRIORITIES

Each PORTA pin is multiplexed with other functions.

Each pin defaults to the PORT latch data after Reset. Other output functions are selected with the peripheral pin select logic or by enabling an analog output, such as the DAC. See **Section 13.0 "Peripheral Pin Select (PPS) Module"** for more information.

Analog input functions, such as ADC and comparator inputs are not shown in the peripheral pin select lists. Digital output functions may continue to control the pin when it is in Analog mode.

18.2 Comparator Control

Each comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 register (see Register 18-1) contains Control and Status bits for the following:

- Enable
- Output
- Output polarity
- Speed/Power selection
- · Hysteresis enable
- Timer1 output synchronization

The CMxCON1 register (see Register 18-2) contains Control bits for the following:

- Interrupt on positive/negative edge enables
- Positive input channel selection
- Negative input channel selection

18.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

18.2.2 COMPARATOR OUTPUT

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CMOUT register.

The comparator output can also be routed to an external pin through the RxyPPS register (Register 13-2). The corresponding TRIS bit must be clear to enable the pin as an output.

Note 1: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

18.2.3 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

Table 18-2 shows the output state versus input conditions, including polarity control.

TABLE 18-2: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	CxPOL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	1
CxVN < CxVP	1	0

19.1.7 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 6.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

19.1.8 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the PWMx registers to their Reset states.

TABLE 19-1:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS ((Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 19-2:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS	(Fosc = 8 MHz))
-------------	---	----------------	---

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

19.1.9 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the module for using the PWMx outputs:

- 1. Disable the PWMx pin output driver(s) by setting the associated TRIS bit(s).
- Configure the PWM output polarity by configuring the PWMxPOL bit of the PWMxCON register.
- 3. Load the PR2 register with the PWM period value, as determined by Equation 19-1.
- 4. Load the PWMxDCH register and bits <7:6> of the PWMxDCL register with the PWM duty cycle value, as determined by Equation 19-2.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR1 register.
 - Select the Timer2 prescale value by configuring the T2CKPS<1:0> bits of the T2CON register.
 - Enable Timer2 by setting the TMR2ON bit of the T2CON register.
- 6. Wait until the TMR2IF is set.
- 7. When the TMR2IF flag bit is set:
- Clear the associated TRIS bit(s) to enable the output driver.

- Route the signal to the desired pin by configuring the RxyPPS register.
- Enable the PWMx module by setting the PWMxEN bit of the PWMxCON register.

In order to send a complete duty cycle and period on the first PWM output, the above steps must be followed in the order given. If it is not critical to start with a complete PWM signal, then the PWM module can be enabled during Step 2 by setting the PWMxEN bit of the PWMxCON register.

REGISTER 20-2:	CWGxCON1:	CWGx CONTROL	REGISTER 1
----------------	-----------	---------------------	-------------------

U-0	U-0	R-x	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	_	IN	_	POLD	POLC	POLB	POLA
bit 7							bit 0
l egend:							

Legena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6	Unimplemented: Read as '0'
bit 5	IN: CWG Input Value
bit 4	Unimplemented: Read as '0'
bit 3	POLD: CWGxD Output Polarity bit
	1 = Signal output is inverted polarity0 = Signal output is normal polarity
bit 2	POLC: CWGxC Output Polarity bit
	1 = Signal output is inverted polarity0 = Signal output is normal polarity
bit 1	POLB: CWGxB Output Polarity bit
	1 = Signal output is inverted polarity0 = Signal output is normal polarity
bit 0	POLA: CWGxA Output Polarity bit
	1 = Signal output is inverted polarity0 = Signal output is normal polarity

© 2016 Microchip Technology Inc.

© 2016 Microchip Technology Inc.

FIGURE 29-2: TIMER2 CLOCK SOURCE BLOCK DIAGRAM

29.1 Timer2 Operation

Timer2 operates in three major modes:

- Free Running Period
- One-shot
- Monostable

Within each mode there are several options for starting, stopping, and reset. Table 29-1 lists the options.

