

Welcome to E-XFL.COM

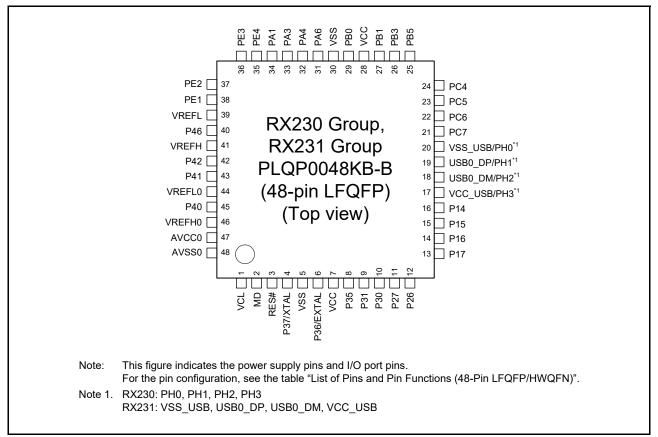
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	RXv2
Core Size	32-Bit Single-Core
Speed	54MHz
Connectivity	I ² C, IrDA, SCI, SD/SDIO, SPI, SSI, USB OTG
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	43
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-WFLGA
Supplier Device Package	64-FLGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f52316cdlf-20


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Classification	Module/Function	Description
Timers	Independent watchdog timer (IWDTa)	 14 bits × 1 channel Count clock: Dedicated low-speed on-chip oscillator for the IWDT Frequency divided by 1, 16, 32, 64, 128, or 256
	Realtime clock (RTCe)	 Clock source: Sub-clock Time/calendar Interrupts: Alarm interrupt, periodic interrupt, and carry interrupt Time-capture facility for three values
	Low power timer (LPT)	 16 bits × 1 channel Clock source: Sub-clock, Dedicated low-speed on-chip oscillator for the IWDT Frequency divided by 2, 4, 8, 16, or 32
	8-bit timer (TMR)	 (8 bits × 2 channels) × 2 units Seven internal clocks (PCLK/1, PCLK/2, PCLK/8, PCLK/32, PCLK/64, PCLK/1024, and PCLK/8192) and an external clock can be selected Pulse output and PWM output with any duty cycle are available Two channels can be cascaded and used as a 16-bit timer
Communication functions	Serial communications interfaces (SCIg, SCIh)	 7 channels (channel 0, 1, 5, 6, 8, 9: SCIg, channel 12: SCIh) SCIg Serial communications modes: Asynchronous, clock synchronous, and smart-card interface Multi-processor function On-chip baud rate generator allows selection of the desired bit rate Choice of LSB-first or MSB-first transfer Average transfer rate clock can be input from TMR timers for SCI5, SCI6, and SCI12 Start-bit detection: Level or edge detection is selectable. Simple I²C Simple SPI 9-bit transfer mode Bit rate modulation Event linking by the ELC (only on channel 5) SCIh (The following functions are added to SCIg) Supports the serial communications protocol, which contains the start frame and information frame Supports the LIN format
	IrDA interface (IRDA)	 1 channel (SCI5 used) Supports encoding/decoding of waveforms conforming to IrDA standard 1.0
	I ² C bus interface (RIICa)	 1 channel Communications formats: I²C bus format/SMBus format Master mode or slave mode selectable Supports fast mode
	Serial peripheral interface (RSPIa)	 1 channel Transfer facility Using the MOSI (master out, slave in), MISO (master in, slave out), SSL (slave select), and RSPCF (RSPI clock) enables serial transfer through SPI operation (four lines) or clock-synchronous operation (three lines) Capable of handling serial transfer as a master or slave Data formats Choice of LSB-first or MSB-first transfer The number of bits in each transfer can be changed to 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits. 128-bit buffers for transmission and reception Up to four frames can be transmitted or received in a single transfer operation (with each frame having up to 32 bits) Double buffers for both transmission and reception
	USB 2.0 host/function module (USBd)	 USB Device Controller (UDC) and transceiver for USB 2.0 are incorporated. Host/function module: 1 port Compliant with USB version 2.0 Transfer speed: Full-speed (12 Mbps), low-speed (1.5 Mbps) OTG (ON-The-Go) is supported. Isochronous transfer is supported. BC1.2 (Battery Charging Specification Revision 1.2) is supported. Internal power supply for USB (allows operation without external power input to the VCC_USB pin when VCC = 4.0 to 5.5V)
	CAN module (RSCAN)	 1 channel Compliance with the ISO11898-1 specification (standard frame and extended frame) 16 Message boxes

Table 1.1Outline of Specifications (3/4)

