
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	PowerPC
Core Size	32-Bit Single-Core
Speed	56MHz
Connectivity	CANbus, EBI/EMI, SCI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	64
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 2.7V
Data Converters	A/D 32x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	388-BBGA
Supplier Device Package	388-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc561mvr56

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NP

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 26668334 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The described product is a PowerPC microprocessor. The PowerPC name is a trademark of IBM Corp. and used under license

© Freescale Semiconductor, Inc. 2004, 2005. All rights reserved.

MPC561RM REV 1.2 08/2005

Chapter 2 Signal Descriptions

This chapter describes the MPC561/MPC563 microcontroller's external signals. It contains a description of individual signals, shows their behavior, shows whether the signal is an input or an output, and indicates signal multiplexing.

NOTE

A bar over a signal name indicates that the signal is active-low—for example, \overline{TA} (transfer acknowledge). Active-low signals are referred to as asserted (active) when they are low and negated when they are high. Signals that are not active-low, such as ADDR[8:31] (address bus signals) and DATA[0:31] (data bus signals) are referred to as asserted when they are high and negated when they are low.

Refer to Appendix F, "Electrical Characteristics," and Appendix G, "66-MHz Electrical Characteristics," for detailed electrical information for each signal.

2.1 Signal Groupings

Figure 2-1 illustrates the external signals of the MPC561/MPC563 grouped by functional module.

Signal Descriptions

Table 2-1. MPC561/MPC563 Signa	I Descriptions (continued)
--------------------------------	----------------------------

Signal Name	No. of Signals	Туре	Function after Reset ¹	Description
		I		Analog Channel 2. Internally multiplexed input-only analog channel. The input is passed on as a separate signal to the QADC64E.
A_AN2 / A_ANy/ A_PQB2	1	I	A_AN2	Multiplexed Analog Input (A_ANy). Externally multiplexed analog input.
		I/O ⁵		Port A_PQB2. This is a bidirectional general-purpose I/O if the QADC64E is configured in enhanced mode, otherwise it is an input only.
		I		Analog Input 3. Internally multiplexed input-only analog channel. The input is passed on as a separate signal to the QADC64E.
A_AN3 / A_ANz / A_PQB3	1	Ι	A_AN3	Multiplexed Analog Input (A_ANz). Externally multiplexed analog input.
		I/O ⁵	-	Port A_PQB 3. This is a bidirectional general-purpose I/O if the QADC64E is configured in enhanced mode, otherwise it is an input only.
		Ι		Analog Input [48:51]. Analog input channel. The input is passed on as a separate signal to the QADC64E.
A_AN[48:51] / A_PQB[4:7]	4	I/O ⁵	AN[48:51]	Port A_PQB[4:7]. This is a bidirectional general-purpose I/O if the QADC64E is configured in enhanced mode, otherwise it is an input only.
		Ι		Analog Input [52:54]. Input-only. These inputs are passed on as separate signals to the QADC64E.
A_AN[52:54] / A_MA[0:2] / A_PQA[0:2]	3	I	A_AN[52:54]	Multiplexed Address [0:2] for QADC64E Module A. Provides a three-bit multiplexed address output to the external multiplexer chip to allow selection of one of the eight inputs.
		I/O		Port A_PQA[0:2]. This is a bidirectional general-purpose I/O.
	_	I		Analog Input [55:59]. Input-only. These inputs are passed on as separate signals to the QADC64E.
A_AN[55:59] / A_PQA[3:7]	5	I/O	A_AN[55:59]	Port A_PQA[3:7]. This is a bidirectional general-purpose I/O.
		I		Analog Channel 0. Internally multiplexed input-only analog channel. Passed on as a separate signal to the QADC64E.
B_AN0 / B_ANw / B_PQB0	1	I	B_AN0	Multiplexed Analog Input (B_ANw). Externally multiplexed analog input.
		I/O		Port B_PQB0. This is a bidirectional general-purpose I/O if the QADC64E is configured in enhanced mode, otherwise it is an input only.

