

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

 $= \cdot \times =$

Product Status	Active
Core Processor	RXv2
Core Size	32-Bit Single-Core
Speed	54MHz
Connectivity	EBI/EMI, I ² C, IrDA, SCI, SD/SDIO, SPI, SSI, USB OTG
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	79
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f52316cdfp-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Classification	Module/Function	Description
Low power consumption	Low power consumption functions	 Module stop function Three low power consumption modes Sleep mode, deep sleep mode, and software standby mode Low power timer that operates during the software standby state
	Function for lower operating power consumption	 Operating power control modes High-speed operating mode, middle-speed operating mode, and low-speed operating mode
Interrupt	Interrupt controller (ICUb)	 Interrupt vectors: 167 External interrupts: 9 (NMI, IRQ0 to IRQ7 pins) Non-maskable interrupts: 7 (NMI pin, oscillation stop detection interrupt, voltage monitoring 1 interrupt, voltage monitoring 2 interrupt, WDT interrupt, IWDT interrupt, and VBATT power monitoring interrupt) 16 levels specifiable for the order of priority
External bus extens	sion	 The external address space can be divided into four areas (CS0 to CS3), each with independent control of access settings. Capacity of each area: 16 Mbytes (CS0 to CS3) A chip-select signal (CS0# to CS3#) can be output for each area. Each area is specifiable as an 8-bit or 16-bit bus space The data arrangement in each area is selectable as little or big endian (only for data). Bus format: Separate bus, multiplex bus Wait control Write buffer facility
DMA	DMA controller (DMACA)	 4 channels Three transfer modes: Normal transfer, repeat transfer, and block transfer Activation sources: Software trigger, external interrupts, and interrupt requests from peripheral functions
	Data transfer controller (DTCa)	 Transfer modes: Normal transfer, repeat transfer, and block transfer Activation sources: Interrupts Chain transfer function
I/O ports	General I/O ports	100-pin/64-pin/48-pin I/O: 79/43/30 (RX231 Group), 83/47/34 (RX230 Group) • Input: 1/1/1 Pull-up resistors: 79/43/30(RX231 Group), 83/47/34 (RX230 Group) • Open-drain outputs: 58/34/26 • 5-V tolerance: 8/5/5
Event link controller (ELC)		 Event signals of 61 types can be directly connected to the module Operations of timer modules are selectable at event input Capable of event link operation for port B and port E
Multi-function pin c	ontroller (MPC)	Capable of selecting the input/output function from multiple pins
Timers	16-bit timer pulse unit (TPUa)	 (16 bits × 6 channels) × 1 unit Maximum of 16 pulse-input/output possible Select from among seven or eight counter-input clock signals for each channel Supports the input capture/output compare function Output of PWM waveforms in up to 15 phases in PWM mode Support for buffered operation, phase-counting mode (two-phase encoder input) and cascade connected operation (32 bits × 2 channels) depending on the channel. Capable of generating conversion start triggers for the A/D converters Signals from the input capture pins are input via a digital filter Clock frequency measuring method
	Multi-function timer pulse unit 2 (MTU2a)	 (16 bits × 6 channels) × 1 unit Up to 16 pulse-input/output lines and three pulse-input lines are available based on the six 16-bit timer channels Select from among eight or seven counter-input clock signals for each channel (PCLK/1, PCLK/4, PCLK/16, PCLK/64, PCLK/256, PCLK/1024, MTCLKA, MTCLKB, MTCLKC, MTCLKD) other than channel 5, for which only four signals are available. Input capture function 21 output compare/input capture registers Pulse output mode Complementary PWM output mode Reset synchronous PWM mode Phase-counting mode Capable of generating conversion start triggers for the A/D converter
	Port output enable 2 (POE2a)	Controls the high-impedance state of the MTU's waveform output pins
	Compare match timer (CMT)	 (16 bits × 2 channels) × 2 units Select from among four clock signals (PCLK/8, PCLK/32, PCLK/128, PCLK/512)
	Watchdog timer (WDTA)	 14 bits x 1 channel Select from among six counter-input clock signals (PCLK/4, PCLK/64, PCLK/128, PCLK/512, PCLK/2048, PCLK/8192)

Table 1.1Outline of Specifications (2/4)

