# E·XFL



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Not For New Designs                                                 |
|----------------------------|---------------------------------------------------------------------|
| Core Processor             | PowerPC                                                             |
| Core Size                  | 32-Bit Single-Core                                                  |
| Speed                      | 40MHz                                                               |
| Connectivity               | CANbus, EBI/EMI, SCI, SPI, UART/USART                               |
| Peripherals                | POR, PWM, WDT                                                       |
| Number of I/O              | 56                                                                  |
| Program Memory Size        | 512KB (512K x 8)                                                    |
| Program Memory Type        | FLASH                                                               |
| EEPROM Size                | -                                                                   |
| RAM Size                   | 32K x 8                                                             |
| Voltage - Supply (Vcc/Vdd) | 2.5V ~ 2.7V                                                         |
| Data Converters            | A/D 32x10b                                                          |
| Oscillator Type            | External                                                            |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                   |
| Mounting Type              | Surface Mount                                                       |
| Package / Case             | 388-BBGA                                                            |
| Supplier Device Package    | 388-PBGA (27x27)                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc564czp40 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# Contents

| Paragraph<br>Number | Title                                                  | Page<br>Number |
|---------------------|--------------------------------------------------------|----------------|
| 17.8.5.1            | MMCSM Register Organization                            |                |
| 17.8.5.2            | MMCSM Up-Counter Register (MMCSMCNT)                   |                |
| 17.8.5.3            | MMCSM Modulus Latch Register (MMCSMML)                 |                |
| 17.8.5.4            | MMCSM Status/Control Register (MMCSMSCRD)              |                |
|                     | (Duplicated)                                           |                |
| 17.8.5.5            | MMCSM Status/Control Register (MMCSMSCR)               |                |
| 17.9                | MIOS14 Double Action Submodule (MDASM)                 |                |
| 17.9.1              | MDASM Features                                         |                |
| 17.9.1.1            | MDASM Signal Functions                                 |                |
| 17.9.2              | MDASM Description                                      |                |
| 17.9.3              | MDASM Modes of Operation                               |                |
| 17.9.3.1            | Disable (DIS) Mode                                     |                |
| 17.9.3.2            | Input Pulse Width Measurement (IPWM) Mode              |                |
| 17.9.3.3            | Input Period Measurement (IPM) Mode                    |                |
| 17.9.3.4            | Input Capture (IC) Mode                                |                |
| 17.9.3.5            | Output Compare (OCB and OCAB) Modes                    |                |
| 17.9.3.5.1          | Single Shot Output Pulse Operation                     |                |
| 17.9.3.5.2          | Single Output Compare Operation                        |                |
| 17.9.3.5.3          | Output Port Bit Operation                              |                |
| 17.9.3.6            | Output Pulse Width Modulation (OPWM) Mode              |                |
| 17.9.4              | Modular I/O Bus (MIOB) Interface                       |                |
| 17.9.5              | Effect of RESET on MDASM                               |                |
| 17.9.6              | MDASM Registers                                        |                |
| 17.9.6.1            | MDASM Registers Organization                           |                |
| 17.9.6.2            | MDASM Data A (MDASMAR) Register                        |                |
| 17.9.6.3            | MDASM Data B (MDASMBR) Register                        |                |
| 17.9.6.4            | MDASM Status/Control Register (MDASMSCRD) (Duplicated) |                |
| 17.9.6.5            | MDASM Status/Control Register (MDASMSCR)               |                |
| 17.10               | MIOS14 Pulse Width Modulation Submodule (MPWMSM)       |                |
| 17.10.1             | MPWMSM Terminology                                     |                |
| 17.10.2             | MPWMSM Features                                        | 17-47          |
| 17.10.3             | MPWMSM Description                                     |                |
| 17.10.3.1           | Clock Selection                                        |                |
| 17.10.3.2           | Counter                                                |                |
| 17.10.3.3           | Period Register                                        |                |
| 17.10.3.4           | Pulse Width Registers                                  |                |
| 17.10.3.5           | Duty Cycles (0% and 100%)                              |                |
| 17.10.3.6           | Pulse/Frequency Range Table                            |                |
| 17.10.3.7           | MPWMSM Status and Control Register (SCR)               |                |
| 17.10.3.8           | MPWMSM Interrupt                                       | 17-53          |
| 17.10.3.9           | MPWMSM Port Functions                                  |                |



Signal Descriptions

| Table 2-1. MPC561/MPC563 Signal | I Descriptions | (continued) |
|---------------------------------|----------------|-------------|
|---------------------------------|----------------|-------------|