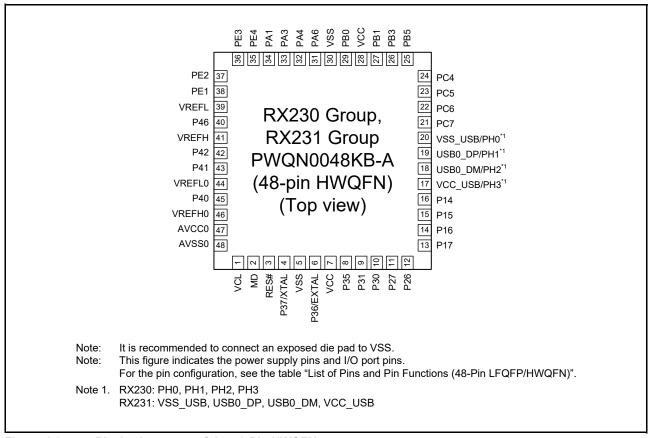
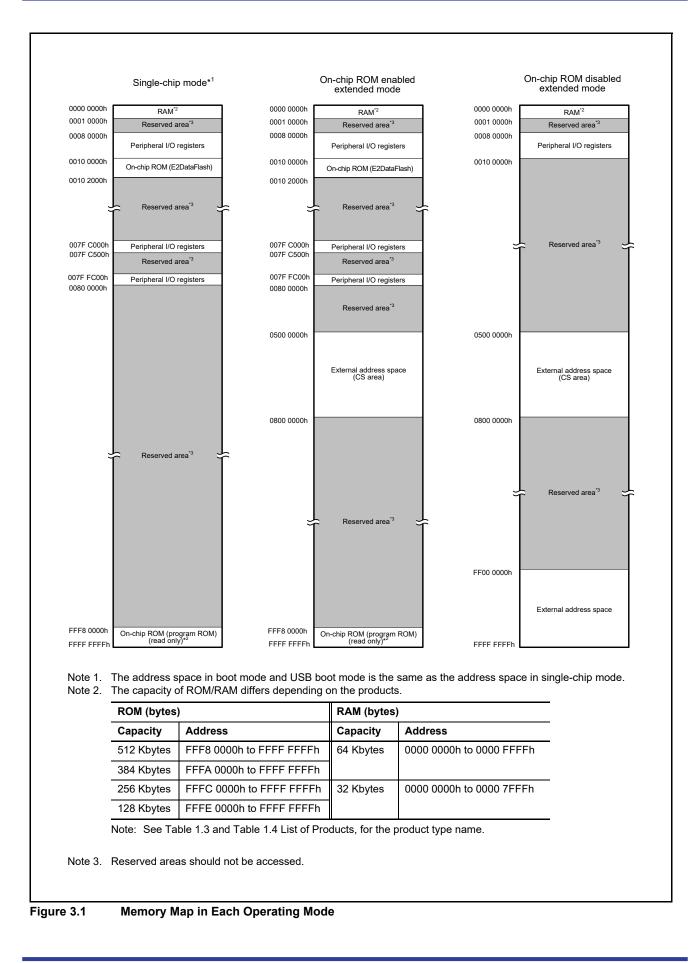



Figure 1.9 Pin Assignments of the 48-Pin HWQFN

RENESAS

Table 4.1 List of I/O Registers (Address Order) (17/33)

	Module		Register	Number	Access	Number of Access	Cycles
ddress	Symbol	Register Name	Symbol	of Bits	Size	$\textbf{ICLK} \geq \textbf{PCLK}$	ICLK <pclk< th=""></pclk<>
008 C0A4h	PORTJ	Open Drain Control Register 0	ODR0	8	8, 16	2 or 3 PCLKB	2 ICLK
008 C0C0h	PORT0	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB	2 ICLK
008 C0C1h	PORT1	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB	2 ICLK
008 C0C2h	PORT2	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB	2 ICLK
008 C0C3h	PORT3	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB	2 ICLK
008 C0C4h	PORT4	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB	2 ICLK
008 C0C5h	PORT5	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB	2 ICLK
008 C0CAh	PORTA	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB	2 ICLK
008 C0CBh	PORTB	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB	2 ICLK
008 C0CCh	PORTC	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB	2 ICLK
008 C0CDh	PORTD	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB	2 ICLK
008 C0CEh	PORTE	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB	2 ICLK
008 C0D1h	PORTH	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB	2 ICLK
008 C0D2h	PORTJ	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB	2 ICLK
008 C0E1h	PORT1	Drive Capacity Control Register	DSCR	8	8	2 or 3 PCLKB	2 ICLK
008 C0E2h	PORT2	Drive Capacity Control Register	DSCR	8	8	2 or 3 PCLKB	2 ICLK
008 C0E3h	PORT3	Drive Capacity Control Register	DSCR	8	8	2 or 3 PCLKB	2 ICLK
008 C0E5h	PORT5	Drive Capacity Control Register	DSCR	8	8	2 or 3 PCLKB	2 ICLK
008 C0EAh	PORTA	Drive Capacity Control Register	DSCR	8	8	2 or 3 PCLKB	2 ICLK
008 C0EBh	PORTB	Drive Capacity Control Register	DSCR	8	8	2 or 3 PCLKB	2 ICLK
008 C0ECh	PORTC	Drive Capacity Control Register	DSCR	8	8	2 or 3 PCLKB	2 ICLK
008 C0EDh	PORTD	Drive Capacity Control Register	DSCR	8	8	2 or 3 PCLKB	2 ICLK
008 COEEh	PORTE	Drive Capacity Control Register	DSCR	8	8	2 or 3 PCLKB	2 ICLK
008 C0F1h	PORTH	Drive Capacity Control Register	DSCR	8	8	2 or 3 PCLKB	2 ICLK