Classifications	Pin Name	I/O	Description
SD host	SDHI_D3 to SD_D0	I/O	SD data bus pins
interface	SDHI_CD	Input	SD card detection pin
	SDHI_WP	Input	SD write-protect signal
USB 2.0 host/ function module	VCC_USB	Input	Power supply pin for USB. Connect this pin to VCC or connect this pin to VSS via a 0.33 μF smoothing capacitor for stabilizing the internal power supply.
	VSS_USB	Input	Ground pin for USB. Connect this pin to VSS.
	USB0_DP	I/O	D+ I/O pin of the USB on-chip transceiver.
	USB0_DM	I/O	D- I/O pin of the USB on-chip transceiver.
	USB0_VBUS	Input	USB cable connection monitor pin.
	USB0_EXICEN	Output	Low-power control signal for the OTG chip.
	USB0_VBUSEN	Output	VBUS (5 V) supply enable signal for the OTG chip.
	USB0_OVRCURA, USB0_OVRCURB	Input	External overcurrent detection pins.
	USB0_ID	Input	Mini-AB connector ID input pin during operation in OTG mode.
12-bit A/D converter	AN000 to AN007, AN016 to AN031	Input	Input pins for the analog signals to be processed by the A/D converter.
	ADTRG0#	Input	Input pin for the external trigger signal that start the A/D conversion.
12-bit D/A converter	DA0, DA1	Output	Analog output pins of the D/A converter.
Comparator B	CMPB0 to CMPB3	Input	Input pin for the analog signal to be processed by comparator B.
	CVREFB0 to CVREFB3	Input	Analog reference voltage supply pin for comparator B.
	CMPOB0 to CMPOB3	Output	Output pin for comparator B.
CTSU	TS0 to TS9, TS12, TS13, TS15 to TS20, TS22, TS23, TS27, TS30, TS33, TS35	Output	Electrostatic capacitance measurement pins (touch pins).
	TSCAP	Output	LPF connection pin.
Analog power supply	AVCC0	Input	Analog voltage supply pin for the 12-bit A/D converter and D/A converter. Connect this pin to VCC when not using the 12-bit A/D converter and D/A converter.
	AVSS0	Input	Analog ground pin for the 12-bit A/D converter and D/A converter. Connect this pin to VSS when not using the 12-bit A/D converter and D/A converter.
	VREFH0	Input	Analog reference voltage supply pin for the 12-bit A/D converter.
	VREFL0	Input	Analog reference ground pin for the 12-bit A/D converter.
	VREFH	Input	Analog reference voltage supply pin for the 12-bit D/A converter.
	VREFL	Input	Analog reference ground pin for the 12-bit D/A converter.
I/O ports	P03, P05, P07	I/O	3-bit input/output pins.
	P12 to P17	I/O	6-bit input/output pins.
	P20 to P27	I/O	8-bit input/output pins.
	P30 to P37	I/O	8-bit input/output pins (P35 input pin).
	P40 to P47	I/O	8-bit input/output pins.
	P50 to P55	I/O	6-bit input/output pins.
	PA0 to PA7	I/O	8-bit input/output pins.
	PB0 to PB7	I/O	8-bit input/output pins.
	PC0 to PC7	I/O	8-bit input/output pins.
	PD0 to PD7	I/O	8-bit input/output pins.
	PE0 to PE7	I/O	8-bit input/output pins.
	PH0 to PH3	I/O	4-bit input/output pins.
	PJ3	I/O	1-bit input/output pin.

Table 1.5Pin Functions (4/4)

Figure 1.5 Pin Assignments of the 64-Pin WFLGA

Figure 1.9 Pin Assignments of the 48-Pin HWQFN

RENESAS

Pin No.	Power Supply, Clock, System Control	I/O Port	External Bus	Timers (MTU, TPU, TMR, RTC, CMT, POE, CAC)	Communications (SCI, RSPI, RIIC, RSCAN, USB, SSI)	Memory Interface (SDHI)	Touch sensing	Others
J6	VCC_USB*1	PH3*1		TMCI0*1				
J7		P50	WR0#/WR#				TS20	
J8		PC4	A20/CS3#	MTIOC3D/MTCLKC/TMCI1/ POE0#	SCK5/CTS8#/RTS8#/ SS8#/SSLA0	SDHI_D1	TSCAP	
J9		PC0	A16	MTIOC3C/TCLKC	CTS5#/RTS5#/SS5#/ SSLA1		TS35	
J10		PC1	A17	MTIOC3A/TCLKD	SCK5/SSLA2		TS33	
K1		P23		MTIOC3D/MTCLKD/ TIOCD3	CTS0#/RTS0#/SS0#/ SSISCK0		TS6	
K2		P22		MTIOC3B/MTCLKC/TMO0/ TIOCC3	SCK0/ USB0_OVRCURB/ AUDIO_MCLK		TS7	
K3		P20		MTIOC1A/TMRI0/TIOCB3	TXD0/SMOSI0/SSDA0/ USB0_ID/SSIRXD0		TS9	
K4		P14		MTIOC3A/MTCLKA/TMRI2/ TIOCB5/TCLKA	CTS1#/RTS1#/SS1#/ CTXD0/USB0_OVRCURA		TS13	IRQ4/ CVREFB2
K5		PH2*1		TMRI0*1	USB0_DM*1			IRQ1*1
K6		PH1* ¹		TMO0*1	USB0_DP*1			IRQ0*1
K7		P51	WR1#/BC1#/ WAIT#				TS19	
K8		PC5	A21/CS2#/ WAIT#	MTIOC3B/MTCLKD/TMRI2	SCK8/RSPCKA		TS23	
K9		PC3	A19	MTIOC4D/TCLKB	TXD5/SMOSI5/SSDA5/ IRTXD5	SDHI_D0	TS27	
K10		PC2	A18	MTIOC4B/TCLKA	RXD5/SMISO5/SSCL5/ SSLA3/ IRRXD5	SDHI_D3	TS30	

Table 1.6	List of Pins and Pin Functions	(100-Pin TFLGA)	(3/3)
			(0,0)