| Signal Name                 | No. of<br>Signals | Туре | Function after<br>Reset <sup>1</sup>                   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------|-------------------|------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             |                   | I    | IRQ4                                                   | Interrupt Request 4. One of the eight external signals that can request, by means of the internal interrupt controller, a service routine from the RCPU.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IRQ4 / AT2 / SGPIOC4        | 1                 | 0    |                                                        | Address Type 2. A bit from the address type bus which indicates one of the 16 "address types" to which the address applies. The address type signals are valid at the rising edge of the clock in which the special transfer start (STS) is asserted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                             |                   | I/O  |                                                        | Port SGPIOC4. Allows the signal to be used as a general-purpose input/output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                             |                   | I    | MODCK1 until                                           | Interrupt Request 5. One of the eight external signals that can request, by means of the internal interrupt controller, a service routine from the RCPU.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IRQ5 / MODCK1 / SPGIOC5     | 1                 | I    | reset negates,<br>then IRQ5                            | Mode Clock 1. Sampled at the negation of PORESET/TRST in order to configure the phase-locked loop (PLL)/clock mode of operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                             |                   | I/O  |                                                        | Port SGPIOC5. Allows the signal to be used as a general-purpose input/output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| IRQ[6:7] / MODCK[2:3]       | 2                 | I    | MODCK[2:3]<br>until reset<br>negates, then<br>IRQ[6:7] | Interrupt Request [6:7]. One of the eight external signals that can request, by means of the internal interrupt controller, a service routine from the RCPU.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                             |                   | I    |                                                        | Mode Clock [2:3]. Sampled at the negation of PORESET/TRST in order to configure the PLL/clock mode of operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <u>CS</u> [0:3]             | 4                 | 0    | <u>CS</u> [0:3]                                        | Chip Select [0:3]. These output signals enable peripheral or<br>memory devices at programmed addresses if defined<br>appropriately in the memory controller. CS0 or CS3 can be<br>configured to be the global chip select for the boot device.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| WE[0:3] / BE[0:3] / AT[0:3] | 4                 | 0    | Controlled by<br>RCW[ATWC].<br>See Table 6-8.          | <ul> <li>Write Enable[0:3]/Byte Enable[0:3]. This output signal is asserted when a write access to an external slave controlled by the memory controller is initiated by the MPC561/MPC563. It can be optionally asserted on all read and write accesses. See WEBS bit definition in Table 10-8.</li> <li>WEn/BEn are asserted when data lanes shown below contain valid data to be stored by the slave device.</li> <li>WE0/BE0 is asserted if the data lane DATA[0:7] contains valid data to be stored by the slave device.</li> <li>WE1/BE1 is asserted if the data lane DATA[8:15] contains valid data to be stored by the slave device.</li> <li>WE2/BE2 is asserted if the data lane DATA[16:23] contains valid data to be stored by the slave device.</li> <li>WE3/BE3 is asserted if the data lane DATA[24:31] contains valid data to be stored by the slave device.</li> </ul> |
|                             |                   | Ο    |                                                        | which the address applies. The address type signals are valid at the rising edge of the clock in which the special transfer start (STS) is asserted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



#### Table 2-6. PDMCR2 Field Description (continued)

| Bits  | Name                | Description                                                                                                 |
|-------|---------------------|-------------------------------------------------------------------------------------------------------------|
| 26    | PCS4EN <sup>1</sup> | Controls the pad B_T2CLK/PCS4.<br>0 B_T2CLK function will be selected.<br>1 PCS4 function will be selected. |
| 27    | PCS5EN              | Controls the pad A_T2CLK/PCS5.<br>0 A_T2CLK function will be selected.<br>1 PCS5 function will be selected. |
| 28    | PCS6EN              | Controls the pad ETRIG1/PCS6.<br>0 ETRIG1 function will be selected.<br>1 PCS6 function will be selected.   |
| 29    | PCS7EN              | Controls the pad ETRIG2/PCS7.<br>0 ETRIG2 function will be selected.<br>1 PCS7 function will be selected.   |
| 30:31 |                     | Reserved                                                                                                    |

<sup>1</sup> Refer to Table 2-9 for information regarding enhanced PCS functionality.

#### Table 2-7. TCNC Pad Functionalities

| TCNC<br>Values | TXD2/QGPO2/<br>C_CNTX0 | RXD2/QGPI2/<br>C_CNRX0 | MPIO32B11/<br>C_CNRX0 | MPIO32B12/<br>C_CNTX0 |
|----------------|------------------------|------------------------|-----------------------|-----------------------|
| 00             | TXD2/QGPO2             | RXD2/QGPI2             | MPIO32B11             | MPIO32B12             |
| x1             | TXD2/QGPO2             | RXD2/QGPI2             | C_CNRX0               | C_CNTX0               |
| 10             | C_CNTX0                | C_CNRX0                | MPIO32B11             | MPIO32B12             |

#### **Table 2-8. PPMPAD Pad Functionalities**

| PPMPAD<br>Values | MPIO32B14/<br>PPM_RX0 | MPIO32B15/<br>PPM_TX0 | MPWM3/<br>PPM_RX1 | MPWM2/<br>PPM_TX1 | MPIO32B10/<br>PPM_TSYNC | MPIO32B1/<br>PPM_TCLK |
|------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------------|-----------------------|
| x00              | MPIO32B14             | MPIO32B15             | MPWM3             | MPWM2             | MPIO32B10               | MPIO32B13             |
| 001              | MPIO32B14             | PPM_TX0               | MPWM3             | MPWM2             | PPM_TSYNC               | PPM_TCLK              |
| 010              | PPM_RX0               | MPIO32B15             | MPWM3             | MPWM2             | PPM_TSYNC               | PPM_TCLK              |
| 011              | PPM_RX0               | PPM_TX0               | MPWM3             | MPWM2             | PPM_TSYNC               | PPM_TCLK              |
| 101              | MPIO32B14             | PPM_TX0               | MPWM3             | PPM_TX1           | PPM_TSYNC               | PPM_TCLK              |
| 110              | PPM_RX0               | MPIO32B15             | PPM_RX1           | MPWM2             | PPM_TSYNC               | PPM_TCLK              |
| 111              | PPM_RX0               | PPM_TX0               | PPM_RX1           | PPM_TX1           | PPM_TSYNC               | PPM_TCLK              |

