

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	RXv2
Core Size	32-Bit Single-Core
Speed	54MHz
Connectivity	I ² C, IrDA, SCI, SD/SDIO, SPI, SSI, USB OTG
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	30
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-WFQFN Exposed Pad
Supplier Device Package	48-HWQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f52315cdne-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Classification	Module/Function	Description
Timers	Independent watchdog timer (IWDTa)	 14 bits × 1 channel Count clock: Dedicated low-speed on-chip oscillator for the IWDT Frequency divided by 1, 16, 32, 64, 128, or 256
	Realtime clock (RTCe)	 Clock source: Sub-clock Time/calendar Interrupts: Alarm interrupt, periodic interrupt, and carry interrupt Time-capture facility for three values
	Low power timer (LPT)	 16 bits × 1 channel Clock source: Sub-clock, Dedicated low-speed on-chip oscillator for the IWDT Frequency divided by 2, 4, 8, 16, or 32
	8-bit timer (TMR)	 (8 bits × 2 channels) × 2 units Seven internal clocks (PCLK/1, PCLK/2, PCLK/8, PCLK/32, PCLK/64, PCLK/1024, and PCLK/8192) and an external clock can be selected Pulse output and PWM output with any duty cycle are available Two channels can be cascaded and used as a 16-bit timer
Communication functions	Serial communications interfaces (SCIg, SCIh)	 7 channels (channel 0, 1, 5, 6, 8, 9: SCIg, channel 12: SCIh) SCIg Serial communications modes: Asynchronous, clock synchronous, and smart-card interface Multi-processor function On-chip baud rate generator allows selection of the desired bit rate Choice of LSB-first or MSB-first transfer Average transfer rate clock can be input from TMR timers for SCI5, SCI6, and SCI12 Start-bit detection: Level or edge detection is selectable. Simple I²C Simple SPI 9-bit transfer mode Bit rate modulation Event linking by the ELC (only on channel 5) SCIh (The following functions are added to SCIg) Supports the serial communications protocol, which contains the start frame and information frame Supports the LIN format
	IrDA interface (IRDA)	 1 channel (SCI5 used) Supports encoding/decoding of waveforms conforming to IrDA standard 1.0
	I ² C bus interface (RIICa)	 1 channel Communications formats: I²C bus format/SMBus format Master mode or slave mode selectable Supports fast mode
	Serial peripheral interface (RSPIa)	 1 channel Transfer facility Using the MOSI (master out, slave in), MISO (master in, slave out), SSL (slave select), and RSPCF (RSPI clock) enables serial transfer through SPI operation (four lines) or clock-synchronous operation (three lines) Capable of handling serial transfer as a master or slave Data formats Choice of LSB-first or MSB-first transfer The number of bits in each transfer can be changed to 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits. 128-bit buffers for transmission and reception Up to four frames can be transmitted or received in a single transfer operation (with each frame having up to 32 bits) Double buffers for both transmission and reception
	USB 2.0 host/function module (USBd)	 USB Device Controller (UDC) and transceiver for USB 2.0 are incorporated. Host/function module: 1 port Compliant with USB version 2.0 Transfer speed: Full-speed (12 Mbps), low-speed (1.5 Mbps) OTG (ON-The-Go) is supported. Isochronous transfer is supported. BC1.2 (Battery Charging Specification Revision 1.2) is supported. Internal power supply for USB (allows operation without external power input to the VCC_USB pin when VCC = 4.0 to 5.5V)
	CAN module (RSCAN)	 1 channel Compliance with the ISO11898-1 specification (standard frame and extended frame) 16 Message boxes

Table 1.1Outline of Specifications (3/4)

2. CPU

Figure 2.1 shows register set of the CPU.

	General-purpose register	Control register
	b31 b0	b31 t
	R0 (SP) ^{*1}	ISP (Interrupt stack pointer)
	R1	USP (User stack pointer)
	R2	INITE (Interrupt table register)
	R3	INTB (Interrupt table register)
	R4	PC (Program counter)
	R5	
	R6	PSW (Processor status word)
	R7	BPC (Backup PC)
	R8	
	R9	BPSW (Backup PSW)
	R10	FINTV (Fast interrupt vector register)
	R11	
	R12	FPSW (Floating-point status word)
	R13	EXTB (Exception table register)
	R14	
	R15	
DSP ins b71	truction register	b
	ACC0 (Accumul	ator 0)
	ACC1 (Accumul	ator 1)

Figure 2.1 Register Set of the CPU

3. Address Space

3.1 Address Space

This LSI has a 4-Gbyte address space, consisting of the range of addresses from 0000 0000h to FFFF FFFFh. That is, linear access to an address space of up to 4 Gbytes is possible, and this contains both program and data areas. Figure 3.1 shows the memory maps in the respective operating modes. Accessible areas will differ according to the operating mode and states of control bits.

Number of Access Cycles Register Symbol Number Access Size Module ICLK ≥ PCLK ICLK <PCLK Address Symbol Register Name of Bits 0008 AC44h SDHI SD Interrupt Mask Register 2 SDIMSK2 32 32 3 or 4 PCLKB 3 ICLK cycles when reading, 2 ICLK cycles when cycles when reading, 2 or 3 PCLKB writing cycles when writing 0008 AC48h SDHI SDHI Clock Control Register SDCLKCR 3 or 4 PCLKB 3 ICLK cycles when 32 32 cycles when reading, 2 or 3 PCLKB reading, 2 ICLK cycles when writing cycles when writing 0008 AC4Ch SDHI Transfer Data Size Register SDSIZE 32 32 3 or 4 PCLKB 3 ICLK cycles when reading, 2 ICLK cycles when cycles when reading, 2 or 3 PCLKB writing cycles when writing 0008 AC50h SDHI Card Access Option Register SDOPT 32 32 3 or 4 PCLKB 3 ICLK cycles when cycles when reading, 2 ICLK cycles when reading, 2 or 3 PCLKB writing cycles when writing 0008 AC58h SDHI SD Error Status Register 1 SDERSTS1 32 32 3 or 4 PCLKB 3 ICLK cycles when reading, 2 ICLK cycles when cycles when reading, 2 or 3 PCLKB writing cycles when writing 0008 AC5Ch SDHI SD Error Status Register 2 SDERSTS2 32 32 3 or 4 PCLKB 3 ICLK cycles when cycles when reading, reading, 2 or 3 PCLKB 2 ICLK cycles when writing cycles when writing 0008 AC60h 3 or 4 PCLKB SDHI SD Buffer Register SDBUFR 32 32 3 ICLK cycles when cycles when reading, 2 ICLK cycles when writing reading, 2 or 3 PCLKB cycles when writing 0008 AC68h SDHI SDIO Mode Control Register SDIOMD 32 32 3 or 4 PCLKB 3 ICLK cycles when cvcles when reading, 2 ICLK cycles when reading, 2 or 3 PCLKB writing cycles when writing 0008 AC6Ch 3 or 4 PCLKB SDHI SDIO Status Register SDIOSTS 32 32 3 ICLK cycles when cycles when reading, 2 ICLK cycles when writing reading, 2 or 3 PCLKB cycles when writing 0008 AC70h SDHI SDIO Interrupt Mask Register SDIOIMSK 32 32 3 or 4 PCLKB 3 ICLK cycles when cycles when reading, 2 ICLK cycles when reading, 2 or 3 PCLKB writing cycles when writing 3 or 4 PCLKB 0008 ADB0h SDHI DMA Transfer Enable Register SDDMAEN 32 32 3 ICLK cycles when cycles when reading, 2 ICLK cycles when writing reading, 2 or 3 PCLKB cycles when writing 0008 ADC0h SDHI SDRST 3 or 4 PCLKB SDHI Software Reset Register 32 32 3 ICLK cycles when reading, 2 ICLK cycles when writing cycles when reading, 2 or 3 PCLKB cycles when writing 3 or 4 PCLKB 0008 ADE0h SDHI SDSWAP 32 32 3 ICLK cycles when Swap Control Register cycles when reading. 2 ICLK cycles when writing reading, 2 or 3 PCLKB cycles when writing 0008 B000h CAC Control Register 0 CACR0 8 2 or 3 PCLKB 2 ICLK CAC 8 0008 B001h CAC CAC Control Register 1 CACR1 8 8 2 or 3 PCLKB 2 ICLK