Note 1. RX230: PH0/CACREF, PH1/IRQ0/TMO0, PH2/IRQ1/TMRI0, PH3/TMCI0 RX231: VSS_USB, USB0_DP, USB0_DM, VCC_USB

Pin No.	Power Supply, Clock, System Control	I/O Port	External Bus	Timers (MTU, TPU, TMR, RTC, CMT, POE, CAC)	Communications (SCI, RSPI, RIIC, RSCAN, USB, SSI)	Memory Interface (SDHI)	Touch sensing	Others
1	VREFH							
2		P03						DA0
3	VREFL							
4		PJ3		MTIOC3C	CTS6#/RTS6#/SS6#			
5	VCL							
6	VBATT							
7	MD							FINED
8	XCIN							
9	XCOUT							
10	RES#							
11	XTAL	P37						
12	VSS							
13	EXTAL	P36						
14	VCC							
15	UPSEL	P35						NMI
16		P34		MTIOC0A/TMCI3/POE2#	SCK6		TS0	IRQ4
17		P33		MTIOC0D/TMRI3/POE3#/ TIOCD0	RXD6/SMISO6/SSCL6		TS1	IRQ3
18		P32		MTIOC0C/TMO3/TIOCC0/ RTCOUT/RTCIC2	TXD6/SMOSI6/SSDA6/ USB0_VBUSEN			IRQ2
19		P31		MTIOC4D/TMCI2/RTCIC1	CTS1#/RTS1#/SS1#/ SSISCK0			IRQ1
20		P30		MTIOC4B/TMRI3/POE8#/ RTCIC0	RXD1/SMISO1/SSCL1/ AUDIO_MCLK			IRQ0/ CMPOB3
21		P27	CS3#	MTIOC2B/TMCI3	SCK1/ SSIWS0		TS2	CVREFB3
22		P26	CS2#	MTIOC2A/TMO1	TXD1/SMOSI1/SSDA1/ SSIRXD0		TS3	CMPB3
23		P25	CS1#	MTIOC4C/MTCLKB/ TIOCA4			TS4	ADTRG0#
24		P24	CS0#	MTIOC4A/MTCLKA/TMRI1/ TIOCB4	USB0_VBUSEN		TS5	
25		P23		MTIOC3D/MTCLKD/ TIOCD3	CTS0#/RTS0#/SS0#/ SSISCK0		TS6	
26		P22		MTIOC3B/MTCLKC/TMO0/ TIOCC3	SCK0/ USB0_OVRCURB/ AUDIO_MCLK		TS7	
27		P21		MTIOC1B/TMCI0/TIOCA3	RXD0/SMISO0/SSCL0/ USB0_EXICEN/SSIWS0		TS8	
28		P20		MTIOC1A/TMRI0/TIOCB3	TXD0/SMOSI0/SSDA0/ USB0_ID/SSIRXD0		TS9	
29		P17		MTIOC3A/MTIOC3B/TMO1/ POE8#/TIOCB0/TCLKD	SCK1/MISOA/SDA/ SSITXD0			IRQ7/ CMPOB2
30		P16		MTIOC3C/MTIOC3D/ TMO2/TIOCB1/TCLKC/ RTCOUT	TXD1/SMOSI1/SSDA1/ MOSIA/SCL/USB0_VBUS/ USB0_VBUSEN/ USB0_OVRCURB			IRQ6/ ADTRG0#
31		P15		MTIOC0B/MTCLKB/TMCl2/ TIOCB2/TCLKB	RXD1/SMISO1/SSCL1/ CRXD0		TS12	IRQ5/CMPB2
32		P14		MTIOC3A/MTCLKA/TMRI2/ TIOCB5/TCLKA	CTS1#/RTS1#/SS1#/ CTXD0/USB0_OVRCURA		TS13	IRQ4/ CVREFB2
33		P13	1	MTIOC0B/TMO3/TIOCA5	SDA			IRQ3
34		P12		TMCI1	SCL			IRQ2
35	VCC_USB*1	PH3*1		TMCI0*1				
36		PH2*1		TMRI0*1	USB0_DM*1			IRQ1*1
37		PH1*1		TMO0*1	USB0_DP*1			IRQ0*1
38	VSS_USB*1	PH0*1						CACREF*1
39		P55	WAIT#	MTIOC4D/TMO3	CRXD0		TS15	
40		P54	ALE	MTIOC4B/TMCI1	CTXD0		TS16	
41	BCLK	P53				İ	TS17	

Table 1.7 List of Pins and Pin Functions (100-Pin LFQFP) (1/3)

Table 4.1 List of I/O Registers (Address Order) (28/33)