#### Table 2-9. Enhanced PCS Functionality

| PCS_IN[3:0] | PCS_OUT[7:0] IF PCSV = 0 | PCS_OUT[7:0] IF PCSV = 1 |
|-------------|--------------------------|--------------------------|
| 0000        | 0000001                  | 1111110                  |
| 0001        | 00000010                 | 1111101                  |



External Bus Interface

# 9.5.7.3 Bus Busy

 $\overline{BB}$  assertion indicates that the current bus master is using the bus. New masters should not begin transfer until this signal is negated. The bus owner should not relinquish or negate this signal until the transfer is complete. To avoid contention on the  $\overline{BB}$  line, the master should three-state this signal when it gets a logical one value. This requires the connection of an external pull-up resistor to ensure that a master that acquires the bus is able to recognize the  $\overline{BB}$  line negated, regardless of how many cycles have passed since the previous master relinquished the bus. Refer to Figure 9-25.



Figure 9-25. Master Signals Basic Connection



#### External Bus Interface

Show cycles are activated by properly setting the SIUMCR register bits. Refer to Section 6.2.2.1.1, "SIU Module Configuration Register (SIUMCR)." Construction visibility is controlled by the ISCT\_SER bits in the ICTRL register. Refer to Table 23-26. Data visibility is controlled by the LSHOW bits of the L2U\_MCR register. Refer to Table 11-7.

In a burst show cycle only the first data beat is shown externally. Refer to Table 9-8 for show cycle transaction encodings.

Instruction show cycle bus transactions have the following characteristics (see Figure 9-41):

- One clock cycle
- Address phase only; in decompression on mode part of the compressed address is driven on data lines together with address lines. The external bus interface adds one clock delay between a read cycle and such show cycle.
- $\overline{\text{STS}}$  assertion only (no  $\overline{\text{TA}}$  assertion)

The compressed address is driven on the external bus in the following manner:

- ADDR[0:29] = the word base address;
- DATA[0] = operating mode:
  - 0 = decompression off mode;
  - -1 = decompression on mode;
- DATA[1:4] = bit pointer

See Chapter 4, "Burst Buffer Controller 2 Module" and Appendix A, "MPC562/MPC564 Compression Features" for more details about decompression mode.



#### QADC64E Legacy Mode Operation



#### Figure 13-11. Control Register 2 (QACR2)

#### Table 13-12. QACR2 Bit Descriptions

| Bits | Name   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | CIE2   | <ul> <li>Queue 2 Completion Software Interrupt Enable. CIE2 enables an interrupt upon completion of queue 2. The interrupt request is initiated when the conversion is complete for the CCW in queue 2.</li> <li>0 Disable the queue completion interrupt associated with queue 2</li> <li>1 Enable an interrupt after the conversion of the sample requested by the last CCW in queue 2</li> </ul>                                                                                                                                                                                                                                                                                                                    |
| 1    | PIE2   | <ul> <li>Queue 2 Pause Software Interrupt Enable. PIE2 enables an interrupt when queue 2 enters the pause state. The interrupt request is initiated when conversion is complete for a CCW that has the pause bit set.</li> <li>0 Disable the pause interrupt associated with queue 2</li> <li>1 Enable an interrupt after the conversion of the sample requested by a CCW in queue 2 which has the pause bit set</li> </ul>                                                                                                                                                                                                                                                                                            |
| 2    | SSE2   | Queue 2 Single-Scan Enable Bit. SSE2 enables a single-scan of queue 2 to start after a trigger<br>event occurs. The SSE2 bit may be set to a one during the same write cycle when the MQ2 bits<br>are set for one of the single-scan queue operating modes. The single-scan enable bit can be<br>written as a one or a zero, but is always read as a zero. The SSE2 bit enables a trigger event<br>to initiate queue execution for any single-scan operation on queue 2. The QADC64E clears the<br>SSE2 bit when the single-scan is complete. Refer to Table 13-13 for more information.<br>0 Trigger events are not accepted for single-scan modes<br>1 Accept a trigger event to start queue 2 in a single-scan mode |
| 3:7  | MQ2    | Queue 2 Operating Mode. The MQ2 field selects the queue operating mode for queue 2. Refer to Table 13-13 for more information.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8    | RESUME | <ul> <li>0 After suspension, begin executing with the first CCW in queue 2 or the current sub-queue</li> <li>1 After suspension, begin executing with the aborted CCW in queue 2</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



#### QADC64E Legacy Mode Operation

continuously and queue 2, being lower in priority, never gets executed. The short interval of time between a queue 1 completion and the subsequent trigger event is not sufficient to allow queue 2 execution to begin.

The software initiated continuous-scan mode is a useful choice with queue 2 for converting channels that do not need to be synchronized to anything, or for the slow-to-change analog channels. Interrupts are normally not used with the software initiated continuous-scan mode. Rather, the software reads the latest conversion result from the result table at any time. Once initiated, software action is not needed to sustain conversions of channel.

### 13.5.4.4.2 External Trigger Continuous-Scan Mode

The QADC64E provides external trigger signals for both queues. When the external trigger software initiated continuous-scan mode is selected, a transition on the associated external trigger signal initiates queue execution. The polarity of the external trigger signal is programmable, so that the software can select a mode which begins queue execution on the rising or falling edge. Each CCW is read and the indicated conversions are performed until an end-of-queue condition is encountered. When the next external trigger edge is detected, the queue execution begins again automatically. Software initialization is not needed between trigger events.