008 C0F2h	PORTJ	Drive Capacity Control Register	DSCR	8	8	2 or 3 PCLKB	2 ICLK
008 C100h	MPC	CS Output Enable Register	PFCSE	8	8	2 or 3 PCLKB	2 ICLK
008 C104h	MPC	Address Output Enable Register 0	PFAOE0	8	8, 16	2 or 3 PCLKB	2 ICLK
008 C105h	MPC	Address Output Enable Register 1	PFAOE1	8	8, 16	2 or 3 PCLKB	2 ICLK
008 C106h	MPC	External Bus Control Register 0	PFBCR0	8	8, 16	2 or 3 PCLKB	2 ICLK
008 C107h	MPC	External Bus Control Register 1	PFBCR1	8	8, 16	2 or 3 PCLKB	2 ICLK
008 C11Fh	MPC	Write-Protect Register	PWPR	8	8	2 or 3 PCLKB	2 ICLK
008 C120h	PORT	Port Switching Register B	PSRB	8	8	2 or 3 PCLKB	2 ICLK
008 C121h	PORT	Port Switching Register A	PSRA	8	8	2 or 3 PCLKB	2 ICLK
008 C143h	MPC	P03 Pin Function Control Register	P03PFS	8	8	2 or 3 PCLKB	2 ICLK
008 C145h	MPC	P05 Pin Function Control Register	P05PFS	8	8	2 or 3 PCLKB	2 IOLK
008 C145h	MPC	P07 Pin Function Control Register	P07PFS	8	8	2 or 3 PCLKB	2 IOLK
008 C14711	MPC	P12 Pin Function Control Register	P12PFS	8	8	2 or 3 PCLKB	2 ICLK
008 C14An	MPC	P13 Pin Function Control Register	P13PFS	8	8	2 or 3 PCLKB	2 ICLK
008 C14Bh	MPC	P13 Pin Function Control Register	P13PFS P14PFS	8	8	2 or 3 PCLKB	2 ICLK 2 ICLK
008 C14Ch	MPC	•	P14PFS P15PFS	8	8	2 or 3 PCLKB	2 ICLK 2 ICLK
008 C14Dh	MPC	P15 Pin Function Control Register	P15PFS P16PFS	8	8		2 ICLK 2 ICLK
008 C14En	MPC	P16 Pin Function Control Register	P16PFS P17PFS	8	8	2 or 3 PCLKB	2 ICLK 2 ICLK
		P17 Pin Function Control Register				2 or 3 PCLKB	
008 C150h	MPC	P20 Pin Function Control Register	P20PFS	8	8	2 or 3 PCLKB	2 ICLK
008 C151h	MPC	P21 Pin Function Control Register	P21PFS	8	8	2 or 3 PCLKB	2 ICLK
008 C152h	MPC	P22 Pin Function Control Register	P22PFS	8	8	2 or 3 PCLKB	2 ICLK
008 C153h	MPC	P23 Pin Function Control Register	P23PFS	8	8	2 or 3 PCLKB	2 ICLK
008 C154h	MPC	P24 Pin Function Control Register	P24PFS	8	8	2 or 3 PCLKB	2 ICLK
008 C155h	MPC	P25 Pin Function Control Register	P25PFS	8	8	2 or 3 PCLKB	2 ICLK
008 C156h	MPC	P26 Pin Function Control Register	P26PFS	8	8	2 or 3 PCLKB	2 ICLK
	MDC	P27 Pin Function Control Register	P27PFS	8	8	2 or 3 PCLKB	2 ICLK
008 C157h	MPC MPC	P30 Pin Function Control Register	P30PFS	8	8	2 or 3 PCLKB	2 ICLK