	Madula		Pogiotor	Number	A	Number of Access 0	Cycles
Address	Symbol	Register Name	Symbol	of Bits	Size	$\textbf{ICLK} \geq \textbf{PCLK}$	ICLK <pclk< th=""></pclk<>
000A 8446h	RSCAN	Receive Rule Entry Register 13CH	GAFLPH13	16	16	2 or 3 PCLKB	2 ICLK
000A 8446h	RSCAN	Receive Buffer Register 10BH	RMPTR10	16	16	2 or 3 PCLKB	2 ICLK
000A 8448h	RSCAN	Receive Rule Entry Register 14AL	GAFLIDL14	16	16	2 or 3 PCLKB	2 ICLK
000A 8448h	RSCAN	Receive Buffer Register 10CL	RMDF010	16	16	2 or 3 PCLKB	2 ICLK
000A 844Ah	RSCAN	Receive Rule Entry Register 14AH	GAFLIDH14	16	16	2 or 3 PCLKB	2 ICLK
000A 844Ah	RSCAN	Receive Buffer Register 10CH	RMDF110	16	16	2 or 3 PCLKB	2 ICLK
000A 844Ch	RSCAN	Receive Rule Entry Register 14BL	GAFLML14	16	16	2 or 3 PCLKB	2 ICLK
000A 844Ch	RSCAN	Receive Buffer Register 10DL	RMDF210	16	16	2 or 3 PCLKB	2 ICLK
000A 844Eh	RSCAN	Receive Rule Entry Register 14BH	GAFLMH14	16	16	2 or 3 PCLKB	2 ICLK
000A 844Eh	RSCAN	Receive Buffer Register 10DH	RMDF310	16	16	2 or 3 PCLKB	2 ICLK
000A 8450h	RSCAN	Receive Rule Entry Register 14CL	GAFLPL14	16	16	2 or 3 PCLKB	2 ICLK
000A 8450h	RSCAN	Receive Buffer Register 11AL	RMIDL11	16	16	2 or 3 PCLKB	2 ICLK
000A 8452h	RSCAN	Receive Rule Entry Register 14CH	GAFLPH14	16	16	2 or 3 PCLKB	2 ICLK
000A 8452h	RSCAN	Receive Buffer Register 11AH	RMIDH11	16	16	2 or 3 PCLKB	2 ICLK
000A 8454h	RSCAN	Receive Rule Entry Register 15AL	GAFLIDL15	16	16	2 or 3 PCLKB	2 ICLK
000A 8454h	RSCAN	Receive Buffer Register 11BL	RMTS11	16	16	2 or 3 PCLKB	2 ICLK
000A 8456h	RSCAN	Receive Rule Entry Register 15AH	GAFLIDH15	16	16	2 or 3 PCLKB	2 ICLK
000A 8456h	RSCAN	Receive Buffer Register 11BH	RMPTR11	16	16	2 or 3 PCLKB	2 ICLK
000A 8458h	RSCAN	Receive Rule Entry Register 15BL	GAFLML15	16	16	2 or 3 PCLKB	2 ICLK
000A 8458h	RSCAN	Receive Buffer Register 11CL	RMDF011	16	16	2 or 3 PCLKB	2 ICLK
000A 845Ah	RSCAN	Receive Rule Entry Register 15BH	GAFLMH15	16	16	2 or 3 PCLKB	2 ICLK
000A 845Ah	RSCAN	Receive Buffer Register 11CH	RMDF111	16	16	2 or 3 PCLKB	2 ICLK
000A 845Ch	RSCAN	Receive Rule Entry Register 15CL	GAFLPL15	16	16	2 or 3 PCLKB	2 ICLK
000A 845Ch	RSCAN	Receive Buffer Register 11DL	RMDF211	16	16	2 or 3 PCLKB	2 ICLK
000A 845Eh	RSCAN	Receive Rule Entry Register 15CH	GAFLPH15	16	16	2 or 3 PCLKB	2 ICLK
000A 845Eh	RSCAN	Receive Buffer Register 11DH	RMDF311	16	16	2 or 3 PCLKB	2 ICLK
000A 8460h	RSCAN	Receive Buffer Register 12AL	RMIDL12	16	16	2 or 3 PCLKB	2 ICLK
000A 8462h	RSCAN	Receive Buffer Register 12AH	RMIDH12	16	16	2 or 3 PCLKB	2 ICLK
000A 8464h	RSCAN	Receive Buffer Register 12BL	RMTS12	16	16	2 or 3 PCLKB	2 ICLK
000A 8466h	RSCAN	Receive Buffer Register 12BH	RMPTR12	16	16	2 or 3 PCLKB	2 ICLK
000A 8468h	RSCAN	Receive Buffer Register 12CL	RMDF012	16	16	2 or 3 PCLKB	2 ICLK
000A 846Ah	RSCAN	Receive Buffer Register 12CH	RMDF112	16	16	2 or 3 PCLKB	2 ICLK
000A 846Ch	RSCAN	Receive Buffer Register 12DL	RMDF212	16	16	2 or 3 PCLKB	2 ICLK
000A 846Eh	RSCAN	Receive Buffer Register 12DH	RMDF312	16	16	2 or 3 PCLKB	2 ICLK
000A 8470h	RSCAN	Receive Buffer Register 13AL	RMIDL13	16	16	2 or 3 PCLKB	2 ICLK
000A 8472h	RSCAN	Receive Buffer Register 13AH	RMIDH13	16	16	2 or 3 PCLKB	2 ICLK
000A 8474h	RSCAN	Receive Buffer Register 13BL	RMTS13	16	16	2 or 3 PCLKB	2 ICLK
000A 8476h	RSCAN	Receive Buffer Register 13BH	RMPTR13	16	16	2 or 3 PCLKB	2 ICLK
000A 8478h	RSCAN	Receive Buffer Register 13CL	RMDF013	16	16	2 or 3 PCLKB	2 ICLK
000A 847Ah	RSCAN	Receive Buffer Register 13CH	RMDF113	16	16	2 or 3 PCLKB	2 ICLK
000A 847Ch	RSCAN	Receive Buffer Register 13DL	RMDF213	16	16	2 or 3 PCLKB	2 ICLK
000A 847Eh	RSCAN	Receive Buffer Register 13DH	RMDF313	16	16	2 or 3 PCLKB	2 ICLK
000A 8480h	RSCAN	Receive Buffer Register 14AL	RMIDL14	16	16	2 or 3 PCLKB	2 ICLK
000A 8482h	RSCAN	Receive Buffer Register 14AH	RMIDH14	16	16	2 or 3 PCLKB	2 ICLK
000A 8484h	RSCAN	Receive Buffer Register 14BL	RMTS14	16	16	2 or 3 PCLKB	2 ICLK
000A 8486h	RSCAN	Receive Buffer Register 14BH	RMPTR14	16	16	2 or 3 PCLKB	2 ICLK
000A 8488h	RSCAN	Receive Buffer Register 14CL	RMDF014	16	16	2 or 3 PCLKB	2 ICLK
000A 848Ah	RSCAN	Receive Buffer Register 14CH	RMDF114	16	16	2 or 3 PCLKB	2 ICLK
000A 848Ch	RSCAN	Receive Buffer Register 14DL	RMDF214	16	16	2 or 3 PCLKB	2 ICLK
000A 848Eh	RSCAN	Receive Buffer Register 14DH	RMDF314	16	16	2 or 3 PCLKB	2 ICLK
000A 8490h	RSCAN	Receive Buffer Register 15AL	RMIDL15	16	16	2 or 3 PCLKB	2 ICLK
000A 8492h	RSCAN	Receive Buffer Register 15AH	RMIDH15	16	16	2 or 3 PCLKB	2 ICLK