When a pause bit is encountered in external trigger continuous-scan mode, another trigger event is required for queue execution to continue. Software involvement is not needed to enable queue execution to continue from the paused state.

Some applications need to synchronize the sampling of analog channels to external events. There are cases when it is not possible to use software initiation of the queue scan sequence, since interrupt response times vary.

### 13.5.4.4.3 External Gated Continuous-Scan Mode

The QADC64E provides external gating for queue 1 only. When external gated continuous-scan mode is selected, the input level on the associated external trigger signal enables and disables queue execution. The polarity of the external gated signal is fixed so a high level opens the gate and a low level closes the gate. Once the gate is open, each CCW is read and the indicated conversions are performed until the gate is closed. When the gate opens again, the queue execution automatically begins again from the beginning of the queue. Software initialization is not needed between trigger events. If a pause in a CCW is encountered, the pause flag *will not set*, and execution continues without pausing.

The purpose of external gated continuous-scan mode is to continuously collect digitized samples while the gate is open and to have the most recent samples available. It is up to the programmer to ensure that the queue is large enough so that a maximum gate open time will not reach an end-of-queue. However it is useful to take advantage of a smaller queue in the manner described in the next paragraph.

In the event that the queue completes before the gate closes, a completion flag will be set and the queue will roll over to the beginning and continue conversions until the gate closes. If the gate remains open and the completion flag is not cleared, when the queue completes a second time the trigger overrun flag will be set and the queue will roll-over again. The queue will continue to execute until the gate closes or the mode is disabled.



16-Bit Aligned Access (ISIZ = 10, A0 = 0)

QADC64E Bus CYC ACC

Figure 13-26. Bus Cycle Accesses

Byte access to an even address of a QADC64E location is shown in the top illustration of Figure 13-26. In the case of write cycles, byte 1 of the register is not disturbed. In the case of a read cycle, the QADC64E provides both byte 0 and byte 1.

Byte access to an odd address of a QADC64E location is shown in the center illustration of Figure 13-26. In the case of write cycles, byte 0 of the register is not disturbed. In the case of read cycles, the QADC64E provides both byte 0 and byte 1.

16-bit accesses to an even address read or write byte 0 and byte 1 as shown in the lowest illustration of Figure 13-26. The full 16 bits of data is written to and read from the QADC64E location with each access.

16-bit accesses to an odd address require two bus cycles; one byte of two different 16-bit QADC64E locations is accessed. The first bus cycle is treated by the QADC64E as an 8-bit read or write of an odd address. The second cycle is an 8-bit read or write of an even address. The QADC64E address space is organized into 16-bit even address locations, so a 16-bit read or write of an odd address obtains or provides the lower half of one QADC64E location, and the upper half of the following QADC64E location.



QADC64E Legacy Mode Operation



Figure 13-35. CCW Priority Situation 9

Situations S10 and S11 (Figure 13-36 and Figure 13-37) show that when an additional trigger event is detected for queue 2 while the queue is suspended, the trigger overrun error bit is set, the same as if queue 2 were being executed when a new trigger event occurs. Trigger overrun on queue 2 thus permits the software to know that queue 1 is taking up so much QADC64E time that queue 2 trigger events are being lost.



Figure 13-36. CCW Priority Situation 10

MPC561/MPC563 Reference Manual, Rev. 1.2



Therefore, conversion time requires a minimum of 14 QCLK clocks (seven  $\mu$ s with a 2.0-MHz QCLK). If the maximum final sample time period of 8 QCLKs is selected, the total conversion time is 20 QCLKs (10  $\mu$ s with a 2.0-MHz QCLK)

Figure 14-21 illustrates the timing for conversions.



Figure 14-21. Conversion Timing

### 14.3.12 Channel Decode and Multiplexer

The internal multiplexer selects one of the 16 analog input signals for conversion. The selected input is connected to the sample buffer amplifier. The multiplexer also includes positive and negative stress protection circuitry, which prevents deselected channels from affecting the selected channel when current is injected into the deselected channels. Refer to Appendix F, "Electrical Characteristics," for specific current levels.

### 14.3.13 Sample Buffer Amplifier

The sample buffer is used to raise the effective input impedance of the A/D converter, so that external components (higher bandwidth or higher impedance) are less critical to accuracy. The input voltage is buffered onto the sample capacitor to reduce crosstalk between channels.

# 14.3.14 Digital to Analog Converter (DAC) Array

The digital to analog converter (DAC) array consists of binary-weighted capacitors and a resistor-divider chain. The reference voltages,  $V_{RH}$  and  $V_{RL}$ , are used by the DAC to perform ratiometric conversions. The DAC also converts the following three internal channels:

- V<sub>RH</sub>—Reference voltage high
- V<sub>RL</sub> Reference voltage low
- $(V_{RH} V_{RL})/2$  Reference voltage

The DAC array serves to provide a mechanism for the successive approximation A/D conversion.