Table 4.1 List of I/O Registers (Address Order) (13/33)

CAC

CAC Control Register 2

0008 B002h

CACR2

8

8

2 or 3 PCLKB

2 ICLK

Table 4.1 List of I/O Registers (Address Order) (28/33)

	Module		Register	Number	Access	Number of Access Cycles		
ddress	Symbol	Register Name	Symbol	of Bits	Size	$\textbf{ICLK} \geq \textbf{PCLK}$	ICLK <pclk< th=""></pclk<>	
0A 8446h	RSCAN	Receive Rule Entry Register 13CH	GAFLPH13	16	16	2 or 3 PCLKB	2 ICLK	
0A 8446h	RSCAN	Receive Buffer Register 10BH	RMPTR10	16	16	2 or 3 PCLKB	2 ICLK	
0A 8448h	RSCAN	Receive Rule Entry Register 14AL	GAFLIDL14	16	16	2 or 3 PCLKB	2 ICLK	
00A 8448h	RSCAN	Receive Buffer Register 10CL	RMDF010	16	16	2 or 3 PCLKB	2 ICLK	
00A 844Ah	RSCAN	Receive Rule Entry Register 14AH	GAFLIDH14	16	16	2 or 3 PCLKB	2 ICLK	
00A 844Ah	RSCAN	Receive Buffer Register 10CH	RMDF110	16	16	2 or 3 PCLKB	2 ICLK	
00A 844Ch	RSCAN	Receive Rule Entry Register 14BL	GAFLML14	16	16	2 or 3 PCLKB	2 ICLK	
00A 844Ch	RSCAN	Receive Buffer Register 10DL	RMDF210	16	16	2 or 3 PCLKB	2 ICLK	
00A 844Eh	RSCAN	Receive Rule Entry Register 14BH	GAFLMH14	16	16	2 or 3 PCLKB	2 ICLK	
00A 844Eh	RSCAN	Receive Buffer Register 10DH	RMDF310	16	16	2 or 3 PCLKB	2 ICLK	
0A 8450h	RSCAN	Receive Rule Entry Register 14CL	GAFLPL14	16	16	2 or 3 PCLKB	2 ICLK	
00A 8450h	RSCAN	Receive Buffer Register 11AL	RMIDL11	16	16	2 or 3 PCLKB	2 ICLK	
0A 8452h	RSCAN	Receive Rule Entry Register 14CH	GAFLPH14	16	16	2 or 3 PCLKB	2 ICLK	
0A 8452h	RSCAN	Receive Buffer Register 11AH	RMIDH11	16	16	2 or 3 PCLKB	2 ICLK	
0A 8454h	RSCAN	Receive Rule Entry Register 15AL	GAFLIDL15	16	16	2 or 3 PCLKB	2 ICLK	
0A 8454h	RSCAN	Receive Buffer Register 11BL	RMTS11	16	16	2 or 3 PCLKB	2 ICLK	
00A 8456h	RSCAN	Receive Rule Entry Register 15AH	GAFLIDH15	16	16	2 or 3 PCLKB	2 ICLK	
0A 8456h	RSCAN	Receive Buffer Register 11BH	RMPTR11	16	16	2 or 3 PCLKB	2 ICLK	
0A 8458h	RSCAN	Receive Rule Entry Register 15BL	GAFLML15	16	16	2 or 3 PCLKB	2 ICLK	
00A 8458h	RSCAN	Receive Buffer Register 11CL	RMDF011	16	16	2 or 3 PCLKB	2 ICLK	
00A 845Ah	RSCAN	Receive Rule Entry Register 15BH	GAFLMH15	16	16	2 or 3 PCLKB	2 ICLK	
0A 845Ah	RSCAN	Receive Buffer Register 11CH	RMDF111	16	16	2 or 3 PCLKB	2 ICLK	
00A 845Ch	RSCAN	Receive Rule Entry Register 15CL	GAFLPL15	16	16	2 or 3 PCLKB	2 ICLK	
00A 845Ch	RSCAN	Receive Buffer Register 11DL	RMDF211	16	16	2 or 3 PCLKB	2 ICLK	
00A 845Eh	RSCAN	Receive Rule Entry Register 15CH	GAFLPH15	16	16	2 or 3 PCLKB	2 ICLK	
00A 845Eh	RSCAN	Receive Buffer Register 11DH	RMDF311	16	16	2 or 3 PCLKB	2 ICLK	
00A 8460h	RSCAN	Receive Buffer Register 12AL	RMIDL12	16	16	2 or 3 PCLKB	2 ICLK	
00A 8462h	RSCAN	Receive Buffer Register 12AH	RMIDH12	16	16	2 or 3 PCLKB	2 ICLK	
0A 8464h	RSCAN	Receive Buffer Register 12BL	RMTS12	16	16	2 or 3 PCLKB	2 ICLK	
00A 8466h	RSCAN	Receive Buffer Register 12BH	RMPTR12	16	16	2 or 3 PCLKB	2 ICLK	
00A 8468h	RSCAN	Receive Buffer Register 12CL	RMDF012	16	16	2 or 3 PCLKB	2 ICLK	
0A 846Ah	RSCAN	Receive Buffer Register 12CH	RMDF112	16	16	2 or 3 PCLKB	2 ICLK	
00A 846Ch	RSCAN	Receive Buffer Register 12DL	RMDF212	16	16	2 or 3 PCLKB	2 ICLK	
0A 846Eh	RSCAN	Receive Buffer Register 12DH	RMDF312	16	16	2 or 3 PCLKB	2 ICLK	
0A 8470h	RSCAN	Receive Buffer Register 13AL	RMIDL13	16	16	2 or 3 PCLKB	2 ICLK	
00A 8472h	RSCAN	Receive Buffer Register 13AH	RMIDH13	16	16	2 or 3 PCLKB	2 ICLK	
0A 8474h	RSCAN	Receive Buffer Register 13BL	RMTS13	16	16	2 or 3 PCLKB	2 ICLK	
0A 8476h	RSCAN	Receive Buffer Register 13BH	RMPTR13	16	16	2 or 3 PCLKB	2 ICLK	
0A 8478h	RSCAN	Receive Buffer Register 13CL	RMDF013	16	16	2 or 3 PCLKB	2 ICLK	
00A 847Ah	RSCAN	Receive Buffer Register 13CH	RMDF113	16	16	2 or 3 PCLKB	2 ICLK	
00A 847Ch	RSCAN	Receive Buffer Register 13DL	RMDF213	16	16	2 or 3 PCLKB	2 ICLK	
0A 847Eh	RSCAN	Receive Buffer Register 13DH	RMDF313	16	16	2 or 3 PCLKB	2 ICLK	
0A 8480h	RSCAN	Receive Buffer Register 14AL	RMIDL14	16	16	2 or 3 PCLKB	2 ICLK	
0A 8482h	RSCAN	Receive Buffer Register 14AH	RMIDH14	16	16	2 or 3 PCLKB	2 ICLK	
0A 8484h	RSCAN	Receive Buffer Register 14BL	RMTS14	16	16	2 or 3 PCLKB	2 ICLK	
0A 8486h	RSCAN	Receive Buffer Register 14BH	RMPTR14	16	16	2 or 3 PCLKB	2 ICLK	
0A 8488h	RSCAN	Receive Buffer Register 14CL	RMDF014	16	16	2 or 3 PCLKB	2 ICLK	
0A 848Ah	RSCAN	Receive Buffer Register 14CH	RMDF114	16	16	2 or 3 PCLKB	2 ICLK	
00A 848Ch	RSCAN	Receive Buffer Register 14DL	RMDF214	16	16	2 or 3 PCLKB	2 ICLK	
0A 848Eh	RSCAN	Receive Buffer Register 14DH	RMDF314	16	16	2 or 3 PCLKB	2 ICLK	
					10	2 31 01 0110	2 1011	
0A 8490h	RSCAN	Receive Buffer Register 15AL	RMIDL15	16	16	2 or 3 PCLKB	2 ICLK	