Figure 5.3 Voltage Dependency in Low-Speed Operating Mode (Reference Data)

Table 5.11 DC Characteristics (9)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{\text{USB}} = \text{AVCC0} \le 5.5 \text{ V}$, $\text{VSS} = \text{AVSS0} = \text{VSS}_{\text{USB}} = 0 \text{ V}$, $\text{T}_{a} = -40 \text{ to } +105^{\circ}\text{C}$

	Item	Symbol	Min.	Typ.*7	Max.	Unit	Test Conditions
Analog power	During A/D conversion (at high-speed conversion)	I _{AVCC}		0.7	1.7	mA	
supply current	During A/D conversion (in low-current mode)			0.6	1.0		
	During D/A conversion (per channel)*1			0.4	0.8		
	Waiting for A/D and D/A conversion (all units)			—	0.4	μA	
Reference	During A/D conversion (at high-speed conversion)	I _{REFH0}		25	150	μA	
power supply	Waiting for A/D conversion (all units)			—	60	nA	
	During D/A conversion (per channel)	I _{REFH}		50	100	μA	
	Waiting for D/A conversion (all units)			—	100	nA	
LVD1, 2	per channel	I _{LVD}	—	0.15		μA	
Temperature sensor* ⁶	_	I _{TEMP}		75		μA	
Comparator B	Window mode	I _{CMP} *5		12.5	28.6	μA	
operating	Comparator high-speed mode (per channel)			3.2	16.2	μA	
current	Comparator low-speed mode (per channel)			1.7	4.4	μA	
CTSU operating current	When sleep mode Base clock frequency: 2MHz Pin capacitance: 50pF	I _{CTSU}		150	_	μA	
USB operating current*4	 During USB communication operation under the following settings and conditions Host controller operation is set to full-speed mode Bulk OUT transfer (64 bytes) × 1, bulk IN transfer (64 bytes) × 1 Connect peripheral devices via a 1-meter USB cable from the USB port. 	I _{USBH} *2	_	4.3 (VCC) 0.9 (VCC_USB)	_	mA	
	 During USB communication operation under the following settings and conditions Function controller operation is set to full-speed mode Bulk OUT transfer (64 bytes) × 1, bulk IN transfer (64 bytes) × 1 Connect the host device via a 1-meter USB cable from the USB port. 	I _{USBF} *2	_	3.6 (VCC) 1.1 (VCC_USB)	_	mA	
	 During suspended state under the following setting and conditions Function controller operation is set to full-speed mode (pull up the USB0_DP pin) Software standby mode Connect the host device via a 1-meter USB cable from the USB port. 	I _{SUSP} *3		0.35 (VCC) 170 (VCC_USB)	_	μΑ	

Note 1. The value of the D/A converter is the value of the power supply current including the reference current.

Note 2. Current consumed only by the USB module.

Note 3. Includes the current supplied from the pull-up resistor of the USB0 DP pin to the pull-down resistor of the host device, in addition to the current consumed by this MCU during the suspended state.

Note 4. Current consumed by the power supplies (VCC and VCC_USB).

Note 5. Current consumed only by the comparator B module.

Note 6. Current consumed by the power supply (VCC). Note 7. When VCC = AVCC0 = VCC_USB = 3.3 V.

DC Characteristics (10) Table 5.12

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{\text{USB}} = \text{AVCC0} \le 5.5 \text{ V}$, $\text{VSS} = \text{AVSS0} = \text{VSS}_{\text{USB}} = 0 \text{ V}$, $\text{T}_{a} = -40 \text{ to } +105^{\circ}\text{C}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
RAM standby voltage	V _{RAM}	1.8			V	

5.2.1 Normal I/O Pin Output Characteristics (1)

Figure 5.8 to Figure 5.12 show the characteristics when normal output is selected by the drive capacity control register.

Figure 5.8 V_{OH}/V_{OL} and I_{OH}/I_{OL} Voltage Characteristics at $T_a = 25^{\circ}$ C When Normal Output is Selected (Reference Data)

Figure 5.9 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics at VCC = 1.8 V When Normal Output is Selected (Reference Data)

5.3.3 Timing of Recovery from Low Power Consumption Modes

Conditions: 1.8	1000000000000000000000000000000000000											
Item					Min.	Тур.	Max.	Unit	Test Conditions			
Recovery time from software standby mode* ¹	High-speed mode	Crystal connected to main clock oscillator	Main clock oscillator operating* ²	t _{SBYMC}	—	2	3	ms	Figure 5.34			
		External clock input to main clock oscillator	Main clock oscillator operating* ³	t _{SBYEX}	—	35	50	μs				
		Sub-clock oscillator o	Sub-clock oscillator operating			650	800	μs				
		HOCO clock oscillator operating		t _{SBYHO}	_	40	55	μs				
		LOCO clock oscillator operating		t _{SBYLO}	_	40	55	μs				

Table 5.28 Timing of Recovery from Low Power Consumption Modes (1)

100 1100 - 0.1/ T - 40 to 140500

Note 1. The recovery time varies depending on the state of each oscillator when the WAIT instruction is executed. When multiple oscillators are operating, the recovery time varies depending on the operating state of the oscillators that are not selected as the system clock source. The above table applies when only the corresponding clock is operating.