#### **Queued Serial Multi-Channel Module**

| MSB  | 1     | 0  | 2    | 4    | E    | 6    | LSB               |
|------|-------|----|------|------|------|------|-------------------|
| 0    | I     | 2  | 3    | 4    | 5    | 0    | 1                 |
| CONT | BITSE | DT | DSCK | PCS3 | PCS2 | PCS1 | PCS0 <sup>1</sup> |
| _    | —     | _  | —    | —    | —    | _    | —                 |
| CONT | BITSE | DT | DSCK | PCS3 | PCS2 | PCS1 | PCS0 <sup>1</sup> |

**Command Control** 

**Peripheral Chip Select** 

The PCS0 bit represents the dual-function PCS0/SS.

#### Figure 15-17. CR[0:F] — Command RAM 0x30 51C0, 0x30 51DF

| Table 15-19. | <b>Command RAM Bit Descriptions</b> |
|--------------|-------------------------------------|
|--------------|-------------------------------------|

| Bits | Name     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | CONT     | Continue<br>0 Control of chip selects returned to PORTQS after transfer is complete.<br>1 Peripheral chip selects remain asserted after transfer is complete.                                                                                                                                                                                                                                                                                                                                  |
| 1    | BITSE    | Bits per transfer enable<br>0 Eight bits<br>1 Number of bits set in BITS field of SPCR0.                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2    | DT       | <ul> <li>Delay after transfer</li> <li>0 Delay after transfer is 17 ÷ f<sub>SYS</sub>.</li> <li>1 SPCR1 DTL[7:0] specifies delay after transfer PCS valid to SCK.</li> </ul>                                                                                                                                                                                                                                                                                                                   |
| 3    | DSCK     | PCS to SCK Delay<br>0 PCS valid to SCK delay is one-half SCK.<br>1 SPCR1 DSCKL[6:0] specifies delay from PCS valid to SCK.                                                                                                                                                                                                                                                                                                                                                                     |
| 4:7  | PCS[3:0] | Peripheral chip selects. Use peripheral chip-select bits to select an external device for serial data transfer. More than one peripheral chip select may be activated at a time, and more than one peripheral chip can be connected to each PCS pin, provided proper fanout is observed. PCS0 shares a pin with the slave select ( $\overline{SS}$ ) signal, which initiates slave mode serial transfer. If $\overline{SS}$ is taken low when the QSPI is in master mode, a mode fault occurs. |

Refer to Section 15.6.5, "Master Mode Operation" for more information on the command RAM.

### 15.6.3 QSPI Pins

Seven pins are associated with the QSPI. When not needed by the QSPI, they can be configured for general-purpose I/O. Table 15-20 identifies the QSPI pins and their functions. Register DDRQS determines whether the pins are designated as input or output. The user must initialize DDRQS for the QSPI to function correctly.



#### Figure 17-2. MIOS14 Memory Map

# 17.5 MIOS14 I/O Ports

Each signal of each submodule can be used as an input, output, or I/O port:

| Submodule | Number of Pins per Module | Туре |  |  |  |  |
|-----------|---------------------------|------|--|--|--|--|
| MPIOSM    | 16                        | I/O  |  |  |  |  |
| MMCSM     | 2                         | Ι    |  |  |  |  |
| MDASM     | 1                         | I/O  |  |  |  |  |
| MPWMSM    | 1                         | I/O  |  |  |  |  |

#### Table 17-2. MIOS14 I/O Ports

# 17.6 MIOS14 Bus Interface Submodule (MBISM)

The MIOS14 bus interface submodule (MBISM) is used as an interface between the MIOB (modular I/O bus) and the IMB3. It allows the CPU to communicate with the MIOS14 submodules.

# 17.6.1 MIOS14 Bus Interface (MBISM) Registers

Table 17-3 is the address map for the MBISM submodule.

|           | MSB |                                                   |   |   |       |        |         |         |          |         |       |       |    |    |    | LSB |
|-----------|-----|---------------------------------------------------|---|---|-------|--------|---------|---------|----------|---------|-------|-------|----|----|----|-----|
|           | 0   | 1                                                 | 2 | 3 | 4     | 5      | 6       | 7       | 8        | 9       | 10    | 11    | 12 | 13 | 14 | 15  |
| 0x30 6800 |     |                                                   |   | М | IOS14 | Test a | nd Sigr | nal Cor | ntrol Re | egister | (MIOS | 14TPC | R) |    |    |     |
| 0x30 6802 |     | MIOS14 Vector Register (MIOS14VECT) -Reserved     |   |   |       |        |         |         |          |         |       |       |    |    |    |     |
| 0x30 6804 |     | MIOS14 Module-Version Number Register (MIOS14VNR) |   |   |       |        |         |         |          |         |       |       |    |    |    |     |
| 0x30 6806 |     | MIOS14 Module Control Register (MIOS14MCR)        |   |   |       |        |         |         |          |         |       |       |    |    |    |     |
| 0x30 6808 |     | Reserved                                          |   |   |       |        |         |         |          |         |       |       |    |    |    |     |
| 0x30 680A |     | Reserved                                          |   |   |       |        |         |         |          |         |       |       |    |    |    |     |
| 0x30 680C |     | Reserved                                          |   |   |       |        |         |         |          |         |       |       |    |    |    |     |
| 0x30 680E |     |                                                   |   |   |       |        |         | Res     | erved    |         |       |       |    |    |    |     |

Figure 17-3. MBISM Registers

## 17.6.1.1 MIOS14 Test and Signal Control Register (MIOS14TPCR)

This register is used for MIOS14 factory testing and to control the VF and VFLS Signal usage. Control of other multiplexed functions is in the PDMCR2 register.