······································						
Signal List ¹	Voltage	Slew Rate Controlled Option?	Drive Load (pF) ²	Reset State	Hysteresi s Enabled?	Function After HRESET, PORESET/TRST
TXD2 /	5 V	Yes	50 ; 50	PU5 until	No	QGPO2
QGPO2 /	5 V	Yes	50 ; 50	PULL_DIS1 is set	No	
C_CNTX0	5 V	Yes	50 ; 50	-	No	
RXD1 /	5 V	NA	NA	Must be driven	No	QGPI1
QGPI1	5 V	NA	NA	or connected to a pull device	No	
RXD2 /	5 V	NA	NA	Must be driven	No	QGPI2
QGPI2 /	5 V	NA	NA	or connected to a pull device	No	
C_CNRX0	5 V	NA	NA		No	
				MIOS14		
MDA[11:15, 27:31]	5 V	Yes	50 ; 50	Pull device enabled until PULL_DIS0 is set ¹⁶	Yes	MDA[11:15,27:31]
MPWM0 /	5 V	Yes	50 ; 50	Pull device	Yes	MPWM0 unless the Nexus
MDI1	2.6 V	No	NA	enabled until PULL_DIS0 is set ¹⁶	Yes	(READI) port is enabled, then MDI1. See Section 2.5.
MPWM1 ³ /	5 V	Yes	50 ; 50	Pull device	Yes	MPWM1 unless the Nexus
MDO2	2.6 V	No	50 ; 25	enabled until PULL_DIS0 is set ¹⁶	No	(READI) port is enabled, then MDO2. See Section 2.5.
MPWM2 ³ /	5 V	Yes	50 ; 50	Pull device	Yes	MPWM2
	2.6 V	No	50 ; 25	enabled until PULL_DIS0 is	No	
PPM_TX1	5 V	Yes	50 ; 25	set ¹⁶	No	
MPWM3/	5 V	Yes	50 ; 50	Pull device	Yes	MPWM3
PPM_RX1	2.6 V	No	NA	enabled until PULL_DIS0 is set ¹⁶	Yes	
MPWM16	5 V	Yes	50 ; 50	Pull device enabled until PULL_DIS0 is set ¹⁶	Yes	MPWM16
MPWM17 ³ /	5 V	Yes	50 ; 50	Pull device	Yes	MPWM17 unless the Nexus
MDO3	2.6 V	No	50 ; 25	enabled until PULL_DIS0 is set ¹⁶	No	(READI) port is enabled. See Section 2.5.

NOTE

The 8 Kbytes allocated for the original PowerPC ISA exception table can be almost fully utilized. This is possible if the MPC561/MPC563 system memory is *not* mapped to the exception address space, (i.e., the addresses 0xFFF0 0000 to 0xFFF0 1FFF are not used).

In such case, these 8 Kbytes can be fully utilized by the compiler, except for the lower 64 words (256 bytes) which are dedicated for the branch instructions.

If the RCPU, while executing an exception, issues any address between two successive exception entries (e.g., 0xFFF0 0104), then the operation of the MPC561/MPC563 is not guaranteed if the ETR is enabled.

In order to activate the exception table relocation feature, the following steps are required:

- 1. Set the RCPU MSR[IP] bit
- 2. Set the BBCMCR[ETRE] bit. See Section 4.6.2.1, "BBC Module Configuration Register (BBCMCR)," for programming details.

The ETR feature can be activated from reset, by setting corresponding bits in the reset configuration word.

Name of Exception	Name of Exception Original Address Issues by Core		Mapped Address by Exception Table Relocation Logic		
Reserved	0xFFF0 0000	Page_Offset+0x000			
System Reset	0xFFF0 0100	Compression disabled	Compression enabled		
		Page_Offset1+0x08	Page_Offset ¹ +0x0B8		
Machine Check	0xFFF0 0200	Page_Offs	set+0x010		
Reserved	0xFFF0 0300	Page_Offs	set+0x018		
Reserved	0xFFF0 0400	Page_Offs	set+0x020		
External Interrupt ²	0xFFF0 0500	Page_Offs	set+0x028		
Alignment	0xFFF0 0600	Page_Offs	set+0x030		
Program	0xFFF0 0700 Page_Offset+0x038		set+0x038		
Floating Point unavailable	0xFFF0 0800	Page_Offs	set+0x040		
Decrementer	0xFFF0 0900	Page_Offs	set+0x048		
Reserved	0xFFF0 0A00	Page_Offs	set+0x050		
Reserved	0xFFF0 0B00	Page_Offs	set+0x058		
System Call	0xFFF0 0C00	Page_Offset+0x060			
Trace	0xFFF0 0D00 Page_Offset+0x068		set+0x068		
Floating Point Assist	0xFFF0 0E00	Page_Offs	set+0x070		
Implementation Dependent Software Emulation	0xFFF0 1000	Page_Offs	set+0x080		

Table 4-1. Exception Addresses Mapping


```
System Configuration and Protection
```