Note 2. When the frequency of the crystal is 20 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 04h.

Note 3. When the frequency of the external clock is 20 MHz. When the main clock oscillator wait control register (MOSCWTCR) is set to 00h.

Table 5.29 Timing of Recovery from Low Power Consumption Modes (2)

Conditions: 1.8 V ≤ VCC = VCC_USB = AVCC0 ≤ 5.5 V, VSS = AVSS0 = VREFL0 = VSS_USB = 0 V, T_a = -40 to +105°C

Item					Min.	Тур.	Max.	Unit	Test Conditions
Recovery time from software standby mode* ¹	Middle-speed mode	Crystal connected to main clock oscillator	Main clock oscillator operating* ²	t _{SBYMC}	_	2	3	ms	Figure 5.34
			Main clock oscillator and PLL circuit operating* ³	t _{SBYPC}	_	2	3	ms	
		External clock input to main clock	Main clock oscillator operating*4	t _{SBYEX}	_	3	4	μs	
		oscillator	Main clock oscillator and PLL circuit operating* ⁵	t _{SBYPE}	_	65	85	μs	-
		Sub-clock oscillator o	Sub-clock oscillator operating		_	600	750	μs	
		HOCO clock oscillato	r operating* ⁶	t _{SBYHO}	_	40	50	μs	
		-	LOCO clock oscillator operating	r operating	t _{SBYLO}	_	5	7	μs

Note 1. The recovery time varies depending on the state of each oscillator when the WAIT instruction is executed. When multiple oscillators are operating, the recovery time varies depending on the operating state of the oscillators that are not selected as the system clock source. The above table applies when only the corresponding clock is operating.

Note 2. When the frequency of the crystal is 12 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 04h. Note 3. When the frequency of PLL is 12 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 04h.

Note 4. When the frequency of the external clock is 12 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 00h.

Note 5. When the frequency of PLL is 12 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 00h.

Note 6. This is the case when HOCO is selected as the system clock and its frequency division is set to be 8 MHz.

Table 5.30 Timing of Recovery from Low Power Consumption Modes (3)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} = \text{AVCC0} \le 5.5 \text{ V}$, $\text{VSS} = \text{AVSS0} = \text{VREFL0} = \text{VSS}_{USB} = 0 \text{ V}$, $\text{T}_{a} = -40 \text{ to } +105^{\circ}\text{C}$

	Item			Min.	Тур.	Max.	Unit	Test Conditions
Recovery time from software standby mode*1	Low-speed mode	Sub-clock oscillator operating	t _{SBYSC}		600	750	μs	Figure 5.34

Note 1. The sub-clock continues oscillating in software standby mode during low-speed mode.

Table 5.31 Timing of Recovery from Low Power Consumption Modes (4)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{USB} = \text{AVCC0} \le 5.5 \text{ V}$, $\text{VSS} = \text{AVSS0} = \text{VREFL0} = \text{VSS}_{USB} = 0 \text{ V}$, $\text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Recovery time from deep sleep mode*1	High-speed mode*2	t _{DSLP}	—	2	3.5	μs	Figure 5.35
	Middle-speed mode*3	t _{DSLP}	—	3	4	μs	
	Low-speed mode*4	t _{DSLP}	_	400	500	μs	

Note 1. Oscillators continue oscillating in deep sleep mode.

Note 2. When the frequency of the system clock is 32 MHz.

Note 3. When the frequency of the system clock is 12 MHz.

Note 4. When the frequency of the system clock is 32 kHz.

Table 5.32 Operating Mode Transition Time

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{\text{USB}} = \text{AVCC0} \le 5.5 \text{ V}$, $\text{VSS} = \text{AVSS0} = \text{VREFL0} = \text{VSS}_{\text{USB}} = 0 \text{ V}$, $\text{T}_{a} = -40 \text{ to } +105^{\circ}\text{C}$

Modo boforo Transition	Mode after Transition		Tra	Unit			
		ICEN Frequency	Min.	Тур.	Max.	Onit	
High-speed operating mode	Middle-speed operating modes	8 MHz	—	10	—	μs	
Middle-speed operating modes	High-speed operating mode	8 MHz	—	37.5	—	μs	
Low-speed operating mode	Middle-speed operating mode, high-speed operating mode	32.768 kHz	—	215	—	μs	
Middle-speed operating mode, high-speed operating mode	Low-speed operating mode	32.768 kHz	—	185	—	μs	

Note: Values when the frequencies of PCLKA, PCLKB, PCLKD, FCLK, and BCLK are not divided.