Table 4.1 List of I/O Registers (Address Order) (29/33)

	Module		Register	Number	Access	Number of Access	Cycles
Address	Symbol	Register Name	Symbol	of Bits	Size	$\textbf{ICLK} \geq \textbf{PCLK}$	ICLK <pclk< th=""></pclk<>
00A 8494h	RSCAN	Receive Buffer Register 15BL	RMTS15	16	16	2 or 3 PCLKB	2 ICLK
00A 8496h	RSCAN	Receive Buffer Register 15BH	RMPTR15	16	16	2 or 3 PCLKB	2 ICLK
000A 8498h	RSCAN	Receive Buffer Register 15CL	RMDF015	16	16	2 or 3 PCLKB	2 ICLK
000A 849Ah	RSCAN	Receive Buffer Register 15CH	RMDF115	16	16	2 or 3 PCLKB	2 ICLK
000A 849Ch	RSCAN	Receive Buffer Register 15DL	RMDF215	16	16	2 or 3 PCLKB	2 ICLK
000A 849Eh	RSCAN	Receive Buffer Register 15DH	RMDF315	16	16	2 or 3 PCLKB	2 ICLK
000A 8580h to 000A 859Fh	RSCAN	RAM Test Register 0 to RAM Test Register 15	RPGACC0 to RPGACC15	16	16	2 or 3 PCLKB	2 ICLK
000A 85A0h	RSCAN	Receive FIFO Access Register 0AL	RFIDL0	16	16	2 or 3 PCLKB	2 ICLK
000A 85A0h	RSCAN	RAM Test Register 16	RPGACC16	16	16	2 or 3 PCLKB	2 ICLK
00A 85A2h	RSCAN	Receive FIFO Access Register 0AH	RFIDH0	16	16	2 or 3 PCLKB	2 ICLK
00A 85A2h	RSCAN	RAM Test Register 17	RPGACC17	16	16	2 or 3 PCLKB	2 ICLK
00A 85A4h	RSCAN	Receive FIFO Access Register 0BL	RFTS0	16	16	2 or 3 PCLKB	2 ICLK
00A 85A4h	RSCAN	RAM Test Register 18	RPGACC18	16	16	2 or 3 PCLKB	2 ICLK
00A 85A6h	RSCAN	Receive FIFO Access Register 0BH	RFPTR0	16	16	2 or 3 PCLKB	2 ICLK
00A 85A6h	RSCAN	RAM Test Register 19	RPGACC19	16	16	2 or 3 PCLKB	2 ICLK
00A 85A8h	RSCAN	Receive FIFO Access Register 0CL	RFDF00	16	16	2 or 3 PCLKB	2 ICLK
00A 85A8h	RSCAN	RAM Test Register 20	RPGACC20	16	16	2 or 3 PCLKB	2 ICLK
00A 85AAh	RSCAN	Receive FIFO Access Register 0CH	RFDF10	16	16	2 or 3 PCLKB	2 ICLK
100A 85AAh	RSCAN	RAM Test Register 21	RPGACC21	16	16	2 or 3 PCLKB	2 ICLK
00A 85ACh	RSCAN	Receive FIFO Access Register 0DL	RFDF20	16	16	2 or 3 PCLKB	2 ICLK
00A 85ACh	RSCAN	RAM Test Register 22	RPGACC22	16	16	2 or 3 PCLKB	2 ICLK
00A 85AEh	RSCAN	Receive FIFO Access Register 0DH	RFDF30	16	16	2 or 3 PCLKB	2 IOLK
00A 85AEh	RSCAN	RAM Test Register 23	RPGACC23	16	16	2 or 3 PCLKB	2 IOLIK 2 ICLK
00A 85B0h	RSCAN	Receive FIFO Access Register 1AL	RFIDL1	16	16	2 or 3 PCLKB	2 IOLIK 2 ICLK
00A 85B0h	RSCAN	RAM Test Register 24	RPGACC24	16	16	2 or 3 PCLKB	2 IOLK
00A 85B2h	RSCAN	•	RFIDH1	16	16	2 or 3 PCLKB	2 ICLK 2 ICLK
		Receive FIFO Access Register 1AH		16	16		2 ICLK 2 ICLK
00A 85B2h	RSCAN	RAM Test Register 25	RPGACC25			2 or 3 PCLKB	
00A 85B4h	RSCAN	Receive FIFO Access Register 1BL	RFTS1	16	16	2 or 3 PCLKB	2 ICLK
00A 85B4h	RSCAN	RAM Test Register 26	RPGACC26	16	16	2 or 3 PCLKB	2 ICLK
00A 85B6h	RSCAN	Receive FIFO Access Register 1BH	RFPTR1	16	16	2 or 3 PCLKB	2 ICLK
00A 85B6h	RSCAN	RAM Test Register 27	RPGACC27	16	16	2 or 3 PCLKB	2 ICLK
00A 85B8h	RSCAN	Receive FIFO Access Register 1CL	RFDF01	16	16	2 or 3 PCLKB	2 ICLK
00A 85B8h	RSCAN	RAM Test Register 28	RPGACC28	16	16	2 or 3 PCLKB	2 ICLK
00A 85BAh	RSCAN	Receive FIFO Access Register 1CH	RFDF11	16	16	2 or 3 PCLKB	2 ICLK
00A 85BAh	RSCAN	RAM Test Register 29	RPGACC29	16	16	2 or 3 PCLKB	2 ICLK
00A 85BCh	RSCAN	Receive FIFO Access Register 1DL	RFDF21	16	16	2 or 3 PCLKB	2 ICLK
00A 85BCh	RSCAN	RAM Test Register 30	RPGACC30	16	16	2 or 3 PCLKB	2 ICLK
00A 85BEh	RSCAN	Receive FIFO Access Register 1DH	RFDF31	16	16	2 or 3 PCLKB	2 ICLK
000A 85BEh	RSCAN	RAM Test Register 31	RPGACC31	16	16	2 or 3 PCLKB	2 ICLK
000A 85C0h	RSCAN	RAM Test Register 32 to RAM Test Register 47	RPGACC32 to RPGACC47	16	16	2 or 3 PCLKB	2 ICLK
0 100A 85DEh			ILE GAGG41				
00A 85E0h	RSCAN0	Transmit/Receive FIFO Access Register 0AL	CFIDL0	16	16	2 or 3 PCLKB	2 ICLK
00A 85E0h	RSCAN	RAM Test Register 48	RPGACC48	16	16	2 or 3 PCLKB	2 ICLK
00A 85E2h	RSCAN0	Transmit/Receive FIFO Access Register 0AH	CFIDH0	16	16	2 or 3 PCLKB	2 ICLK
00A 85E2h	RSCAN	RAM Test Register 49	RPGACC49	16	16	2 or 3 PCLKB	2 ICLK
00A 85E4h	RSCAN0	Transmit/Receive FIFO Access Register 0BL	CFTS0	16	16	2 or 3 PCLKB	2 ICLK
00A 85E4h	RSCAN	RAM Test Register 50	RPGACC50	16	16	2 or 3 PCLKB	2 ICLK
00A 85E6h	RSCAN0	Transmit/Receive FIFO Access Register 0BH	CFPTR0	16	16	2 or 3 PCLKB	2 ICLK
00A 85E6h	RSCAN	RAM Test Register 51	RPGACC51	16	16	2 or 3 PCLKB	2 ICLK
00A 85E8h	RSCAN0	Transmit/Receive FIFO Access Register 0CL	CFDF00	16	16	2 or 3 PCLKB	2 ICLK
	-	RAM Test Register 52	RPGACC52	16	16	2 or 3 PCLKB	2 ICLK