### 18.3.1.3 PPM Control Settings

As data is transferred through the PPM module it must be sampled at a rate which guarantees its validity. This sample rate is a multiple of PPM\_TCLK and is defined by the SAMP[0:2] field of the PPMPCR register. For transmit operations, the sample rate is the rate at which TX\_DATA receives data from the internal modules. For receive operations, it is the rate at which the internal modules read RX\_SHIFTER. The register RX\_DATA is updated from RX\_SHIFTER on completed receive (PPM\_TSYNC) cycles.



| Bits  | Name    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8     | SOFTRST | Soft reset. The TPU3 performs an internal reset when both the SOFT RST bit in the TPUMCR2<br>and the STOP bit in TPUMCR are set. The CPU must write zero to the SOFT RST bit to bring<br>the TPU3 out of reset. The SOFT RST bit must be asserted for at least nine clocks.<br>0 Normal operation<br>1 Puts TPU3 in reset until bit is cleared<br>NOTE: Do not attempt to access any other TPU3 registers when this bit is asserted. When this<br>bit is asserted, it is the only accessible bit in the register.                          |
| 9:10  | ETBANK  | Entry table bank select. This field determines the bank where the microcoded entry table is situated. After reset, this field is 0b00. This control bit field is write once after reset. ETBANK is used when the microcode contains entry tables not located in the default bank 0. To execute the ROM functions on this MCU, ETBANK[1:0] must be 00. Refer to Table 19-19. NOTE: This field should not be modified by the programmer unless necessary because of custom microcode.                                                        |
| 11:13 | FPSCK   | Filter prescaler clock. The filter prescaler clock control bit field determines the ratio between system clock frequency and minimum detectable pulses. The reset value of these bits is zero, defining the filter clock as four system clocks. Refer to Table 19-20.                                                                                                                                                                                                                                                                      |
| 14    | T2CF    | <ul> <li>T2CLK pin filter control. When asserted, the T2CLK input pin is filtered with the same filter clock that is supplied to the channels. This control bit is write once after reset.</li> <li>Uses fixed four-clock filter</li> <li>T2CLK input pin filtered with same filter clock that is supplied to the channels</li> </ul>                                                                                                                                                                                                      |
| 15    | DTPU    | <ul> <li>Disable TPU3 pins. When the disable TPU3 control pin is asserted, pin TP15 is configured as an input disable pin. When the TP15 pin value is zero, all TPU3 output pins are three-stated, regardless of the pins function. The input is not synchronized. This control bit is write once after reset.</li> <li>0 TP15 functions as normal TPU3 channel</li> <li>1 TP15 pin configured as output disable pin. When TP15 pin is low, all TPU3 output pins are in a high-impedance state, regardless of the pin function.</li> </ul> |

### Table 19-19. Entry Table Bank Location

| ETBANK | Bank |
|--------|------|
| 00     | 0    |
| 01     | 1    |
| 10     | 2    |
| 11     | 3    |

#### Table 19-20. System Clock Frequency/Minimum Guaranteed Detected Pulse

| Filter Control | Divide By | 20 MHz | 33 MHz  | 40 MHz  | 56 MHz  |
|----------------|-----------|--------|---------|---------|---------|
| 000            | 4         | 200 ns | 121 ns  | 100 ns  | 71 ns   |
| 001            | 8         | 400 ns | 242 ns  | 200 ns  | 143 ns  |
| 010            | 16        | 800 ns | 485 ns  | 400 ns  | 286 ns  |
| 011            | 32        | 1.6 μs | 970 ns  | 800 ns  | 571 ns  |
| 100            | 64        | 3.2 μs | 1.94 μs | 1.60 μs | 1.14 μs |

MPC561/MPC563 Reference Manual, Rev. 1.2



# Chapter 20 Dual-Port TPU3 RAM (DPTRAM)

The dual-port RAM (DPTRAM) module with TPU3 microcode storage support consists of a control register block and an 8-Kbyte array of static RAM, which can be used either as a microcode storage for TPU3 or as a general-purpose memory. The MPC561/MPC563 has one DPTRAM module. The module serves two TPU3 modules (A and B).

The DPTRAM module acts as a common memory on the IMB3 and allows the transfer of data to the two TPU3 modules. Therefore, the DPTRAM interface includes an IMB3 bus interface and two TPU3 interfaces. When the DPTRAM is being used in microcode mode, the array is only accessible to the TPU3 via a separate local bus, and not via the IMB3.

In the MPC561/MPC563, the DPTRAM base address register (RAMBAR) must be set to a particular value to fit into the IMB memory map of the part. The DPTRAM RAMBAR register *must* be programmed to 0xFFA0.

The DPTRAM module is powered by  $V_{DD}$  in normal operation. The entire array may be used as standby RAM if standby power is supplied via the IRAMSTBY pin of the MPC561/MPC563. IRAMSTBY must be supplied by an external source.

The DPTRAM may also be used as the microcode control store for up to two TPU3 modules when placed in a special emulation mode. In this mode the DPTRAM array may only be accessed by either or both of the TPU3 units simultaneously via separate emulation buses, and not via the IMB3.

The DPTRAM contains a multiple input signature calculator (MISC) in order to provide RAM data corruption checking. The MISC reads the DPTRAM address and generates a 32-bit data-dependent signature. This signature can then be checked by the host.

### NOTE

The RCPU cannot perform instruction fetches from any module on the IMB3 (including the DPTRAM). Only data accesses are permitted.