Table 4.1 List of I/O Registers (Address Order) (25/33)

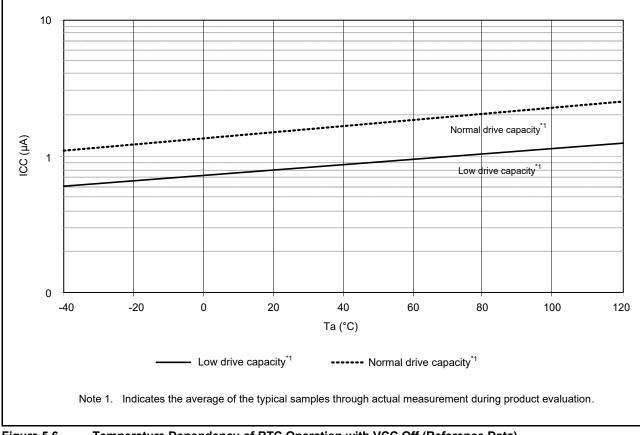

	Module		Register	Number	Access	Number of Access	Cycles
ddress	Symbol	Register Name	Symbol	of Bits	Size	$\textbf{ICLK} \geq \textbf{PCLK}$	ICLK <pclk< th=""></pclk<>
0A 83AAh	RSCAN	Receive Rule Entry Register 0CH	GAFLPH0	16	16	2 or 3 PCLKB	2 ICLK
0A 83AAh	RSCAN	Receive Buffer Register 0CH	RMDF10	16	16	2 or 3 PCLKB	2 ICLK
0A 83ACh	RSCAN	Receive Rule Entry Register 1AL	GAFLIDL1	16	16	2 or 3 PCLKB	2 ICLK
0A 83ACh	RSCAN	Receive Buffer Register 0DL	RMDF20	16	16	2 or 3 PCLKB	2 ICLK
0A 83AEh	RSCAN	Receive Rule Entry Register 1AH	GAFLIDH1	16	16	2 or 3 PCLKB	2 ICLK
0A 83AEh	RSCAN	Receive Buffer Register 0DH	RMDF30	16	16	2 or 3 PCLKB	2 ICLK
00A 83B0h	RSCAN	Receive Rule Entry Register 1BL	GAFLML1	16	16	2 or 3 PCLKB	2 ICLK
00A 83B0h	RSCAN	Receive Buffer Register 1AL	RMIDL1	16	16	2 or 3 PCLKB	2 ICLK
00A 83B2h	RSCAN	Receive Rule Entry Register 1BH	GAFLMH1	16	16	2 or 3 PCLKB	2 ICLK
00A 83B2h	RSCAN	Receive Buffer Register 1AH	RMIDH1	16	16	2 or 3 PCLKB	2 ICLK
0A 83B4h	RSCAN	Receive Rule Entry Register 1CL	GAFLPL1	16	16	2 or 3 PCLKB	2 ICLK
00A 83B4h	RSCAN	Receive Buffer Register 1BL	RMTS1	16	16	2 or 3 PCLKB	2 ICLK
0A 83B6h	RSCAN	Receive Rule Entry Register 1CH	GAFLPH1	16	16	2 or 3 PCLKB	2 ICLK
0A 83B6h	RSCAN	Receive Buffer Register 1BH	RMPTR1	16	16	2 or 3 PCLKB	2 ICLK
0A 83B8h	RSCAN	Receive Rule Entry Register 2AL	GAFLIDL2	16	16	2 or 3 PCLKB	2 ICLK
0A 83B8h	RSCAN	Receive Buffer Register 1CL	RMDF01	16	16	2 or 3 PCLKB	2 ICLK
00A 83BAh	RSCAN	Receive Rule Entry Register 2AH	GAFLIDH2	16	16	2 or 3 PCLKB	2 ICLK
0A 83BAh	RSCAN	Receive Buffer Register 1CH	RMDF11	16	16	2 or 3 PCLKB	2 ICLK
0A 83BCh	RSCAN	Receive Rule Entry Register 2BL	GAFLML2	16	16	2 or 3 PCLKB	2 ICLK
00A 83BCh	RSCAN	Receive Buffer Register 1DL	RMDF21	16	16	2 or 3 PCLKB	2 ICLK
0A 83BEh	RSCAN	Receive Rule Entry Register 2BH	GAFLMH2	16	16	2 or 3 PCLKB	2 ICLK
0A 83BEh	RSCAN	Receive Buffer Register 1DH	RMDF31	16	16	2 or 3 PCLKB	2 ICLK
00A 83C0h	RSCAN	Receive Rule Entry Register 2CL	GAFLPL2	16	16	2 or 3 PCLKB	2 ICLK
00A 83C0h	RSCAN	Receive Buffer Register 2AL	RMIDL2	16	16	2 or 3 PCLKB	2 ICLK
00A 83C2h	RSCAN	Receive Rule Entry Register 2CH	GAFLPH2	16	16	2 or 3 PCLKB	2 ICLK
00A 83C2h	RSCAN	Receive Buffer Register 2AH	RMIDH2	16	16	2 or 3 PCLKB	2 ICLK
00A 83C4h	RSCAN	Receive Rule Entry Register 3AL	GAFLIDL3	16	16	2 or 3 PCLKB	2 ICLK
00A 83C4h	RSCAN	Receive Buffer Register 2BL	RMTS2	16	16	2 or 3 PCLKB	2 ICLK
0A 83C6h	RSCAN	Receive Rule Entry Register 3AH	GAFLIDH3	16	16	2 or 3 PCLKB	2 ICLK
00A 83C6h	RSCAN	Receive Buffer Register 2BH	RMPTR2	16	16	2 or 3 PCLKB	2 ICLK
00A 83C8h	RSCAN	Receive Rule Entry Register 3BL	GAFLML3	16	16	2 or 3 PCLKB	2 ICLK
00A 83C8h	RSCAN	Receive Buffer Register 2CL	RMDF02	16	16	2 or 3 PCLKB	2 ICLK
00A 83CAh	RSCAN	Receive Rule Entry Register 3BH	GAFLMH3	16	16	2 or 3 PCLKB	2 ICLK
00A 83CAh	RSCAN	Receive Buffer Register 2CH	RMDF12	16	16	2 or 3 PCLKB	2 ICLK
00A 83CCh	RSCAN	Receive Rule Entry Register 3CL	GAFLPL3	16	16	2 or 3 PCLKB	2 ICLK
00A 83CCh	RSCAN	Receive Buffer Register 2DL	RMDF22	16	16	2 or 3 PCLKB	2 ICLK
0A 83CEh	RSCAN	Receive Rule Entry Register 3CH	GAFLPH3	16	16	2 or 3 PCLKB	2 ICLK
0A 83CEh	RSCAN	Receive Buffer Register 2DH	RMDF32	16	16	2 or 3 PCLKB	2 ICLK
0A 83D0h	RSCAN	Receive Rule Entry Register 4AL	GAFLIDL4	16	16	2 or 3 PCLKB	2 ICLK
0A 83D0h	RSCAN	Receive Buffer Register 3AL	RMIDL3	16	16	2 or 3 PCLKB	2 ICLK
00A 83D2h	RSCAN	Receive Rule Entry Register 4AH	GAFLIDH4	16	16	2 or 3 PCLKB	2 ICLK
00A 83D2h	RSCAN	Receive Buffer Register 3AH	RMIDH3	16	16	2 or 3 PCLKB	2 ICLK
0A 83D4h	RSCAN	Receive Rule Entry Register 4BL	GAFLML4	16	16	2 or 3 PCLKB	2 ICLK
0A 83D4h	RSCAN	Receive Buffer Register 3BL	RMTS3	16	16	2 or 3 PCLKB	2 ICLK
0A 83D6h	RSCAN	Receive Rule Entry Register 4BH	GAFLMH4	16	16	2 or 3 PCLKB	2 ICLK
0A 83D6h	RSCAN	Receive Buffer Register 3BH	RMPTR3	16	16	2 or 3 PCLKB	2 ICLK
0A 83D8h	RSCAN	Receive Rule Entry Register 4CL	GAFLPL4	16	16	2 or 3 PCLKB	2 ICLK
0A 83D8h	RSCAN	Receive Buffer Register 3CL	RMDF03	16	16	2 or 3 PCLKB	2 ICLK
0A 83DAh	RSCAN	Receive Rule Entry Register 4CH	GAFLPH4	16	16	2 or 3 PCLKB	2 ICLK
0A 83DAh	RSCAN	Receive Buffer Register 3CH	RMDF13	16	16	2 or 3 PCLKB	2 ICLK
		-					
0A 83DCh	RSCAN	Receive Rule Entry Register 5AL	GAFLIDL5	16	16	2 or 3 PCLKB	2 ICLK