5. Electrical Characteristics

5.1 Absolute Maximum Ratings

Table 5.1 Absolute Maximum Ratings

Conditions: VSS = AVSS0 = VREFL0 = VREFL= VSS_USB = 0 V

	Item	Symbol	Value	Unit	
Power supply vo	bltage	VCC, VCC_USB	-0.3 to +6.5	V	
VBATT power si	upply voltage	Vbatt	-0.3 to +6.5	V	
Input voltage	Ports for 5 V tolerant*1	V _{in}	-0.3 to +6.5	V	
	P03, P05, P07, P40 to P47		-0.3 to AVCC0 +0.3		
	Ports other than above		-0.3 to VCC +0.3		
Reference power supply voltage		VREFH0	-0.3 to AVCC0 +0.3	V	
		VREFH			
Analog power su	upply voltage	AVCC0	-0.3 to +6.5	V	
Analog input	When AN000 to AN007 are used	V _{AN}	-0.3 to AVCC0 +0.3	V	
voltage	When AN016 to AN031 are used		-0.3 to VCC +0.3		
Operating temperature*2		T _{opr}	-40 to +85 -40 to +105	°C	
Storage tempera	ature	T _{stg}	–55 to +125	°C	

Caution: Permanent damage to the MCU may be caused if absolute maximum ratings are exceeded.

To preclude any malfunctions due to noise interference, insert capacitors with high frequency characteristics between the VCC and VSS pins, between the AVCC0 and AVSS0 pins, between the VCC_USB and VSS_USB pins, between the VREFH0 and VREFL0 pins, and between the VREFH and VREFL pins. Place capacitors of about 0.1 µF as close as possible to every power supply pin and use the shortest and heaviest possible traces.

Connect the VCL pin to a VSS pin via a 4.7 µF capacitor. The capacitor must be placed close to the pin. For details, refer to section 5.15.1, Connecting VCL Capacitor and Bypass Capacitors.

Do not input signals or an I/O pull-up power supply to ports other than 5-V tolerant ports while the device is not powered. The current injection that results from input of such a signal or I/O pull-up may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Even if –0.3 to +6.5 V is input to 5-V tolerant ports, it will not cause problems such as damage to the MCU.

Note 1. Ports 12, 13, 16, 17, 30, 31, 32, and B5 are 5 V tolerant.

Note 2. The upper limit of operating temperature is 85°C or 105°C, depending on the product. For details, refer to section 1.2, List of Products.

5.2 DC Characteristics

Table 5.3DC Characteristics (1)

Conditions: $2.7 \text{ V} \le \text{VCC} = \text{VCC}_{USB} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}, \text{ T}_{a} = -40 \text{ to } +105^{\circ}\text{C}$

ltem			Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt trigger input voltage	RIIC input pin (except for SMB	us, 5 V tolerant)	V _{IH}	VCC × 0.7	_	5.8	V	
	Ports 12, 13, 16, (5 V tolerant)	17, port B5		VCC × 0.8		5.8		
	Ports 14 to 15, ports 20 to 27, ports 33 to 37, ports 50 to 55, ports A0 to A7, ports B0 to B4, B6, B7 ports C0 to C7, ports D0 to D7, ports E0 to E7, port J3, Ports 30 to 32 (when time capture event input is not selected), RES#			VCC × 0.8		VCC + 0.3		
	Ports 03, 05, 07,	ports 40 to 47		AVCC0 × 0.8	_	AVCC0 + 0.3		
	Ports 30 to 32 (when time capture event input is selected)	When VCC is supplied		VCC × 0.8		VCC + 0.3		
		When VBATT is supplied		VBATT × 0.8	_	VBATT + 0.3		
	Ports 03, 05, 07,	ports 40 to 47	V _{IL}	-0.3	_	AVCC0 × 0.2		
	RIIC input pin (e	cept for SMBus)		-0.3	_	VCC × 0.3		
	Other than RIIC input pin or ports 30 to 32			-0.3		VCC × 0.2		
	Ports 30 to 32 (when time	When VCC is supplied		-0.3	—	VCC × 0.3		
	capture event input is selected)	When VBATT is supplied		-0.3	_	VBATT × 0.3		
	Ports 03, 05, 07,	ports 40 to 47	ΔV_T	AVCC0 × 0.1	_	-		
	RIIC input pin (e:	cept for SMBus)		VCC × 0.05	_	-		
	Ports 12, 13, 16,	17, Port B5		VCC × 0.05	_	-		
	Other than RIIC	nput pin		VCC × 0.1	—	—		
Input level	MD		V _{IH}	VCC × 0.9		VCC + 0.3	V	
voltage (except for Schmitt	EXTAL (external	clock input)		VCC × 0.8		VCC + 0.3		
trigger input	RIIC input pin (S	RIIC input pin (SMBus)		2.1	_	VCC + 0.3		
pins)	MD		V _{IL}	-0.3		VCC × 0.1		
	EXTAL (external	clock input)		-0.3		VCC × 0.2		
	RIIC input pin (S	MBus)		-0.3	_	0.8		