# 20.1 Features

- Eight Kbytes of static RAM
- Accessible by the CPU only if neither TPU3 is in emulation mode
- Low-power stop operation
  - Entered by setting the STOP bit in the DPTMCR
  - Does not enter low-power state while in TPU3 emulation mode for protection
- TPU3 microcode mode

NP

READI Module

- Run-time access to on-chip memory map and MPC500 special purpose registers (SPRs) via the READI read/write access protocol. This feature supports accesses for runtime internal visibility, calibration constant acquisition and tuning, and external rapid prototyping for powertrain automotive development systems.
- Watchpoint messaging via the auxiliary port
- Nine or 16 full-duplex auxiliary signal interface for medium and high visibility throughput
  - One of two modes selected during reset: full port mode (FPM) and reduced port mode (RPM).
    - FPM comprises 16 signals and RPM comprises nine signals
  - Auxiliary output port
    - One MCKO (message clock out) signal
    - Two or eight MDO (message data out) signals
    - One MSEO (message start/end out) signal
  - Auxiliary input port
    - One  $\overline{\text{MCKI}}$  (message clock in) signal
    - One or two MDI (message data in) signals
    - One MSEI (message start/end in) signal
    - One EVTI (event in) signal
    - One  $\overline{\text{RSTI}}$  (reset in) signal
- All features configurable and controllable via the auxiliary port
- Security features for production environment
- Support of existing RCPU development access protocol via the auxiliary port
- READI module can be reset independent of system reset
- Parametrics:
  - Two bits are downloaded per clock in full port mode. For example, with input clock running at 28 MHz, this translates to a download rate of 56 Mbits/s.
  - One bit is downloaded per clock in reduced port mode. For example, with input clock running at 28 MHz, this translates to a download rate of 28 Mbits/s.
  - Eight bits are uploaded per clock in full port mode. For example, with system clock running at 56 MHz, this translates to a upload rate of 448 Mbits/s.
  - Two bits are uploaded per clock in reduced port mode. For example, with system clock running at 56 MHz, this translates to a upload rate of 112 Mbits/s.

# 24.1.1 Functional Block Diagram

The functional block diagram of the READI module is shown in Figure 24-1.





#### 24.8.2.4.4 Indirect Branch Synchronization Message with Compressed Code

For compressed code support, six additional bits indicate the starting bit address within the word of the compressed instruction. The program trace indirect branch synchronization with compressed code message has the following formats depending on the setting of MC[PTSM]:



#### Figure 24-31. Indirect Branch Synchronization Message Format with Compressed Code (PTSM = 1)

Bit pointer format is shown in Figure 24-22 and bit address format is described in Table 24-26.

#### 24.8.2.4.5 Resource Full Message

When more than 256 instructions have run without a branch being taken a program trace resource full message will be generated that indicates the maximum I-CNT value has been reached. The I-CNT field has a maximum width of 8 bits.



| BSDL<br>Bit | Cell<br>Type | Pin/Port Name | BSDL<br>Function | Safe<br>Value | Contro<br>I<br>Cell | Disable<br>Value | Disabl<br>e<br>Result | Pin<br>Functio<br>n | Pad<br>Type |
|-------------|--------------|---------------|------------------|---------------|---------------------|------------------|-----------------------|---------------------|-------------|
| 133         | BC_7         | B_AN58_PQA6   | bidir            | 0             | 132                 | 0                | Z                     | IO                  | 5vsa        |
| 134         | BC_2         | *             | controlr         | 0             |                     |                  |                       |                     |             |
| 135         | BC_7         | B_AN59_PQA7   | bidir            | 0             | 134                 | 0                | Z                     | IO                  | 5vsa        |
| 136         | BC_2         | *             | controlr         | 0             |                     |                  |                       |                     |             |
| 137         | BC_7         | ETRIG2_PCS7   | bidir            | 0             | 136                 | 0                | Z                     | IO                  | 5vfa        |
| 138         | BC_2         | *             | controlr         | 0             |                     |                  |                       |                     |             |
| 139         | BC_7         | ETRIG1_PCS6   | bidir            | 0             | 138                 | 0                | Z                     | IO                  | 5vfa        |
| 140         | BC_2         | *             | controlr         | 0             |                     |                  |                       |                     |             |
| 141         | BC_7         | MDA11         | bidir            | 0             | 140                 | 0                | Z                     | IO                  | 5vsa        |
| 142         | BC_2         | *             | controlr         | 0             |                     |                  |                       |                     |             |
| 143         | BC_7         | MDA12         | bidir            | 0             | 142                 | 0                | Z                     | IO                  | 5vsa        |
| 144         | BC_2         | *             | controlr         | 0             |                     |                  |                       |                     |             |
| 145         | BC_7         | MDA13         | bidir            | 0             | 144                 | 0                | Z                     | IO                  | 5vsa        |
| 146         | BC_2         | *             | controlr         | 0             |                     |                  |                       |                     |             |
| 147         | BC_7         | MDA14         | bidir            | 0             | 146                 | 0                | Z                     | IO                  | 5vsa        |
| 148         | BC_2         | *             | controlr         | 0             |                     |                  |                       |                     |             |
| 149         | BC_7         | MDA15         | bidir            | 0             | 148                 | 0                | Z                     | IO                  | 5vsa        |
| 150         | BC_2         | *             | controlr         | 0             |                     |                  |                       |                     |             |
| 151         | BC_7         | MDA27         | bidir            | 0             | 150                 | 0                | Z                     | IO                  | 5vsa        |
| 152         | BC_2         | *             | controlr         | 0             |                     |                  |                       |                     |             |
| 153         | BC_7         | MDA28         | bidir            | 0             | 152                 | 0                | Z                     | IO                  | 5vsa        |
| 154         | BC_2         | *             | controlr         | 0             |                     |                  |                       |                     |             |
| 155         | BC_7         | MDA29         | bidir            | 0             | 154                 | 0                | Z                     | IO                  | 5vsa        |
| 156         | BC_2         | *             | controlr         | 0             |                     |                  |                       |                     |             |
| 157         | BC_7         | MDA30         | bidir            | 0             | 156                 | 0                | Z                     | ю                   | 5vsa        |
| 158         | BC_2         | *             | controlr         | 0             |                     |                  |                       |                     |             |
| 159         | BC_7         | MDA31         | bidir            | 0             | 158                 | 0                | Z                     | IO                  | 5vsa        |
| 160         | BC_2         | *             | controlr         | 0             |                     |                  |                       |                     |             |
| 161         | BC_7         | MPWM0_MDI1    | bidir            | 0             | 160                 | 0                | Z                     | ю                   | 26v5vs      |
| 162         | BC_2         | *             | controlr         | 0             |                     |                  |                       |                     |             |
| 163         | BC_7         | MPWM1_MDO2    | bidir            | 0             | 162                 | 0                | Z                     | 10                  | 26v5vs      |
| 164         | BC_2         | *             | controlr         | 0             |                     |                  |                       |                     |             |
| 165         | BC_7         | MPWM2_PPM_TX1 | bidir            | 0             | 164                 | 0                | Z                     | 10                  | 26v5vs      |
| 166         | BC_2         | *             | controlr         | 0             |                     |                  |                       |                     |             |
| 167         | BC_7         | MPWM3_PPM_RX1 | bidir            | 0             | 166                 | 0                | Z                     | IO                  | 26v5vs      |
| 168         | BC_2         | *             | controlr         | 0             |                     |                  |                       |                     |             |