In all modes, the TMR2 count register is incremented on the rising edge of the clock signal from the programmable prescaler. When TMR2 equals T2PR, a high level is output to the postscaler counter. TMR2 is cleared on the next clock input.

An external signal from hardware can also be configured to gate the timer operation or force a TMR2 count Reset. In Gate modes the counter stops when the gate is disabled and resumes when the gate is enabled. In Reset modes the TMR2 count is reset on either the level or edge from the external source.

The TMR2 and T2PR registers are both directly readable and writable. The TMR2 register is cleared and the T2PR register initializes to FFh on any device Reset. Both the prescaler and postscaler counters are cleared on the following events:

- a write to the TMR2 register
- a write to the T2CON register
- any device Reset
- External Reset Source event that resets the timer.

Note:	TMR2	is	not	cleared	when	T2CON	is
	written.						

29.1.1 FREE RUNNING PERIOD MODE

The value of TMR2 is compared to that of the Period register, T2PR, on each clock cycle. When the two values match, the comparator resets the value of TMR2 to 00h on the next cycle and increments the output

postscaler counter. When the postscaler count equals the value in the OUTPS<4:0> bits of the TMRxCON1 register then a one clock period wide pulse occurs on the TMR2_postscaled output, and the postscaler count is cleared.

29.1.2 ONE-SHOT MODE

The One-Shot mode is identical to the Free Running Period mode except that the ON bit is cleared and the timer is stopped when TMR2 matches T2PR and will not restart until the T2ON bit is cycled off and on. Postscaler OUTPS<4:0> values other than 0 are meaningless in this mode because the timer is stopped at the first period event and the postscaler is reset when the timer is restarted.

29.1.3 MONOSTABLE MODE

Monostable modes are similar to One-Shot modes except that the ON bit is not cleared and the timer can be restarted by an external Reset event.

29.2 Timer2 Output

The Timer2 module's primary output is TMR2_postscaled, which pulses for a single TMR2_clk period when the postscaler counter matches the value in the OUTPS bits of the TMR2CON register. The T2PR postscaler is incremented each time the TMR2 value matches the T2PR value. This signal can be selected as an input to several other input modules:

- The ADC module, as an Auto-conversion Trigger
- · COG, as an auto-shutdown source

In addition, the Timer2 is also used by the CCP module for pulse generation in PWM mode. Both the actual TMR2 value as well as other internal signals are sent to the CCP module to properly clock both the period and pulse width of the PWM signal. See Section 30.0 "Capture/Compare/PWM Modules" for more details on setting up Timer2 for use with the CCP, as well as the timing diagrams in Section 29.5 "Operation Examples" for examples of how the varying Timer2 modes affect CCP PWM output.

29.3 External Reset Sources

In addition to the clock source, the Timer2 also takes in an external Reset source. This external Reset source is selected for Timer2, Timer4, and Timer6 with the T2RST, T4RST, and T6RST registers, respectively. This source can control starting and stopping of the timer, as well as resetting the timer, depending on which mode the timer is in. The mode of the timer is controlled by the MODE<4:0> bits of the TMRxHLT register. Edge-Triggered modes require six Timer clock periods between external triggers. Level-Triggered modes require the triggering level to be at least three Timer clock periods long. External triggers are ignored while in Debug Freeze mode.

FIGURE 29-13: LEVEL-TRIGGERED HARDWARE LIMIT ONE-SHOT MODE TIMING DIAGRAM (MODE = 10110)

31.2.2 SPI MODE OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPxCON1<3:0> and SSPxSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCK)
- · Clock Rate (Master mode only)
- · Slave Select mode (Slave mode only)

To enable the serial port, SSP Enable bit, SSPEN of the SSPxCON1 register, must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, re-initialize the SSPxCONx registers and then set the SSPEN bit. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRISx register) appropriately programmed as follows:

- · SDI must have corresponding TRIS bit set
- · SDO must have corresponding TRIS bit cleared
- SCK (Master mode) must have corresponding
 TRIS bit cleared
- SCK (Slave mode) must have corresponding
 TRIS bit set
- SS must have corresponding TRIS bit set