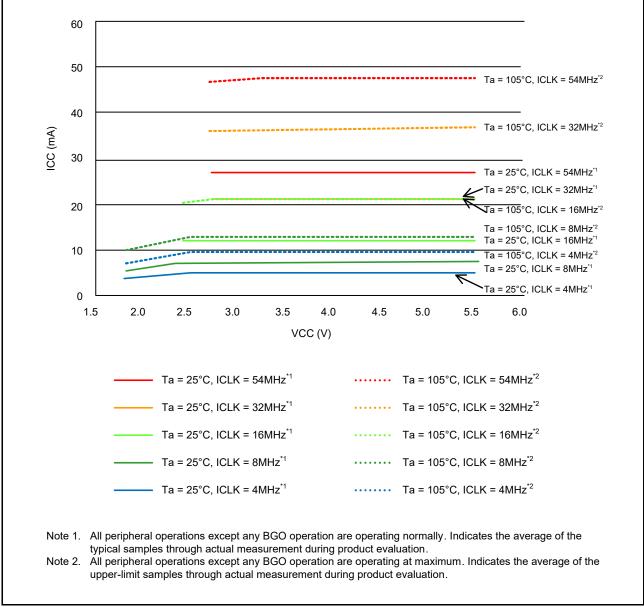


Figure 5.1 Voltage Dependency in High-Speed Operating Mode (Reference Data)

Table 5.17Permissible Output Currents (2)Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} = \text{AVCC0} \le 5.5 \text{ V}$, $\text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}$, $\text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

	Item		Symbol	Max.	Unit
Permissible output low current	Ports 40 to 47, ports 03, 05,	Ports 40 to 47, ports 03, 05, 07, port 36, 37			mA
(average value per pin)	Ports other than above	Normal output mode		4.0	
		High-drive output mode		8.0	
Permissible output low current	Ports 40 to 47, ports 03, 05,	07, ports 36, 37		4.0	
(maximum value per pin)	Ports other than above	Normal output mode		4.0	
		High-drive output mode		8.0	
Permissible output low current	Total of ports 40 to 47, ports	03, 05, 07	Σl _{OL}	30	
	Total of ports 12 to 17, ports	20 to 27, ports 30 to 37, port PJ3		30	
	Total of ports 50 to 55, ports		30		
	Total of ports E0 to E7, ports		30		
	Total of all output pins		60		
Permissible output high current	Ports 40 to 47, ports 03, 05,	I _{ОН}	-4.0		
(average value per pin)	Ports other than above	Normal output mode		-4.0	
		High-drive output mode		-8.0	
Permissible output high current	Ports 40 to 47, ports 03, 05,	Ports 40 to 47, ports 03, 05, 07, ports 36, 37			
(maximum value per pin)	Ports other than above	Normal output mode		-4.0	
		High-drive output mode		-8.0	
Permissible output high current	Total of ports 40 to 47, ports	03, 05, 07	Σl _{OH}	-30	
	Total of ports 12 to 17, ports	Total of ports 12 to 17, ports 20 to 27, ports 30 to 37, port PJ3			
	Total of ports 50 to 55, ports	Total of ports 50 to 55, ports C0 to C7, ports B0 to B7			
	Total of ports E0 to E7, ports	s A0 to A7, ports D0 to D4	1	-30	
	Total of all output pins	1	-60		

Note: Do not exceed the permissible total supply current.

Table 5.26 Clock Timing

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{\text{USB}} = \text{AVCC0} \le 5.5 \text{ V}$, $\text{VSS} = \text{AVSS0} = \text{VREFL0} = \text{VSS}_{\text{USB}} = 0 \text{ V}$, $\text{T}_{a} = -40 \text{ to } +105^{\circ}\text{C}$

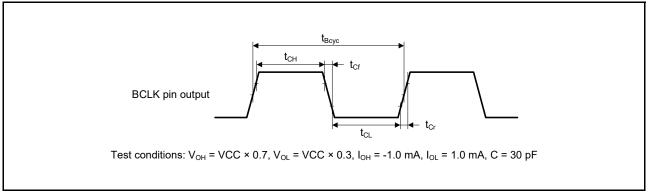
Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
EXTAL external clock input cycle	t _{Xcyc}	50	—	_	ns	Figure 5.23	
EXTAL external clock input high p	t _{XH}	20	—		ns	-	
EXTAL external clock input low p	ulse width	t _{XL}	20	—		ns	-
EXTAL external clock rise time		t _{Xr}	_	—	5	ns	-
EXTAL external clock fall time		t _{Xf}	_	—	5	ns	-
EXTAL external clock input wait to	ime*1	t _{XWT}	0.5	—		μs	
Main clock oscillator oscillation	2.4 ≤ VCC ≤ 5.5	f _{MAIN}	1	—	20	MHz	-
frequency*2	1.8 ≤ VCC < 2.4		1	_	8		
Main clock oscillation stabilization	n time (crystal)*2	t _{MAINOSC}		3		ms	Figure 5.24
Main clock oscillation stabilization resonator)*2	n time (ceramic	t _{MAINOSC}	_	50	_	μs	
LOCO clock oscillation frequency	,	f _{LOCO}	3.44	4.0	4.56	MHz	
LOCO clock oscillation stabilization	on time	t _{LOCO}		_	0.5	μs	Figure 5.25
IWDT-dedicated clock oscillation	f _{ILOCO}	12.75	15	17.25	kHz		
IWDT-dedicated clock oscillation	stabilization time	t _{ILOCO}	_	—	50	μs	Figure 5.26
HOCO clock oscillation frequency	/	f _{HOCO}	31.52	32	32.48	MHz	$T_a = -40 \text{ to } + 85^{\circ}\text{C}$
		(32 MHz)	31.68	32	32.32	1	$T_a = 0$ to + 55°C
			31.36	32	32.64		$T_a = -40 \text{ to } +105^{\circ}\text{C}$
		f _{HOCO}	53.19	54	54.81	MHz	$T_a = -40 \text{ to } + 85^{\circ}\text{C}$
		(54 MHz)	53.46	54	54.54		$T_a = 0$ to + 55°C
			52.92	54	55.08		$T_a = -40 \text{ to } +105^{\circ}\text{C}$
HOCO clock oscillation stabilizati	on time	t _{HOCO}	_	—	30	μs	Figure 5.28
PLL input frequency*3		f _{PLLIN}	4	—	12.5	MHz	
PLL circuit oscillation frequency*3	3	f _{PLL}	24	—	54	MHz	
PLL clock oscillation stabilization	time	t _{PLL}	_	—	50	μs	Figure 5.29
PLL free-running oscillation frequ	ency	f _{PLLFR}	_	8	_	MHz	
USBPLL input frequency*5	f _{PLLIN}		6, 8* ⁶	_	MHz		
USBPLL circuit oscillation freque	f _{PLL}		48* ⁶	_	MHz		
USBPLL clock oscillation stabilization	t _{PLL}		—	50	μs	Figure 5.29	
Sub-clock oscillator oscillation fre	f _{SUB}		32.768		kHz		
Sub-clock oscillation stabilization	t _{SUBOSC}		0.5		s	Figure 5.30	

Note 1. Time until the clock can be used after the main clock oscillator stop bit (MOSCCR.MOSTP) is set to 0 (operating).