MPC561/MPC563 Reference Manual, Rev. 1.2



**Electrical Characteristics** 



Figure F-15. Input Data Timing In Normal Case



SCI Control Register 1 (SCCR1) 15-46 SCI Status Register (SCSR) 15-45 SCK 15-12, 15-34, 15-39 actual delay before SCK (equation) 15-36 baud rate (equation) 15-35 S-clock 16-8 SCSR 15-48 SE bit 3-21 SEE 23-42 Send break (SBK) 15-48, 15-54 Sequencer, instruction 3-3 Serial clock baud rate (SPBR) 15-18 communication interface (SCI) 15-42 formats 15-52 mode (M) bit 15-52 shifter 15-54 Serial Clock (SCK) 15-12 Serialization fetch 23-1 Service request breakpoint flag (SRBK) 19-14 SGLR 19-22 SGPIOCR 6-48 SGPIODT1 6-46 SGPIODT2 6-47 shadow row erasing 21-28 programming 21-24 select read 21-21 UC3F 21-15 show cycles L-bus 11-9 SIEL 6-35 Signals internal clock 8-7 MPC561/563 signals 2-3 multiplexing 2-20 SIMASK 6-33 SIMASK2 6-34 SIMASK3 6-35 Simplified mnemonics 3-33 Single-step trace enable 3-21 SIPEND 6-32 SIPEND2 6-32 SIPEND3 6-33 SISR2 6-37 SISR3 6-37 SIU interrupt pending registers (SIPEND) 6-32 SIU signals, 9-4 SIUMCR 6-25 SIVEC 6-35

SIW0EN 23-52, A-17 SIW1EN 23-52, A-17 SIW2EN 23-52, A-17 SIW3EN 23-52, A-17 Slave Select (SS) 15-42 Slave select signal (SS) 15-39 sleep 6-23 SLW0EN 23-50 SLW1EN 23-50 snooping L2U 11-9 snooping external bus activity, 3-43 SO bit 3-18 SOF 16-10 soft reset 7-2 Soft reset control field (SOFT RST) 19-20 SOFT RST 19-20 SOFTRST 16-12 Software initiated continuous-scan mode 13-45, 14-46 single-scan mode 13-42, 14-43 Software trap enable selection 23-52, A-17 software watchdog timer 6-21 SPBR 15-18 SPCR0 15-17 SPCR1 15-19 SPCR2 15-20 SPCR3 15-20 SPE 15-19, 15-42 special purpose registers 5-6 BBC 4-17 implementation-specific 3-25 special purpose registers, general 3-24 SPI finished interrupt enable (SPIFIE) 15-20 SPIF 15-22 **SPIFIE 15-20** SPRG0-SPRG3 3-24 SPRGs 3-24 SPRs 5-6 BBC 4-17 general 3-24 SPSR 15-20, 15-42 SPWM D-48 SRAM supervisor space only 15-9 SRBK 19-14 SRESET 7-2 SRR field 16-6 SRR0 3-23, 3-45, 3-47, 3-55, 3-56, 3-57, 3-59, 3-60 SRR1 3-23, 3-45, 3-47, 3-49, 3-50, 3-52, 3-53, 3-54, 3-55, 3-56, 3-57, 3-59, 3-60