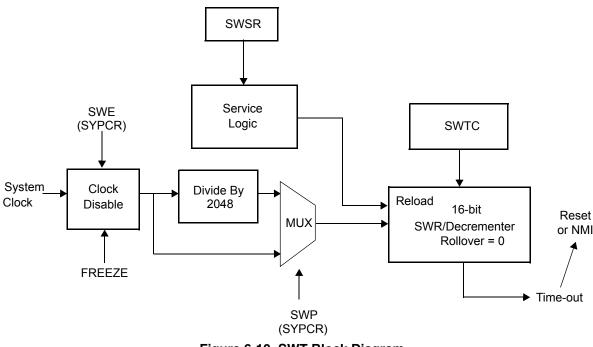


Figure 6-10. SWT Block Diagram

6.1.11 Freeze Operation

When the FREEZE line is asserted, the clocks to the software watchdog, the periodic interrupt timer, the real-time clock, the time base counter, and the decrementer can be disabled. This is controlled by the associated bits in the control register of each timer. If programmed to stop during FREEZE assertion, the counters maintain their values while FREEZE is asserted. The bus monitor remains enabled regardless of this signal.

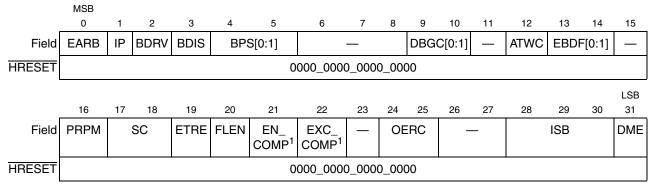
6.1.12 Low Power Stop Operation

When the processor is set in a low-power mode (doze, sleep, or deep-sleep), the software watchdog timer is frozen. It remains frozen and maintains its count value until the processor exits this state and resumes executing instructions.

The periodic interrupt timer, decrementer, and time base are not affected by these low-power modes. They continue to run at their respective frequencies. These timers are capable of generating an interrupt to bring the MCU out of these low-power modes.

6.2 Memory Map and Register Definitions

This section provides the MPC561/MPC563 memory map, register diagrams and bit descriptions of the system configuration and protection registers.


6.2.1 Memory Map

The MPC561/MPC563 internal memory space can be assigned to one of eight locations.

7.5.2 Hard Reset Configuration Word (RCW)

Following is the hard reset configuration word that is sampled from the internal data bus, data_sgpiod(0:31) on the negation of $\overline{\text{HRESET}}$. If the external reset config word is selected ($\overline{\text{RSTCONF}} = 0$), the internal data bus will reflect the state of external data bus. If the internal reset config word is selected and neither of the Flash reset config words are enabled (UC3FCFIG[HC] = 1), the internal data bus is internally driven with all zeros. The reset configuration word is not a register in the memory map. Most of the bits in the configuration are located in registers in the SIU. Refer to Table 7-5 for a detailed description of each control bit.

Figure 7-7. Reset Configuration Word (RCW)

¹ Available only on the MPC562/MPC564, software should write "0" to this bit for MPC561/MPC563.

Bits	Name	Description
0	EARB	 External Arbitration — Refer to Section 9.5.7, "Arbitration Phase," for a detailed description of Bus arbitration. The default value is that internal arbitration hardware is used. 0 Internal arbitration is performed 1 External arbitration is assumed
1	IP	Initial Interrupt Prefix — This bit defines the initial value of MSR[IP] immediately after reset. MSR[IP] defines the Interrupt Table location. If IP is zero then the initial value of MSR[IP] is zero, If the IP is one, then the initial value of MSR[IP] is one. Default value is zero. See Table 3-11 for more information. 0 MSR[IP] = 0 after reset 1 MSR[IP] = 1 after reset
2	BDRV	Bus Pins Drive Strength — This bit determines the bus pins (address, data and control) driving capability to be either full or reduced drive. The bus default drive strength is full; Upon default, it also effects the CLKOUT drive strength to be full. See Table 6-7 for more information. BDRV controls the default state of COM1 in the SIUMCR. 0 Full drive 1 Reduced drive
3	BDIS	Boot Disable — If the BDIS bit is set, then memory controller is not activated after reset. If it is cleared then the memory controller bank 0 is active immediately after reset such that it matches any addresses. If a write to the OR0 register occurs after reset this bit definition is ignored. The default value is that the memory controller is enabled to control the boot with the $\overline{CS0}$ pin. See Section 10.7, "Global (Boot) Chip-Select Operation," for more information. 0 Memory controller bank 0 is active and matches all addresses immediately after reset 1 Memory controller is not activated after reset.


```
External Bus Interface
```