Note 2. Reference values when an 8-MHz resonator is used.

When specifying the main clock oscillator stabilization time, set the MOSCWTCR register with a stabilization time value that is equal to or greater than the resonator-manufacturer-recommended value.

After the MOSCCR.MOSTP bit is changed to enable the main clock oscillator, confirm that the OSCOVFSR.MOOVF flag has become 1, and then start using the main clock.


Note 3. The VCC range should be 2.4 to 5.5 V when the PLL is used.

Note 4. Reference values when a 32.768-kHz resonator is used. After the setting of the SOSCCR.SOSTP bit or RCR3.RTCEN bit is changed to operate the sub-clock oscillator, only start using the sub-clock after the sub-clock oscillation stabilization wait time that is equal to or greater than the oscillator-manufacturerrecommended value has elapsed.

Note 5. The VCC range should be 3.0 to 5.5 V when the USBPLL is used.

Note 6. The input frequency can be set to 6 or 8 MHz and the oscillation frequency can be set to 48 MHz only.

Note 7. Only 32.768 kHz can be used.

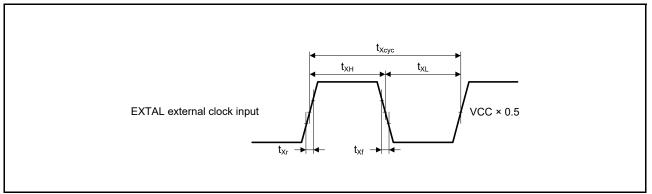


Figure 5.23 EXTAL External Clock Input Timing

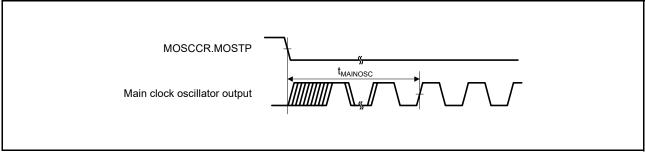


Figure 5.24 Main Clock Oscillation Start Timing

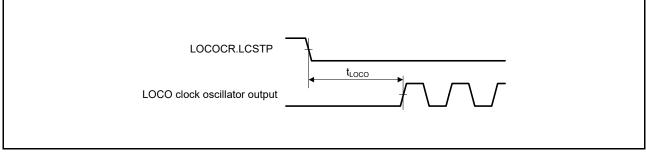
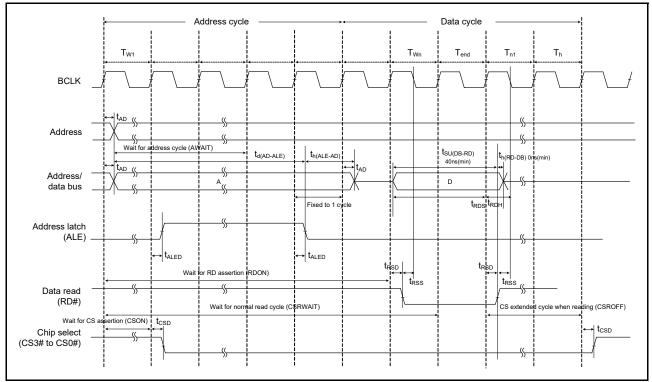
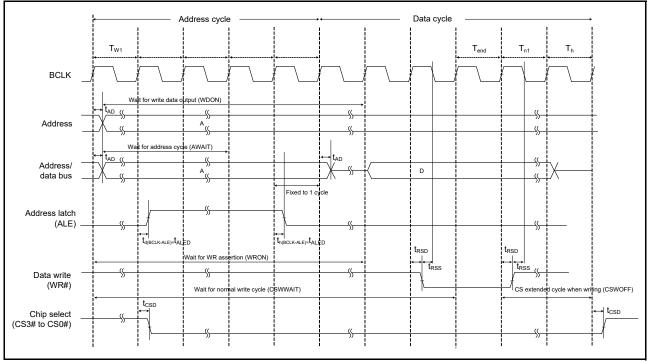
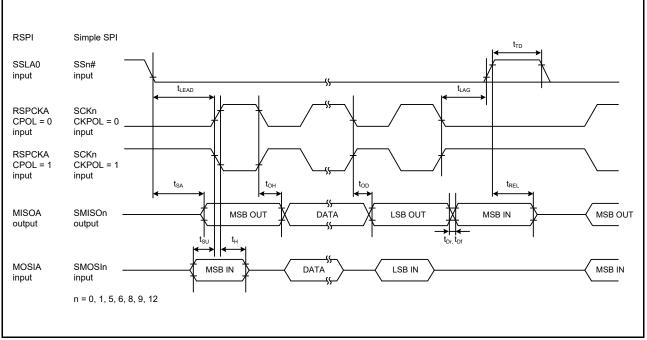
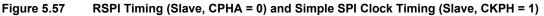
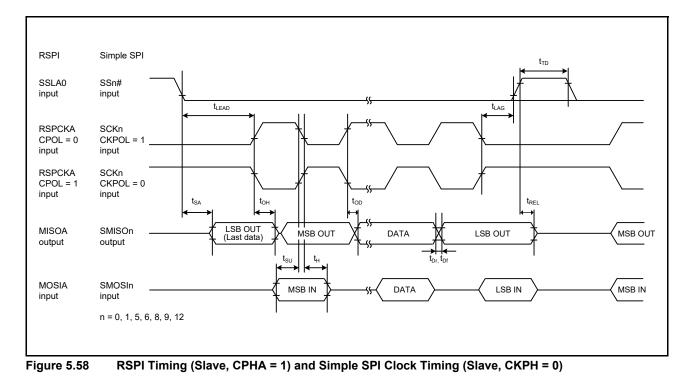




Figure 5.25 LOCO Clock Oscillation Start Timing

External Bus Timing/Write Access Operation Example (Multiplex)


Table 5.39 **Timing of On-Chip Peripheral Modules (2)**


Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} = \text{AVCC0} \le 5.5 \text{ V}$, $\text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}$, $\text{T}_{a} = -40 \text{ to } +105^{\circ}\text{C}$, C = 30 pF, when high-drive output is selected by the drive capacity control register