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value. The MSSP consists of a transmit/receive shift register (SSPxSR) and a buffer register (SSPxBUF). The SSPxSR shifts the data in and out of the device, MSb first. The SSPxBUF holds the data that was written to the SSPxSR until the received data is ready. Once the eight bits of data have been received, that byte is moved to the SSPxBUF register. Then, the Buffer Full Detect bit, BF of the SSPxSTAT register, and the interrupt flag bit, SSPxIF, are set. This double-buffering of the received data (SSPxBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPxBUF register during transmission/reception of data will be ignored and the write collision detect bit WCOL of the SSPxCON1 register, will be set. User software must clear the WCOL bit to allow the following write(s) to the SSPxBUF register to complete successfully.

When the application software is expecting to receive valid data, the SSPxBUF should be read before the next byte of data to transfer is written to the SSPxBUF. The Buffer Full bit, BF of the SSPxSTAT register, indicates when SSPxBUF has been loaded with the received data (transmission is complete). When the SSPxBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur.

The SSPxSR is not directly readable or writable and can only be accessed by addressing the SSPxBUF register. Additionally, the SSPxSTAT register indicates the various Status conditions.

SPI Master SSPM<3:0> = 00xx SPI Slave SSPM<3:0> = 010x = 1010 SDO SDI Serial Input Buffer Serial Input Buffer (SSPxBUF) (SSPxBUF) SDI SDO Shift Register Shift Register (SSPxSR) (SSPxSR) LSb MSb MSb LSb Serial Clock SCK SCK Slave Select SS General I/O (optional) Processor 2 Processor 1

FIGURE 31-5: SPI MASTER/SLAVE CONNECTION

DS40001826A-page 484

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
_	_	_			WSEL<4:0>					
bit 7							bit 0			
r										
Legend:										
R = Readable bit W = Writab			bit	U = Unimplemented bit, read as '0'						
u = Bit is unchanged x = Bit is unknow		nown	-n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	ends on condit	tion				
bit 7-5 bit 4-0	Unimplemen WSEL<4:0>: 11111 = Res 11000 = Res 10111 = LC4 10100 = LC3 10101 = LC2 10100 = LC1 10011 = ZCD 10001 = C1C 10000 = PWI 01111 = PWI 01101 = CCF 01001 = CCF 01101 = CCF 01001 = CCF 01001 = SMI 01000 = SMI 01000 = SMI	ted: Read as ' SMTx Window erved _out _out _out _out _out _out _out _out	o' Selection bits	q – value dep						
	00110 = TMF 00101 = TMF 00100 = TMF 00011 = SOS 00010 = MFI 00001 = LFIN 00000 = SMT	<pre>k4_posiscaled k2_postscaled k0_overflow C NTOSC/16 NTOSC fxWINPPS</pre>								

REGISTER 32-5: SMTxWIN: SMT1 WINDOW INPUT SELECT REGISTER

Note 1: The SMT_match corresponding to the SMT selected becomes reserved.