Table 4.1 List of I/O Registers (Address Order) (26/33)

	Module		Register	Number	Access	Number of Access	Cycles
ddress	Symbol	Register Name	Symbol	of Bits	Size	$\textbf{ICLK} \geq \textbf{PCLK}$	ICLK <pclk< th=""></pclk<>
00A 83DEh	RSCAN	Receive Rule Entry Register 5AH	GAFLIDH5	16	16	2 or 3 PCLKB	2 ICLK
0A 83DEh	RSCAN	Receive Buffer Register 3DH	RMDF33	16	16	2 or 3 PCLKB	2 ICLK
0A 83E0h	RSCAN	Receive Rule Entry Register 5BL	GAFLML5	16	16	2 or 3 PCLKB	2 ICLK
00A 83E0h	RSCAN	Receive Buffer Register 4AL	RMIDL4	16	16	2 or 3 PCLKB	2 ICLK
00A 83E2h	RSCAN	Receive Rule Entry Register 5BH	GAFLMH5	16	16	2 or 3 PCLKB	2 ICLK
00A 83E2h	RSCAN	Receive Buffer Register 4AH	RMIDH4	16	16	2 or 3 PCLKB	2 ICLK
00A 83E4h	RSCAN	Receive Rule Entry Register 5CL	GAFLPL5	16	16	2 or 3 PCLKB	2 ICLK
00A 83E4h	RSCAN	Receive Buffer Register 4BL	RMTS4	16	16	2 or 3 PCLKB	2 ICLK
00A 83E6h	RSCAN	Receive Rule Entry Register 5CH	GAFLPH5	16	16	2 or 3 PCLKB	2 ICLK
00A 83E6h	RSCAN	Receive Buffer Register 4BH	RMPTR4	16	16	2 or 3 PCLKB	2 ICLK
0A 83E8h	RSCAN	Receive Rule Entry Register 6AL	GAFLIDL6	16	16	2 or 3 PCLKB	2 ICLK
00A 83E8h	RSCAN	Receive Buffer Register 4CL	RMDF04	16	16	2 or 3 PCLKB	2 ICLK
00A 83EAh	RSCAN	Receive Rule Entry Register 6AH	GAFLIDH6	16	16	2 or 3 PCLKB	2 ICLK
0A 83EAh	RSCAN	Receive Buffer Register 4CH	RMDF14	16	16	2 or 3 PCLKB	2 ICLK
0A 83ECh	RSCAN	Receive Rule Entry Register 6BL	GAFLML6	16	16	2 or 3 PCLKB	2 ICLK
0A 83ECh	RSCAN	Receive Buffer Register 4DL	RMDF24	16	16	2 or 3 PCLKB	2 ICLK
00A 83EEh	RSCAN	Receive Rule Entry Register 6BH	GAFLMH6	16	16	2 or 3 PCLKB	2 ICLK
00A 83EEh	RSCAN	Receive Buffer Register 4DH	RMDF34	16	16	2 or 3 PCLKB	2 ICLK
00A 83F0h	RSCAN	Receive Rule Entry Register 6CL	GAFLPL6	16	16	2 or 3 PCLKB	2 ICLK
00A 83F0h	RSCAN	Receive Buffer Register 5AL	RMIDL5	16	16	2 or 3 PCLKB	2 ICLK
00A 83F2h	RSCAN	Receive Rule Entry Register 6CH	GAFLPH6	16	16	2 or 3 PCLKB	2 ICLK
00A 83F2h	RSCAN	Receive Buffer Register 5AH	RMIDH5	16	16	2 or 3 PCLKB	2 ICLK
00A 83F4h	RSCAN	Receive Rule Entry Register 7AL	GAFLIDL7	16	16	2 or 3 PCLKB	2 ICLK
00A 83F4h	RSCAN	Receive Buffer Register 5BL	RMTS5	16	16	2 or 3 PCLKB	2 ICLK
00A 83F6h	RSCAN	Receive Rule Entry Register 7AH	GAFLIDH7	16	16	2 or 3 PCLKB	2 ICLK
00A 83F6h	RSCAN	Receive Buffer Register 5BH	RMPTR5	16	16	2 or 3 PCLKB	2 ICLK
00A 83F8h	RSCAN	Receive Rule Entry Register 7BL	GAFLML7	16	16	2 or 3 PCLKB	2 ICLK
00A 83F8h	RSCAN	Receive Buffer Register 5CL	RMDF05	16	16	2 or 3 PCLKB	2 ICLK
00A 83FAh	RSCAN	Receive Rule Entry Register 7BH	GAFLMH7	16	16	2 or 3 PCLKB	2 ICLK
00A 83FAh	RSCAN	Receive Buffer Register 5CH	RMDF15	16	16	2 or 3 PCLKB	2 ICLK
00A 83FCh	RSCAN	Receive Rule Entry Register 7CL	GAFLPL7	16	16	2 or 3 PCLKB	2 ICLK
00A 83FCh	RSCAN	Receive Buffer Register 5DL	RMDF25	16	16	2 or 3 PCLKB	2 ICLK
0A 83FEh	RSCAN	Receive Rule Entry Register 7CH	GAFLPH7	16	16	2 or 3 PCLKB	2 ICLK
0A 83FEh	RSCAN	Receive Buffer Register 5DH	RMDF35	16	16	2 or 3 PCLKB	2 ICLK
00A 8400h	RSCAN	Receive Rule Entry Register 8AL	GAFLIDL8	16	16	2 or 3 PCLKB	2 ICLK
00A 8400h	RSCAN	Receive Buffer Register 6AL	RMIDL6	16	16	2 or 3 PCLKB	2 ICLK
00A 8402h	RSCAN	Receive Rule Entry Register 8AH	GAFLIDH8	16	16	2 or 3 PCLKB	2 ICLK
00A 8402h	RSCAN	Receive Buffer Register 6AH	RMIDH6	16	16	2 or 3 PCLKB	2 ICLK
00A 8404h	RSCAN	Receive Rule Entry Register 8BL	GAFLML8	16	16	2 or 3 PCLKB	2 ICLK
00A 8404h	RSCAN	Receive Buffer Register 6BL	RMTS6	16	16	2 or 3 PCLKB	2 ICLK
00A 8406h	RSCAN	Receive Rule Entry Register 8BH	GAFLMH8	16	16	2 or 3 PCLKB	2 ICLK
00A 8406h	RSCAN	Receive Buffer Register 6BH	RMPTR6	16	16	2 or 3 PCLKB	2 ICLK
00A 8408h	RSCAN	Receive Rule Entry Register 8CL	GAFLPL8	16	16	2 or 3 PCLKB	2 ICLK
0A 8408h	RSCAN	Receive Buffer Register 6CL	RMDF06	16	16	2 or 3 PCLKB	2 ICLK
0A 840Ah	RSCAN	Receive Rule Entry Register 8CH	GAFLPH8	16	16	2 or 3 PCLKB	2 ICLK
0A 840Ah	RSCAN	Receive Buffer Register 6CH	RMDF16	16	16	2 or 3 PCLKB	2 ICLK
0A 840Ch	RSCAN	Receive Rule Entry Register 9AL	GAFLIDL9	16	16	2 or 3 PCLKB	2 ICLK
00A 840Ch	RSCAN	Receive Buffer Register 6DL	RMDF26	16	16	2 or 3 PCLKB	2 ICLK
00A 840Eh	RSCAN	Receive Rule Entry Register 9AH	GAFLIDH9	16	16	2 or 3 PCLKB	2 ICLK
00A 840Eh	RSCAN	Receive Buffer Register 6DH	RMDF36	16	16	2 or 3 PCLKB	2 ICLK
		-					2.0210
0A 8410h	RSCAN	Receive Rule Entry Register 9BL	GAFLML9	16	16	2 or 3 PCLKB	2 ICLK