		Ite	m	Symbol	Min.	Max.	Unit	Test Conditions
	RSPCK clock	Master		t _{SPcyc}	2	4096	t _{Pcyc} *1	Figure 5.54
1	cycle	Slave			8	4096		
	RSPCK clock high pulse width	Master		t _{SPCKWH}	(t _{SPcyc} – t _{SPCKr} – t _{SPCKf})/2 – 3	_	ns	
		Slave			(t _{SPcyc} – t _{SPCKr} – t _{SPCKf})/2	_		
	RSPCK clock low pulse width	Master		t _{SPCKWL}	(t _{SPcyc} – t _{SPCKr} – t _{SPCKf})/2 – 3	_	ns	
		Slave			(t _{SPcyc} – t _{SPCKr} – t _{SPCKf})/2			
	RSPCK clock	Output	2.7 V or above	t _{SPCKr} ,	_	10	ns	
	rise/fall time		1.8 V or above	t _{SPCKf}	_	15		
		Input			_	1	μs	
		Master	2.7 V or above	t _{SU}	10	_	ns	Figure 5.55
	time		1.8 V or above		30	_		to Figure 5.58
		Slave			25 – t _{Pcyc}			r igure 0.00
	Data input hold time	Master	RSPCK set to a division ratio other than PCLKB divided by 2	t _H	t _{Pcyc}	_	ns	
			RSPCK set to PCLKB divided by 2	t _{HF}	0	_		
		Slave	•	t _H	20 + 2 × t _{Pcyc}	_		
	SSL setup time	Master		t _{LEAD}	$-30 + N^{*2} \times t_{SPcyc}$	_	ns	
		Slave			2	_	t _{Pcyc}	
	SSL hold time	Master		t _{LAG}	$-30 + N^{*3} \times t_{SPcyc}$	_	ns	
		Slave			2	_	t _{Pcyc}	
	Data output	Master	2.7 V or above	t _{OD}	_	14	ns	
ľ	delay time		1.8 V or above		_	30		
		Slave	2.7 V or above		_	3 × t _{Pcyc} + 65		
			1.8 V or above		_	3 × t _{Pcyc} +105		
	Data output hold	Master		t _{OH}	0	_	ns	
	time	Slave			0	_		
•	transmission	Master		t _{TD}	t _{SPcyc} + 2 × t _{Pcyc}	8 × t _{SPcyc} + 2 × t _{Pcyc}	ns	
'	delay time	Slave			4 × t _{Pcyc}	_		
	MOSI and MISO	Output	2.7 V or above	t _{Dr} , t _{Df}	_	10	ns	
	rise/fall time		1.8 V or above		_	15		
		Input			_	1	μs	
L	SSL rise/fall time	Output	2.7 V or above	t _{SSLr} ,	_	10	ns	
			1.8 V or above	t _{SSLf}	_	15	ns	
		Input			_	1	μs	
	Slave access tim	е	2.7 V or above	t _{SA}	_	6	t _{Pcyc}	Figure 5.57
I			1.8 V or above			7		Figure 5.58
	Slave output rele	ase	2.7 V or above	t _{REL}		5	t _{Pcyc}	_
ľ	time		1.8 V or above		—	6	1	

Note 1. t_{Pcyc}: PCLK cycle Note 2. N: An integer from 1 to 8 that can be set by the RSPI clock delay register (SPCKD) Note 3. N: An integer from 1 to 8 that can be set by the RSPI slave select negation delay register (SSLND)

RENESAS

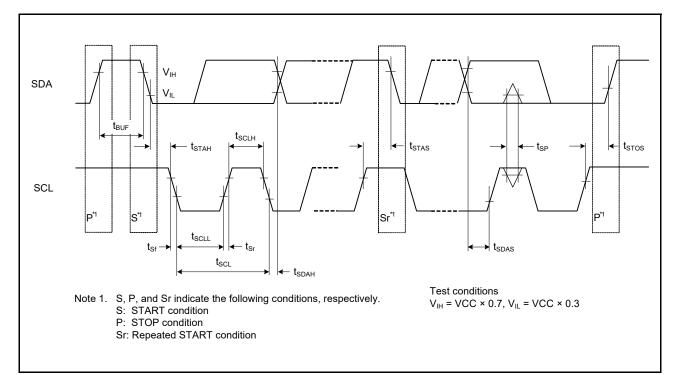


Figure 5.59 RIIC Bus Interface Input/Output Timing and Simple I²C Bus Interface Input/Output Timing

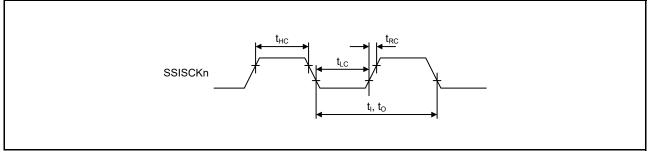


Figure 5.60 SSI Clock Input/Output Timing

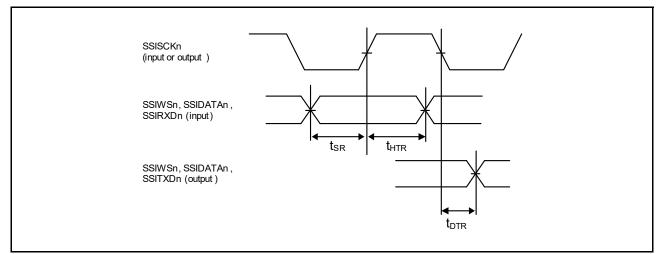


Figure 5.61 SSI Transmission/Reception Timing (SSICR.SCKP=0)

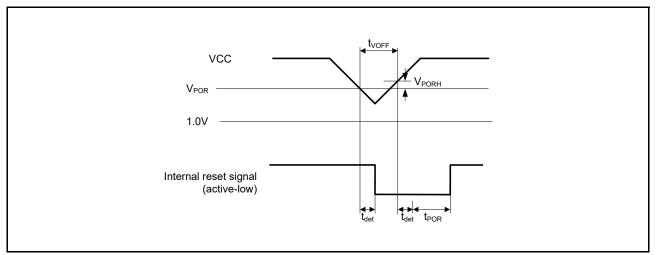


Figure 5.73 Voltage Detection Reset Timing

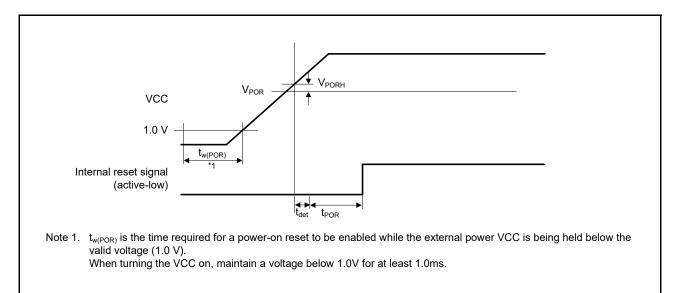


Figure 5.74 Power-On Reset Timing

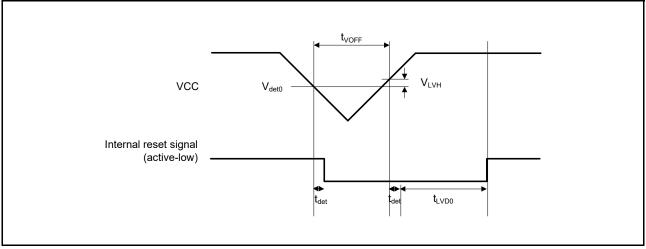


Figure 5.75 Voltage Detection Circuit Timing (Vdet0)