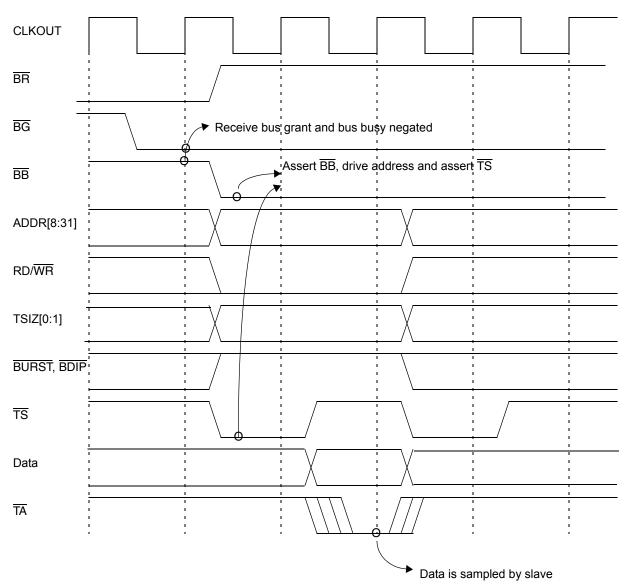
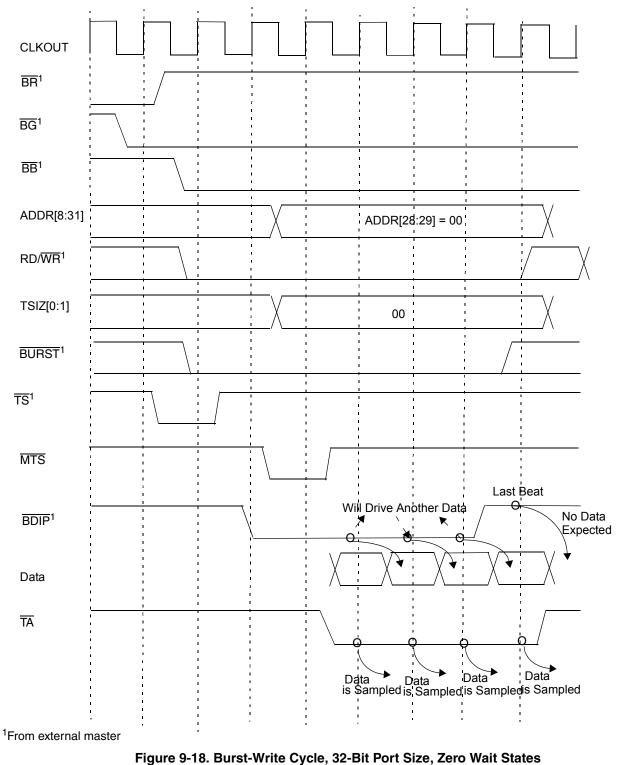
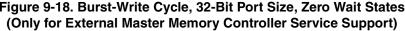
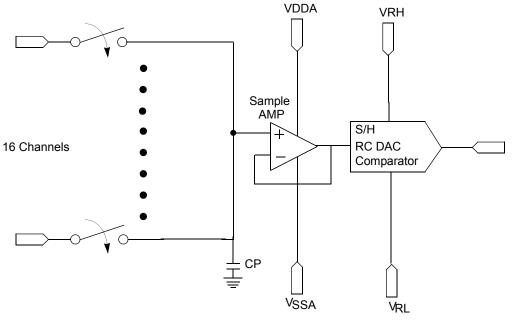


Figure 9-8. Single Beat Basic Write Cycle Timing – Zero Wait States

External Bus Interface


Figure 9-17. Basic Flow Diagram of a Burst-Write Cycle

MPC561/MPC563 Reference Manual, Rev. 1.2

QADC64E Legacy Mode Operation

QADC64E 16CH SAMPLE AMP

Figure 13-49. Equivalent Analog Input Circuitry

Since the sample amplifier is powered by V_{DDA} and V_{SSA} , it can accurately transfer input signal levels up to but not exceeding V_{DDA} and down to but not below V_{SSA} . If the input signal is outside of this range, the output from the sample amplifier is clipped.

In addition, V_{RH} and V_{RL} must be within the range defined by V_{DDA} and V_{SSA} . As long as V_{RH} is less than or equal to V_{DDA} and V_{RL} is greater than or equal to V_{SSA} and the sample amplifier has accurately transferred the input signal, resolution is ratiometric within the limits defined by V_{RL} and V_{RH} . If V_{RH} is greater than V_{DDA} , the sample amplifier can never transfer a full-scale value. If V_{RL} is less than V_{SSA} , the sample amplifier can never transfer a zero value.