5.3.4 **Control Signal Timing**

Table 5.33 **Control Signal Timing**

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{\text{USB}} = \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{\text{USB}} = 0 \text{ V}, \text{ T}_{a} = -40 \text{ to } +105^{\circ}\text{C}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions		
NMI pulse width	t _{NMIW}	200			ns	NMI digital filter is disabled	t _{Pcyc} × 2 ≤ 200 ns	
		t _{Pcyc} × 2*1				(NMIFLTE.NFLTEN = 0)	t _{Pcyc} × 2 > 200 ns	
		200				NMI digital filter is enabled	t _{NMICK} × 3 ≤ 200 ns	
		t _{NMICK} × 3.5* ²				(NMIFLTE.NFLTEN = 1)	t _{NMICK} × 3 > 200 ns	
IRQ pulse width	t _{IRQW}	200			ns	IRQ digital filter is disabled	t _{Pcyc} × 2 ≤ 200 ns	
		t _{Pcyc} × 2*1				(IRQFLTE0.FLTENi = 0)	t _{Pcyc} × 2 > 200 ns	
	200					IRQ digital filter is enabled	t _{IRQCK} × 3 ≤ 200 ns	
		t _{IRQCK} × 3.5 ^{*3}	_			(IRQFLIE0.FLIEN) = 1)	t _{IRQCK} × 3 > 200 ns	

200 ns minimum in software standby mode. Note:

Note 1. t_{Pcyc} indicates the cycle of PCLKB. Note 2. t_{NMICK} indicates the cycle of the NMI digital filter sampling clock. Note 3. t_{IRQCK} indicates the cycle of the IRQi digital filter sampling clock (i = 0 to 7).

Figure 5.36 **NMI Interrupt Input Timing**

Figure 5.37 **IRQ Interrupt Input Timing**

5.3.5 **Bus Timing**

Table 5.34 Bus Timing (1)

Conditions: $2.7 \text{ V} \le \text{VCC} = \text{VCC}_{USB} = \text{AVCC0} \le 5.5 \text{ V}$, $\text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}$, fBCLK $\le 32 \text{ MHz}$ (BCLK pin output frequency $\le 16 \text{ MHz}$), $T_a = -40 \text{ to } +105^{\circ}\text{C}$, $V_{OH} = \text{VCC} \times 0.5$, $V_{OL} = \text{VCC} \times 0.5$, $I_{OH} = -1.0 \text{ mA}$, $I_{OL} = 1.0 \text{ mA}$, $C_L = 30 \text{ pF}$, when normal output is selected by the drive capacity control register

Item	Symbol	Min.	Max.	Unit	Test Conditions
Address delay time	t _{AD}	—	55	ns	Figure 5.38 to
Byte control delay time	t _{BCD}	—	55	ns	Figure 5.41
CS# delay time	t _{CSD}	_	55	ns	
RD# delay time	t _{RSD}	—	55	ns	
Read data setup time	t _{RDS}	40	—	ns	
Read data hold time	t _{RDH}	0	—	ns	
WR# delay time	t _{WRD}	—	55	ns	
Write data delay time	t _{WDD}	—	55	ns	
Write data hold time	t _{WDH}	0	—	ns	
WAIT# setup time	t _{WTS}	40	—	ns	Figure 5.42
WAIT# hold time	t _{WTH}	0	_	ns	

Table 5.35 Bus Timing (2)

Conditions: 1.8 V ≤ VCC = VCC_USB = AVCC0 < 2.7 V, VSS = AVSS0 = VSS_USB = 0 V,

fBCLK \leq 16 MHz (BCLK pin output frequency \leq 8 MHz), T_a = -40 to +105°C, V_{OH} = VCC \times 0.5, V_{OL} = VCC \times 0.5, I_{OH} = -1.0 mA, I_{OL} = 1.0 mA, C_L = 30 pF, when normal output is selected by the drive capacity control register

Item	Symbol	Min.	Max.	Unit	Test Conditions
Address delay time	t _{AD}	—	90	ns	Figure 5.38 to
Byte control delay time	t _{BCD}	—	90	ns	Figure 5.41
CS# delay time	t _{CSD}	—	90	ns	
RD# delay time	t _{RSD}	—	90	ns	
Read data setup time	t _{RDS}	60	—	ns	
Read data hold time	t _{RDH}	0	—	ns	
WR# delay time	t _{WRD}	—	90	ns	
Write data delay time	t _{WDD}	—	90	ns	
Write data hold time	t _{WDH}	0	—	ns	
WAIT# setup time	t _{WTS}	60	—	ns	Figure 5.42
WAIT# hold time	t _{WTH}	0	—	ns	

Figure 5.39 External Bus Timing/Normal Write Cycle (Bus Clock Synchronization)

Figure 5.59 RIIC Bus Interface Input/Output Timing and Simple I²C Bus Interface Input/Output Timing

Figure 5.60 SSI Clock Input/Output Timing

Figure 5.61 SSI Transmission/Reception Timing (SSICR.SCKP=0)

5.4 USB Characteristics

Table 5.45 USB Characteristics (USB0_DP and USB0_DM Pin Characteristics)

Conditions: $3.0 \text{ V} \le \text{VCC} = \text{VCC}_{USB} = \text{AVCC} < 3.6 \text{ V}$ (when a regulator is not in use) or $4.0 \text{ V} \le \text{VCC} = \text{AVCCO} < 5.5 \text{ V}$ (when a regulator is in use), VSS = AVSS0 = VSS_USB = 0 V, T_a = -40 to +105°C