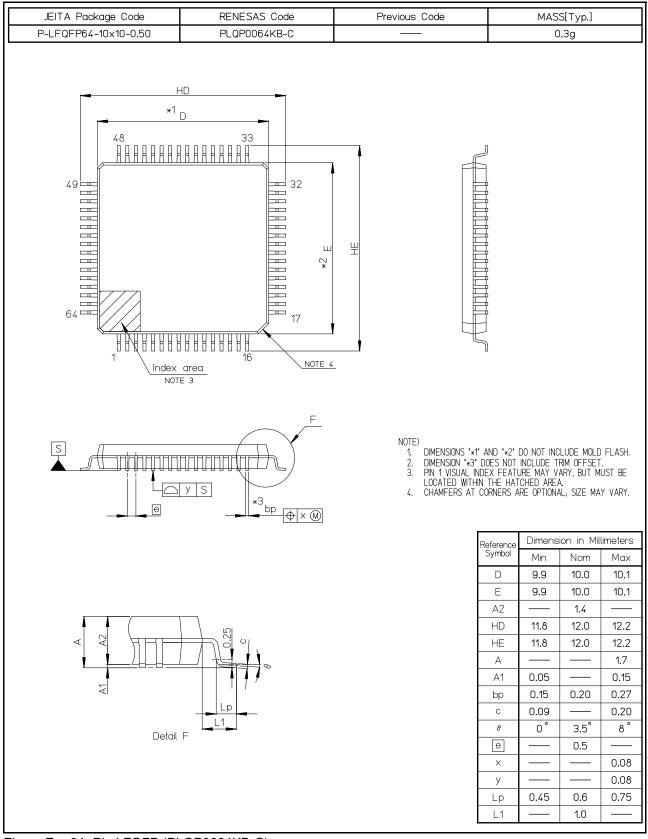


Figure E 64 -Pin LFQFP (PLQP0064KB-C)

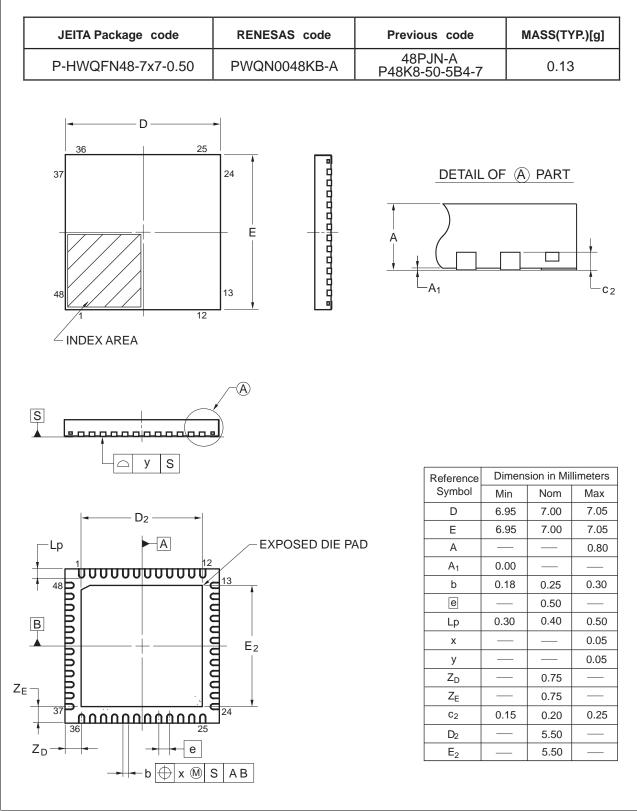


Figure F 48 -Pin HWQFN (PWQN0048KB-A)

REVISION HISTORY

RX230 Group, RX231 Group Datasheet

Classifications

- Items with Technical Update document number: Changes according to the corresponding issued Technical Update

- Items without Technical Update document number: Minor changes that do not require Technical Update to be issued

Rev.	Date		Description	Classification
Rev.	Date	Page	Summary	Classification
1.00	Jun 24, 2015	_	First edition, issued	
1.10	Oct 30, 2015	1. Overview		
		3	Table 1.1 Outline of Specifications (2/4), changed	
		5	Table 1.1 Outline of Specifications (4/4): SD Host Interface (SDHIa) added	
		6	Table 1.2 Comparison of Functions for Different Packages: RX230 Group added	
		3. Address S	-	
		39	Figure 3.1 Memory Map in Each Operating Mode, changed	
		4. I/O Regist	ers	
		67	Table 4.1 List of I/O Registers (Address Order) (25 / 42), changed	TN-RX*-A139A/E
		83	Table 4.1 List of I/O Registers (Address Order) (41 / 42), changed	
		5. Electrical (Characteristics	
		85	Table 5.1 Absolute Maximum Ratings, changed	TN-RX*-A137A/E
		86	Table 5.2 Recommended Operating Voltage Conditions, changed	
		87	Table 5.3 DC Characteristics (1), changed	TN-RX*-A137A/E
		88	Table 5.4 DC Characteristics (2), changed	
		88	Table 5.5 DC Characteristics (3), changed	
		89	Table 5.7 DC Characteristics (5), changed	
		91	Figure 5.1 Voltage Dependency in High-Speed Operating Mode (Reference Data), changed	
		92	Figure 5.2 Voltage Dependency in Middle-Speed Operating Mode (Reference Data), changed	
		93	Figure 5.3 Voltage Dependency in Low-Speed Operating Mode (Reference Data), changed	TN-RX*-A137A/E
		94	Table 5.8 DC Characteristics (6), changed Figure 5.4 Voltage Dependency in Software Standby Mode (Reference Data), changed	
		95	Figure 5.5 Temperature Dependency in Software Standby Mode (Reference Data), changed	
		96	Figure 5.6 Temperature Dependency of RTC Operation with VCC Off (Reference Data), changed Table 5.10 DC Characteristics (8): Conditions changed	
		97	Table 5.11 DC Characteristics (9), changed	TN-RX*-A137A/E
		99	Table 5.16 Permissible Output Currents (1), changed	TN-RX*-A137A/E
		100	Table 5.17 Permissible Output Currents (2), changed	
		101	Table 5.18 Output Values of Voltage (1), changed	
		101	Table 5.19 Output Values of Voltage (2), changed	TN-RX*-A137A/E
		101	Table 5.20 Output Values of Voltage (3), changed	TN-RX*-A137A/E
		105	Figure 5.13 VOH/VOL and IOH/IOL Voltage Characteristics at Ta = 25°C When High-Drive Output is Selected (Reference Data), changed	TN-RX*-A137A/E
		108	Figure 5.18 V_{OL} and I_{OL} Voltage Characteristics of RIIC Output Pin at Ta = 25°C (Reference Data)	TN-RX*-A137A/E
		110	Table 5.21 Operating Frequency Value (High-Speed Operating Mode) and Table 5.22 Operating Frequency Value (Middle-Speed Operating Mode), changed	TN-RX*-A137A/E
		112	Table 5.26 Clock Timing, changed	TN-RX*-A137A/E
		112	Table 5.27 Reset Timing, changed	
		131	Table 5.41 Timing of On-Chip Peripheral Modules (4): Note changed	
		131	Table 5.43 Timing of On-Chip Peripheral Modules (4). Note Changed	
		132	Figure 5.61 SSI Transmission/Reception Timing (SSICP.SCKP=0), changed	TN-RX*-A137A/E
		130	Figure 5.62 SSI Transmission/Reception Timing (SSICP.SCKP=0), changed	TN-RX*-A137A/E
		139	Figure 5.66 VREFH0 Voltage Range vs. AVCC0, changed	TN-IX -AIJIA/E
		142	Figure 5.00 VREFTIO VOltage Ralige VS. AVCCO, Changed	