Figure 13-50 shows the results of reference voltages outside the range defined by V_{DDA} and V_{SSA} . At the top of the input signal range, V_{DDA} is 10 mV lower than V_{RH} . This results in a maximum obtainable 10-bit conversion value of 0x3FE. At the bottom of the signal range, V_{SSA} is 15 mV higher than V_{RL} , resulting in a minimum obtainable 10-bit conversion value of three.

	7	

Operating Modes			
Interval timer single-scan mode: time = QCLK period x 2 ¹³			
Interval timer single-scan mode: time = QCLK period x 2 ¹⁴			
Interval timer single-scan mode: time = QCLK period x 2 ¹⁵			
Interval timer single-scan mode: time = QCLK period x 2^{16}			
Interval timer single-scan mode: time = QCLK period x 2^{17}			
Reserved mode			
Reserved mode			
Software triggered continuous-scan mode			
External trigger rising edge continuous-scan mode			
External trigger falling edge continuous-scan mode			
Periodic timer continuous-scan mode: time = QCLK period x 2^7			
Periodic timer continuous-scan mode: time = QCLK period x 2^8			
Periodic timer continuous-scan mode: time = QCLK period x 2^9			
Periodic timer continuous-scan mode: time = QCLK period x 2^{10}			
Periodic timer continuous-scan mode: time = QCLK period x 2^{11}			
Periodic timer continuous-scan mode: time = QCLK period x 2^{12}			
Periodic timer continuous-scan mode: time = QCLK period x 2^{13}			
Periodic timer continuous-scan mode: time = QCLK period x 2^{14}			
Periodic timer continuous-scan mode: time = QCLK period x 2^{15}			
Periodic timer continuous-scan mode: time = QCLK period x 2^{16}			
Periodic timer continuous-scan mode: time = QCLK period x 2^{17}			
Reserved mode			

Table 14-14. Queue 2 Operating Modes (continued)

NOTE

If BQ2 was assigned to the CCW that queue 1 is currently working on, then that conversion is completed before BQ2 takes effect.

Each time a CCW is read for queue 1, the CCW location is compared with the current value of the BQ2 pointer to detect a possible end-of-queue condition. For example, if BQ2 is changed to CCW3 while queue 1 is converting CCW2, queue 1 is terminated after the conversion is completed. However, if BQ2 is changed to CCW1 while queue 1 is converting CCW2, the QADC64E would not recognize a BQ2 end-of-queue condition until queue 1 execution reached CCW1 again, presumably on the next pass through the queue.

Queued Serial Multi-Channel Module

but the data register (SC1DR) is still full. The data in the shifter that generated the OR assertion is overwritten by the next received data frame, but the data in the SC1DR is not lost.

Address Register			
	Register		
0x30 605C	MDASM11 Status/Control Register Duplicated (MDASMSCRD) See Table 17-21 for bit descriptions.		
0x30 605E	MDASM11 Status/Control Register (MDASMSCR) See Table 17-21 for bit descriptions.		
	MDASM12		
0x30 6060	MDASM12 Data A Register (MDASMAR)		
0x30 6062	MDASM12 Data B Register (MDASMBR)		
0x30 6064	MDASM12 Status/Control Register Duplicated (MDASMSCRD)		
0x30 6066	MDASM12 Status/Control Register (MDASMSCR)		
	MDASM13		
0x30 6068	MDASM13 Data A Register (MDASMAR)		
0x30 606A	MDASM13 Data B Register (MDASMBR)		
0x30 606C	MDASM13 Status/Control Register Duplicated (MDASMSCRD)		
0x30 606E	MDASM13 Status/Control Register (MDASMSCR)		
	MDASM14		
0x30 6070	MDASM14 Data A Register (MDASMAR)		
0x30 6072	MDASM14 Data B Register (MDASMBR)		
0x30 6074	MDASM14 Status/Control Register Duplicated (MDASMSCRD)		
0x30 6076	MDASM14 Status/Control Register (MDASMSCR)		
	MDASM15		
0x30 6078	MDASM15 Data A Register (MDASMAR)		
0x30 607A	MDASM15 Data B Register (MDASMBR)		
0x30 607C	MDASM15 Status/Control Register Duplicated (MDASMSCRD)		
0x30 607E	MDASM15 Status/Control Register (MDASMSCR)		
MDASM27			
0x30 60D8	MDASM27 Data A Register (MDASMAR)		
0x30 60DA	MDASM27 Data B Register (MDASMBR)		
0x30 60DC	MDASM27 Status/Control Register Duplicated (MDASMSCRD)		
0x30 60DE	MDASM27 Status/Control Register (MDASMSCR)		
	MDASM28		
0x30 60E0	MDASM28 Data A Register (MDASMAR)		
0x30 60E2	MDASM28 Data B Register (MDASMBR)		