TABLE 36-3: GENERAL FORMAT FOR INSTRUCTIONS

000000	<u> </u>	<u>,</u>	6		0
OPCODE		d		f (FILE #)	
d = 0 for des d = 1 for des f = 7-bit file re	tinatio tinatio egiste	on W on f er add	ress	;	
Bit-oriented file ro	e giste 10	er op 9	erat 7	ions 6	0
OPCODE		b (Bl	Γ#)	f (FILE #))
b = 3-bit bit a f = 7-bit file r	iddres egiste	ss er add	ress	5	
_iteral and contro	ol ope	eratio	ns		
General			_		
		8	1	k (literal)	0
k = 2 bit imm	odiat		10	K (incrui)	
K – 0-bit inin	culat	e vait			
CALL and GOTO in:	structi	ions c	only		0
OPCODE	10		k (literal)	0
k = 11-bit im	nedia	te val		intertary	
K = 11-bit iiii	ncula		uc		
NOVLP instruction	only	7	76	5	0
OPCODE				k (literal)	
k = 7-bit imm	ediate	e valu	ie		
NOVI B instruction	only				
13	Uniy		ļ	54	0
OPCODE				k (literal)
k = 5-bit imm	ediate	e valu	e		
BRA instruction on	ly				
13	. (9 8			0
OPCODE				k (literal)	
k = 9-bit imm	nediat	e valı	Je		
k = 9-bit imm	nediat tions:	e valı	Je		
k = 9-bit imm FSR Offset instruc	nediat tions:	e valu 7	Je 6	5	0
k = 9-bit imm FSR Offset instruct 13 OPCODE	nediat	e valı	ue 6 n	5 k (literal	0
k = 9-bit imm FSR Offset instruct 13 OPCODE n = appropria k = 6-bit imm	ate FS	e valu 7 SR se valu	le 6 n	5 k (literal	0
k = 9-bit imm FSR Offset instruct 13 OPCODE n = appropria k = 6-bit imm FSR Increment ins 13	ate Fanediat	e valu 7 SR se valu	Je 6 n	5 k (literal 3 2 1	0)))
k = 9-bit imm 13 OPCODE n = appropri- k = 6-bit imm FSR Increment ins 13 OPCODE	ate FS nediat	e valı 7 SR se valı ons	le 6 n	5 k (literal 3 2 1 n m (m	0) 0 node)
k = 9-bit imm FSR Offset instruct 13 OPCODE n = appropria k = 6-bit imm FSR Increment ins 13 OPCODE n = appropria m = 2-bit mod	ate FS nediat tructio	e valu 7 SR se valu ons	le 6 n ue	5 k (literal 3 2 1 n m (m	0) 0 node)
k = 9-bit imm FSR Offset instruct 13 OPCODE n = appropria k = 6-bit imm FSR Increment ins 13 OPCODE n = appropria m = 2-bit mod	ate FS nediat tructio	e valu	le 6 n Jue	5 k (literal 3 2 1 n m (m	0) 0 node)

TABLE 37-25: I²C BUS DATA REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Symbol Characteristic		ymbol Characteristic Min.	Min.	Max.	Units	Conditions	
SP100*	Тнідн	Clock high time	100 kHz mode	4.0	-	μS	Device mu st op erate at a minimum of 1,5 MHz	
			400 kHz mode	0.6	—	μs	Device must operate at a minimum of 10 MHz	
			SSP module	1.5Tcy	—			
SP101*	TLOW	Clock low time	100 kHz mode	4.7	—	μs	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	—	μs	Device must operate at a minimum of 10 MHz	
			SSP module	1.5Tcy	$\neq \searrow$			
SP102*	Tr	SDA and SCL rise	100 kHz mode	—	1000	ns	$\langle \rangle$	
		time	400 kHz mode	20 + 0.1CB-	300	ns	CB is specified to be from 10-400 pF	
SP103*	TF	SDA and SCL fall time	100 kHz mode	\wedge	250	ns		
			400 kHz mode	20 + 0.1CB	250	ns	CB is specified to be from 10-400 pF	
SP106*	THD:DAT	Data input hold time	100 kHz mode 🧹	, 9	$\langle \rangle$	ns		
			400 kHz mode	/ 1/0	0.9	μs		
SP107*	TSU:DAT	Data input setup time	100 kHz møde	250	> —	ns	(Note 2)	
			400 kHz mode 🔪	100	_	ns		
SP109*	Таа	Output valid from	100 kAz mode	\searrow	3500	ns	(Note 1)	
		clock	400 kHz mode	\searrow	_	ns		
SP110*	TBUF	Bus free time	100 kHz mode	4.7	_	μS	Time the bus must be free	
			400 kHz mode	1.3	—	μS	before a new transmission can start	
SP111	Св	Bus capacitive loading	\setminus \land	—	400	pF		

These parameters are characterized but not tested. *

Note 1:

As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions. A Fast mode (400 kHz) KC bus device can be used in a Standard mode (100 kHz) I^2 C bus system, but the requirement TSU:DAT \ge 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal. 2: line TR max. # Tsy:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Ν	ILLIMETER:	S	
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A