Figure 5.6 Temperature Dependency of RTC Operation with VCC Off (Reference Data)

Table 5.10DC Characteristics (8)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{\text{USB}} = \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{\text{USB}} = 0 \text{ V}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Permissible total power consumption*1	Pd	—	—	350	mW	D-version product
Permissible total power consumption*1	Pd	_	—	130	mW	G-version product

Note: Please contact a Renesas Electronics sales office for information on the derating of the G-version product. Derating is the systematic reduction of load to improve reliability.

Note 1. Total power dissipated by the entire chip (including output currents)

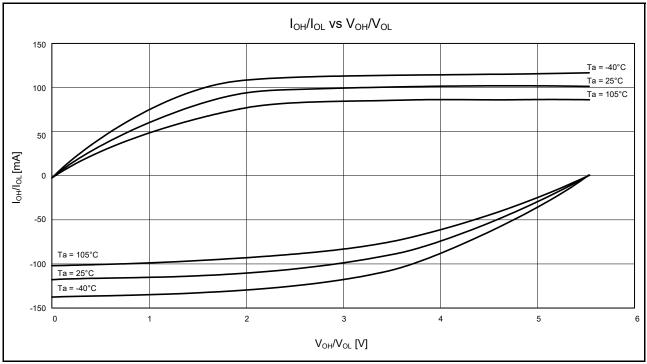
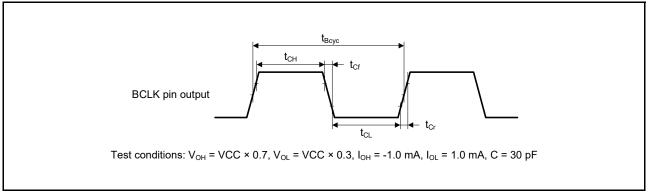



Figure 5.17 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics at VCC = 5.5 V When High-Drive Output is Selected (Reference Data)

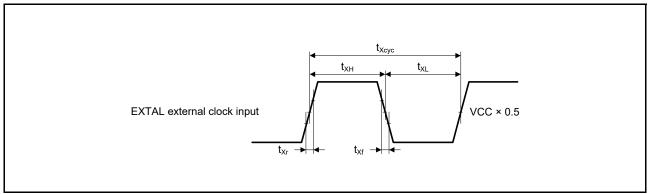


Figure 5.23 EXTAL External Clock Input Timing

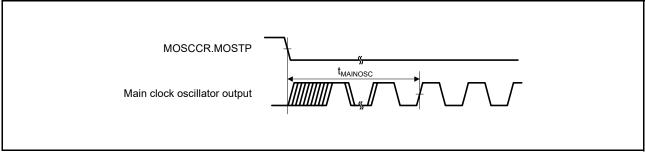


Figure 5.24 Main Clock Oscillation Start Timing

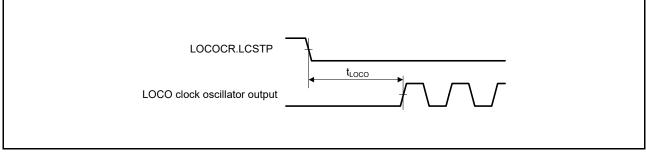
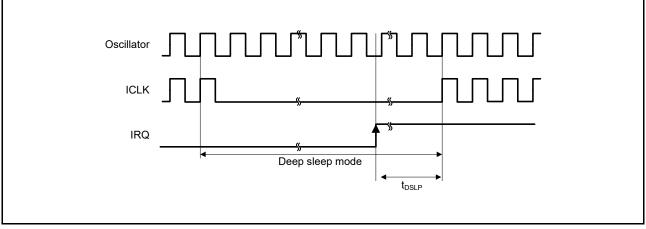
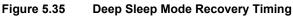