Table 17-18. MDASM Address Map (continued)

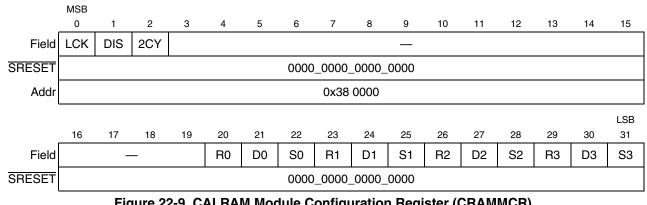

Address	Register
0x38 0000	CRAMMCR
0x38 0004	for factory test
0x38 0008	CRAM_RBA0
0x38 000C	CRAM_RBA1
0x38 0010	CRAM_RBA2
0x38 0014	CRAM_RBA3
0x38 0018	CRAM_RBA4
0x38 001C	CRAM_RBA5
0x38 0020	CRAM_RBA6
0x38 0024	CRAM_RBA7
0x38 0028	CRAMOVLCR
0x38 002C	CRAMOTR/READI_OTR
0x38 0030	Reserved
0x38 0034	Reserved
0x38 0038	Reserved
0x38 003C	Reserved

Table 22-2. CALRAM Control Registers

Any unimplemented bits in CALRAM registers return 0's on a read and writes to these bits are ignored.

CALRAM Module Configuration Register (CRAMMCR) 22.5.1

The module configuration register (CRAMMCR) contains bits that allow the CALRAM to be configured for normal RAM accesses.

A brief description of each bit is provided in Table 22-3

Development Support

comparator when working in half-word mode and to the correct bytes of the data comparator when working in byte mode.

Since bytes and half-words can be accessed using a larger data width instruction, it is impossible to predict the exact value of the L-address lines when the requested byte/half-word is accessed, (e.g., if the matched byte is byte two of the word and it is accessed using a load word instruction), the L-address value will be of the word (byte zero). Therefore, the CPU masks the two least-significant bits of the L-address comparators whenever a word access is performed and the least-significant bit whenever a half-word access is performed.

Address range is supported only when aligned according to the access size. (See Section 23.2.1.3, "Examples").

23.2.1.3 Examples

- A fully supported scenario:
 - Looking for:
 Data size: Byte
 Address: 0x00000003
 Data value: greater than 0x07 and less than 0x0c
 - Programming options:
 - One L-address comparator = 0x00000003 and program for equal
 - One L-data comparator = 0x0000007 and program for greater than
 - One L-data comparator = 0x0000000c and program for less than
 - Both byte masks = 0xe
 - Both L-data comparators program to byte mode
 - Result:

The event will be correctly detected regardless of the load/store instruction the compiler chooses for this access

- A fully supported scenario:
 - Looking for:
 - Data size: half-word

Address: greater than 0x0000000 and less than 0x000000 c

Data value: greater than 0x4e204e20 and less than 0x9c409c40

— Programming option:

One L-address comparator = 0x00000000 and program for greater than One L-address comparator = 0x0000000c and program for less than One L-data comparator = 0x4e204e20 and program for greater than One L-data comparator = 0x9c409c40 and program for less than Both byte masks = 0x0Both L-data comparators program to half-word mode

- Result:

The event will be correctly detected as long as the compiler does not use a load/store instruction with data size of byte.

Chart		Control	Ins	struction / Data (32 Bits)	Function	
Start	Mode		Bits 0:6	Bits 7:31		
1	0	0		CPU Instruction	Transfer Instruction to CPU	
1	0	1		CPU Data	Transfer Data to CPU	
1	1	0	Trap enable ¹	Does not exist	Transfer data to Trap Enable Control Register	
1	1	1	0011111	Does not exist	Negate breakpoint requests to the CPU.	
1	1	1	0	Does not exist	NOP	

Table 23-13. Debug Instructions / Data Shifted into	Development Port Shift Register
---	---------------------------------

¹ Refer to Table 23-10

Data values in the last two functions other than those specified are reserved.

All transmissions from the debug port on DSDO begin with a "0" or "ready" bit. This indicates that the CPU is trying to read an instruction or data from the port. The external development tool must wait until it sees DSDO go low to begin sending the next transmission.

The control bit differentiates between instructions and data and allows the development port to detect that an instruction was entered when the CPU was expecting data and vice versa. If this occurs a sequence error indication is shifted out in the next serial transmission.

The trap enable function allows the development tool to transfer data to the trap enable control register.

The debug port command function allows the development tool to either negate breakpoint requests, reset the processor, activate or deactivate the fast down load procedure.