	Item		Symbol	Min.	Max.	Unit	Test C	Conditions
Input	Input high level voltage	ge	V _{IH}	2.0		V		
characteristics	Input low level voltag	е	V _{IL}		0.8	V		
	Differential input sens	sitivity	V _{DI}	0.2	_	V	USB0_DP – USB0_DM	
	Differential common mode range		V _{CM}	0.8	2.5	V		
Output	Output high level voltage		V _{OH}	2.8	VCC_USB	V	I _{OH} = -200 µ	A
characteristics	Output low level volta	age	V _{OL}	0.0	0.3	V	I _{OL} = 2 mA	
	Cross-over voltage		V _{CRS}	1.3	2.0	V		Figure 5.65,
	Rise time	FS	t _r	4	20	ns		Figure 5.66
		LS		75	300			
	Fall time	FS	t _f	4	20	ns		
		LS		75	300			
	Rise/fall time ratio	FS	t _r /t _f	90	111.11	%	t _r /t _f	
		LS		80	125			
	Output resistance		Z _{DRV}	28	44	Ω	(Adjusting th external eler necessary.)	e resistance by nents is not
VBUS	VBUS input voltage		V _{IH}	VCC × 0.8	—	V		
characteristics			V _{IL}		VCC × 0.2	V		
Pull-up,	Pull-down resistor		R _{PD}	14.25	24.80	kΩ		
pull-down	Pull-up resistor		R _{PUI}	0.9	1.575	kΩ	During idle s	tate
			R _{PUA}	1.425	3.09	kΩ	During recep	otion
Battery	D+ sink current		I _{DP_SINK}	25	175	μA		
Charging Specification	D- sink current		I _{DM_SINK}	25	175	μA		
Ver 1.2	DCD source current		I _{DP_SRC}	7	13	μA		
	Data detection voltag	e	V _{DAT_REF}	0.25	0.4	V		
	D+ source current		V _{DP_SRC}	0.5	0.7	V	Output curre	nt = 250 µA
	D- source current		V _{DM SRC}	0.5	0.7	V	Output current = 250 µA	

Figure 5.65

USB0_DP and USB0_DM Output Timing

5.14 E2 DataFlash Characteristics (Flash Memory for Data Storage)

Table 5.65	E2 DataFlash Characteristics (1)

Item		Symbol	Min.	Тур.	Max.	Unit	Conditions
Reprogramming/erasure cycle*1		N _{DPEC}	100000	1000000		Times	
Data hold time	After 10000 times of N _{DPEC}	t _{DDRP}	20* ^{2, *3}	—	_	Year	T _a = +85°C
	After 100000 times of N _{DPEC}		5* ^{2, *3}	—	_	Year	
	After 1000000 times of N _{DPEC}			1*2, *3		Year	T _a = +25°C

Note 1. The reprogram/erase cycle is the number of erasing for each block. When the reprogram/erase cycle is n times (n = 100000), erasing can be performed n times for each block. For instance, when 1-byte programming is performed 1000 times for different addresses in a 1-Kbyte block and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasing is not enabled (overwriting is prohibited).

Note 2. Characteristic when the flash memory programmer is used and the self-programming library is provided from Renesas Electronics.

Note 3. These results are obtained from reliability testing.

Table 5.66 E2 DataFlash Characteristics (2) : high-speed operating mode

Conditions: $2.7 \text{ V} \leq \text{VCC} = \text{VCC}_{\text{USB}} = \text{AVCC0} \leq 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{\text{USB}} = 0 \text{ V}$

Temperature range for the programming/erasure operation: $T_a = -40$ to $+105^{\circ}C$

Item		Symbol	FCL	K = 1 MHz		FCLK	Unit		
		Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Programming time	1 byte	t _{DP1}	_	95.0	797	_	40.8	376	μs
Erasure time	1 Kbyte	t _{DE1K}		19.5	498	—	6.2	230	ms
	8 Kbyte	t _{DE8K}		119.8	2556	—	12.9	368	ms
Blank check time	1 byte	t _{DBC1}			55.00	—		16.1	μs
	1 Kbyte	t _{DBC1K}			0.72	—		0.50	ms
Erase operation forced stop time		t _{DSED}			16.0	—		10.7	μs
DataFlash STOP recovery time		t _{DSTOP}	5.0			5.0			μs

Note:The time until each operation of the flash memory is started after instructions are executed by software is not included.Note:The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below
4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note: The frequency accuracy of FCLK must be within ±3.5%.

Table 5.67 E2 DataFlash Characteristics (3) : middle-speed operating mode

Conditions: $1.8 \text{ V} \le \text{VCC0} = \text{VCC}_{USB} = \text{AVCC0} \le 5.5 \text{ V}$, $\text{VSS} = \text{AVSS0} = \text{VSS}_{USB} = 0 \text{ V}$ Temperature range for the programming/erasure operation: $T_a = -40$ to $+85^{\circ}$ C

Item		Symbol	FCL	< = 1 MHz		FCL	Unit		
		Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Programming time	1 byte	t _{DP1}	—	135	1197	—	86.5	823	μs
Erasure time	1 Kbyte	t _{DE1K}	—	19.6	501	_	8.0	265	ms
	8 Kbyte	t _{DE8K}	—	120	2558		27.7	669	ms
Blank check time	1 byte	t _{DBC1}	—	—	85.0	_	—	50.9	μs
	1 Kbyte	t _{DBC1K}	—	—	0.72	_	—	1.45	ms
Erase operation forced stop time		t _{DSED}	—	—	28.0	_	—	21.3	μs
DataFlash STOP recovery time		t _{DSTOP}	0.72	—	_	0.72	_	—	μs

Note:The time until each operation of the flash memory is started after instructions are executed by software is not included.Note:The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below

4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note: The frequency accuracy of FCLK must be within ±3.5%.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

- ³⁄₄ The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- ³⁄₄ The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- ³⁄₄ The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

³⁄4 The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.