Figure 5.25 LOCO Clock Oscillation Start Timing

Table 5.32 Operating Mode Transition Time

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{\text{USB}} = \text{AVCC0} \le 5.5 \text{ V}$, $\text{VSS} = \text{AVSS0} = \text{VREFL0} = \text{VSS}_{\text{USB}} = 0 \text{ V}$, $\text{T}_{a} = -40 \text{ to } +105^{\circ}\text{C}$

Mode before Transition	Mode after Transition	ICLK Frequency	Tra	Unit		
Mode before Transition		ICEN Frequency	Min.	Тур.	Max.	Offic
High-speed operating mode	Middle-speed operating modes	8 MHz	—	10	—	μs
Middle-speed operating modes	High-speed operating mode	8 MHz	—	37.5	—	μs
Low-speed operating mode	Middle-speed operating mode, high-speed operating mode	32.768 kHz	_	215	—	μs
Middle-speed operating mode, high-speed operating mode	Low-speed operating mode	32.768 kHz	—	185	—	μs

Note: Values when the frequencies of PCLKA, PCLKB, PCLKD, FCLK, and BCLK are not divided.

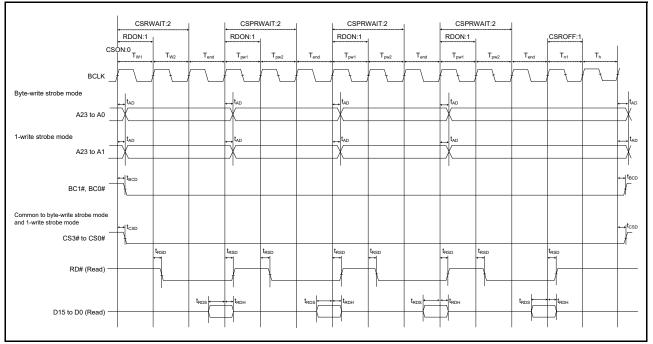


Figure 5.40 External Bus Timing/Page Read Cycle (Bus Clock Synchronization)

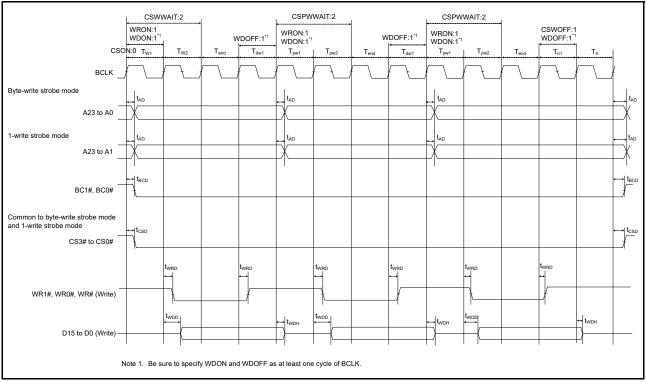


Figure 5.41 External Bus Timing/Page Write Cycle (Bus Clock Synchronization)

Table 5.42 **Timing of On-Chip Peripheral Modules (5)**

Conditions: 2.7 V ≤ VCC = VCC_USB = AVCC0 ≤ 5.5 V, VSS = AVSS0 = VSS_USB = 0 V, fPCLKB ≤ 32 MHz, $T_a = -40 \text{ to } +105^{\circ}\text{C}$

	Item	Symbol	Min.*1	Max.	Unit	Test Conditions
Simple I ² C	SDA rise time	t _{Sr}	—	1000	ns	Figure 5.59
(Standard mode)	SDA fall time	t _{Sf}	—	300	ns	
	SDA spike pulse removal time	t _{SP}	0	4 × t _{Pcyc}	ns	
	Data setup time	t _{SDAS}	250	—	ns	
	Data hold time	t _{SDAH}	0	—	ns	
	SCL, SDA capacitive load	Cb	—	400	pF	
Simple I ² C	SDA rise time	t _{Sr}	—	300	ns	Figure 5.59
(Fast mode)	SDA fall time	t _{Sf}	—	300	ns	
	SDA spike pulse removal time	t _{SP}	0	4 × t _{Pcyc}	ns	
	Data setup time	t _{SDAS}	100	—	ns	
	Data hold time	t _{SDAH}	0	_	ns	
	SCL, SDA capacitive load	Cb	_	400	pF	

Note: t_{Pcyc} : PCLK cycle Note 1. C_b is the total capacitance of the bus lines.