The NOP function provides a null operation for use when there is data or a response to be shifted out of the data register and the appropriate next instruction or command will be determined by the value of the response or data shifted out.

23.4.6.10 Serial Data Out of Development Port

The encoding of data shifted out of the development port shift register in debug mode (through the DSDO pin) is the same as for trap enable mode and is shown in Table 23-12.

Valid data encoding is used when data has been transferred from the CPU to the development port shift register. This is the result of an instruction to move the contents of a general purpose register to the debug port data register (DPDR). The valid data encoding has the highest priority of all status outputs and will be reported even if an interrupt occurs at the same time. Since it is not possible for a sequencing error to occur and also have valid data there is no priority conflict with the sequencing error status. Also, any interrupt that is recognized at the same time that there is valid data is not related to the execution of an

BSDL Bit	Cell Type	Pin/Port Name	BSDL Function	Safe Value	Contro I Cell	Disable Value	Disabl e Result	Pin Functio n	Pad Type
97	BC_7	A_AN56_PQA4	bidir	0	96	0	Z	IO	5vsa
98	BC_2	*	controlr	0					
99	BC_7	A_AN57_PQA5	bidir	0	98	0	Z	IO	5vsa
100	BC_2	*	controlr	0					
101	BC_7	A_AN58_PQA6	bidir	0	100	0	Z	IO	5vsa
102	BC_2	*	controlr	0					
103	BC_7	A_AN59_PQA7	bidir	0	102	0	Z	IO	5vsa
104	BC_2	*	controlr	0					
105	BC_7	B_AN0_ANW_PQB0	bidir	0	104	0	Z	IO	5vsa
106	BC_2	*	controlr	0					
107	BC_7	B_AN1_ANX_PQB1	bidir	0	106	0	Z	IO	5vsa
108	BC_2	*	controlr	0					
109	BC_7	B_AN2_ANY_PQB2	bidir	0	108	0	Z	IO	5vsa
110	BC_2	*	controlr	0					
111	BC_7	B_AN3_ANZ_PQB3	bidir	0	110	0	Z	IO	5vsa
112	BC_2	*	controlr	0					
113	BC_7	B_AN48_PQB4	bidir	0	112	0	Z	IO	5vsa
114	BC_2	*	controlr	0					
115	BC_7	B_AN49_PQB5	bidir	0	114	0	Z	IO	5vsa
116	BC_2	*	controlr	0					
117	BC_7	B_AN50_PQB6	bidir	0	116	0	Z	IO	5vsa
118	BC_2	*	controlr	0					
119	BC_7	B_AN51_PQB7	bidir	0	118	0	Z	IO	5vsa
120	BC_2	*	controlr	0					
121	BC_7	B_AN52_MA0_PQA0	bidir	0	120	0	Z	IO	5vsa
122	BC_2	*	controlr	0					
123	BC_7	B_AN53_MA1_PQA1	bidir	0	122	0	Z	IO	5vsa
124	BC_2	*	controlr	0					
125	BC_7	B_AN54_MA2_PQA2	bidir	0	124	0	Z	IO	5vsa
126	BC_2	*	controlr	0					
127	BC_7	B_AN55_PQA3	bidir	0	126	0	Z	IO	5vsa
128	BC_2	*	controlr	0					
129	BC_7	B_AN56_PQA4	bidir	0	128	0	Z	IO	5vsa
130	BC_2	*	controlr	0					
131	BC_7	B_AN57_PQA5	bidir	0	130	0	Z	IO	5vsa
132	BC_2	*	controlr	0					

MPC561/MPC563 Reference Manual, Rev. 1.2

configuration, and not again after that, the bank 1 entry table can be changed to the bank 0 entry table using the soft reset feature of the TPU3. This procedure is described in the following steps:

- 1. Set ETBANK field in TPUMCR2 to 0b01 to select the entry table in bank 1
- 2. Run the ID function
- 3. Stop the TPU3 by setting the STOP bit in the TPUMCR to one
- 4. Reset the TPU3 by setting the SOFTRST bit in the TPUMCR2 register
- 5. Wait at least nine clocks
- 6. Clear the SOFTRST bit in the TPUMCR2 register

The TPU3 stays in reset until the RCPU clears the SOFTRST bit. After the SOFTRST bit has been cleared, the TPU3 will be reset and the entry table in bank 0 will be selected by default. To select the bank 0 entry table, write 0b00 to the ETBANK field in TPUMCR2. Always initialize any write-once register to ensure that an incorrect value is not accidentally written.

The sections below document the bank 0 and bank 1 functions listed in Table D-1 of the TPU3 ROM module.

D.2 Programmable Time Accumulator (PTA)

PTA starts on a rising or falling edge and accumulates, over a programmable number of periods or pulses, a 32-bit sum of the total high time, low time, or input signal period. After the specified number of periods or pulses, the PTA generates an interrupt request.

One to 255 period measurements can be accumulated before the TPU3 interrupts the RCPU, providing instantaneous or average frequency measurement capability. See Freescale TPU Programming Note *Programmable Time Accumulator TPU Function (PTA), (TPUPN06/D).* Figure D-2 shows all of the host interface areas for the PTA function.

66-MHz Electrical Characteristics

G.10.2 Keep-Alive RAM

PORESET or HRESET must be asserted during power-down prior to any supply dropping out of specified operating conditions.

An additional constraint is placed on PORESET assertion since it is an asynchronous input. To assure that the assertion of PORESET does not potentially cause stores to keep-alive RAM to be corrupted (store single or store multiple) or non-coherent (store multiple), either of the following solutions is recommended:

- Assert $\overline{\text{HRESET}}$ at least 0.5 µs prior to when $\overline{\text{PORESET}}$ is asserted.
- Assert $\overline{IRQ0}$ (non-maskable interrupt) at least 0.5 µs prior to when $\overline{PORESET}$ is asserted. The service routine for $\overline{IRQ0}$ should not perform any writes to keep-alive RAM.

The amount of delay that should be added to $\overrightarrow{PORESET}$ assertion is dependent upon the frequency of operation and the maximum number of store multiples executed that are required to be coherent. If store multiples of more than 28 registers are needed and if the frequency of operation is lower that 66 MHz, the delay added to $\overrightarrow{PORESET}$ assertion will need to be greater than 0.5 µs. In addition, if KAPWR features are being used, $\overrightarrow{PORESET}$ should not be driven low while the V_{DDH} and V_{DDL} supplies are off.

G.11 AC Timing

Figure G-9 displays generic examples of MPC561/MPC563 timing. Specific timing diagrams are shown in Figure G-10 through Figure G-35.

66-MHz Electrical Characteristics

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
A	VDD	VSS	VSS	VSS	A_TPUCH3	A_TPUCH7	A_TPUCH 11	A_TPUCH15	VSSA	VRL	A_AN3_A NZ_PQB3	A_AN51_P QB7	A_AN55_ PQA3	A_AN56_P QA4	
в	VSS	VDD	VSS	VSS	A_TPUCH2	A_TPUCH6	A_TPUCH 10	A_TPUCH14	VSSA	ALTREF	A_AN2_A NY_PQB2	A_AN50_P QB6	A_AN54_ MA2_PQ A2	A_AN58_P QA6	
с	VSS	VSS	VDD	VSS	A_TPUCH1	A_TPUCH4	A_TPUCH 8	A_TPUCH12	NVDDL	VRH		A_AN48_P		A_AN59_P QA7	
D	VSS	VSS	VSS	VDD	VSS	A_TPUCH5	A_TPUCH 9	A_TPUCH13	NVDDL	VDDA	A_AN1_A NX_PQB1	A_AN49_P		A_AN57_P QA5	
E	VDDH	VSS	VSS	VSS											
F	B_T2CLK_P CS4	A_T2CLK_ PCS5	A_TPUCH 0	QVDDL											
G	B_TPUCH12	B_TPUCH1 3	B_TPUCH 14	B_TPUCH1 5											
н	B_TPUCH8	B_TPUCH9	B_TPUCH 10	B_TPUCH1 1											
J	B_TPUCH4	B_TPUCH5	B_TPUCH 6	B_TPUCH7											
к	B_TPUCH0	B_TPUCH1	B_TPUCH 2	B_TPUCH3											
L	JCOMP_RS TI_B	TCK_DSCK _MCKI	B_CNRX0	B_CNTX0							VSS	VSS	VSS	VSS	
м	TDI_DSDI_ MDI0	TMS_EVTI _B	IRAMSTBY	TDO_DSD O_MDO0							VSS	VSS	VSS	VSS	
N	IRQ3_B_KR _B_RETRY	IWP0_VFL	IWP1_VFL	SGPIOC6_ FRZ_PTR_							VSS	VSS	VSS	VSS	

VSS	VSS	VSS	VSS	VSS	VSS
VSS	VSS	VSS	VSS	VSS	VSS
VSS	VSS	VSS	VSS	VSS	VSS
VSS	VSS	VSS	VSS	VSS	VSS
VSS	VSS	VSS	VSS	VSS	VSS
VSS	VSS	VSS	VSS	VSS	VSS

Figure G-66. MPC561/MPC563 Ball Map (Black and White, page 1)