Table 5.43 Timing of On-Chip Peripheral Modules (6)

Conditions: 1.8 V ≤ VCC = VCC_USB = AVCC0 ≤ 5.5 V, VSS = AVSS0 = VSS_USB = 0 V, fPCLKB ≤ 32 MHz, $T_a = -40 \text{ to } +105^{\circ}\text{C}$

	Item		Symbol	Min.	Max.	Unit	Test Conditions
SSI	AUDIO_MCLK input	2.7 V or above	t _{AUDIO}	1	25	MHz	
	frequency	1.8 V or above		1	4		
	Output clock cycle		t _O	250	—	ns	Figure 5.60
	Input clock cycle		t _l	250	—	ns	
	Clock high level		t _{HC}	0.4	0.6	to, ti	
	Clock low level	Clock low level		0.4	0.6	to, ti	
	Clock rise time	Clock rise time		—	20	ns	
	Data delay time	2.7 V or above	t _{DTR}	—	65	ns	Figure 5.61
		1.8 V or above		_	105		Figure 5.62
	Setup time	2.7 V or above	t _{SR}	65	_	ns	
		1.8 V or above		90	_		
	Hold time		t _{HTR}	40	—	ns	1
	WS changing edge SSI	DATA output delay	t _{DTRW}	_	105	ns	Figure 5.63

Table 5.49 A/D Conversion Characteristics (4)

Conditions: 2.4V ≤ VCC = VCC_USB = AVCC0 ≤ 5.5V, 2.4V ≤ VREFH0 ≤ AVCC0, VSS = AVSS0 = VSS_USB = 0V, reference voltage = VREFH0 selected, Ta = -40 to +105°C

Item	Min.	Тур.	Max.	Unit	Test Conditions	
Frequency	1	—	16	MHz		
Resolution		_	—	12	Bit	
Conversion time ^{*1} (Operation at PCLKD = 16 MHz)	Permissible signal source impedance (Max.) = 2.2 k Ω	3.38	_	_	μs	High-precision channel The ADCSR.ADHSC bit is 1 The ADSSTRn register is 0Dh
		5.06	_	_		Normal-precision channel The ADCSR.ADHSC bit is 1 The ADSSTRn register is 28h
Analog input capacitance	Cs	_	—	15	pF	Pin capacitance included Figure 5.68
Analog input resistance	Rs	_	—	2.5	kΩ	Figure 5.68
Offset error	·	_	±0.5	±4.5	LSB	
Full-scale error		_	±0.75	±4.5	LSB	
Quantization error		—	±0.5	—	LSB	
Absolute accuracy		—	±1.25	±5.0	LSB	High-precision channel
				±8.0	LSB	Other than above
DNL differential non-linearit	ty error	_	±1.0	—	LSB	
INL integral non-linearity error		_	±1.0	±3.0	LSB	

Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential non-linearity error, and INL integral non-linearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated.

Differential non-linearity error (DNL)

The differential non-linearity error is the difference between 1-LSB width based on the ideal A/D conversion characteristics and the width of the actual output code.

Offset error

An offset error is the difference between a transition point of the ideal first output code and the actual first output code.

Full-scale error

A full-scale error is the difference between a transition point of the ideal last output code and the actual last output code.

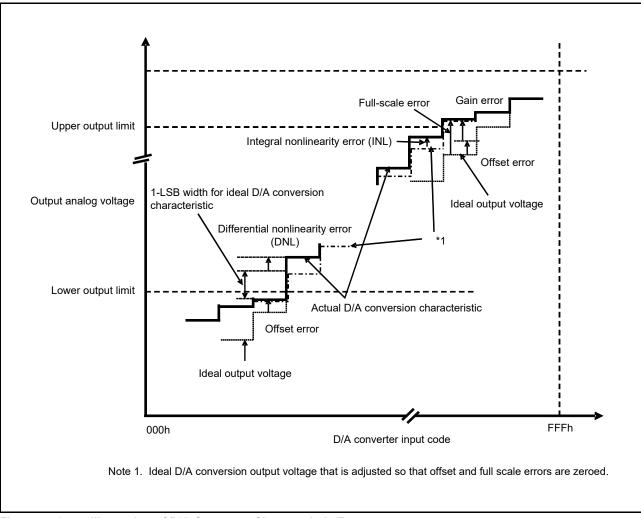


Figure 5.70 Illustration of D/A Converter Characteristic Terms

Integral non-linearity error (INL)

The integral non-linearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code.

Differential non-linearity error (DNL)

The differential non-linearity error is the difference between 1-LSB width based on the ideal D/A conversion characteristics and the width of the actually output code.

Offset error

An offset error is the difference between a transition point of the ideal first output code and the actual first output code.

Full-scale error

A full-scale error is the difference between a transition point of the ideal last output code and the actual last output code.

5.9 CTSU Characteristics

Table 5.57 CTSU Characteristics

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{\text{USB}} = \text{AVCC0} \le 5.5 \text{ V}$, $\text{VSS} = \text{AVSS0} = \text{VSS}_{\text{USB}} = 0 \text{ V}$, $\text{T}_{a} = -40 \text{ to } +105^{\circ}\text{C}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
External capacitance connected to TSCAP pin	C _{tscap}	9	10	11	nF	
TS pin capacitive load	C _{base}	—	—	50	pF	
Permissible output high current	Σl _{OH}	_	_	-24	mA	When the mutual capacitance method is applied

5.10 Characteristics of Power-On Reset Circuit and Voltage Detection Circuit

Table 5.58	Characteristics of Power-On Reset Circuit and Voltage Detection Circuit (1)
Conditions:	$1.8 \text{ V} \le \text{VCC} = \text{VCC}_{\text{USB}} = \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{\text{USB}} = 0 \text{ V}, \text{ T}_{a} = -40 \text{ to } +105^{\circ}\text{C}$

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Voltage detection level	Power-on reset (POR)	V _{POR}	1.35	1.50	1.65	V	Figure 5.73, Figure 5.74
	Voltage detection circuit (LVD0)*1	V _{det0_0}	3.67	3.84	3.97	V	Figure 5.75 At falling edge VCC
		V _{det0_1}	2.70	2.82	3.00		
		V _{det0_2}	2.37	2.51	2.67		
		V _{det0_3}	1.80	1.90	1.99		
	Voltage detection circuit (LVD1)*2	V _{det1_0}	4.12	4.29	4.42		Figure 5.76 At falling edge VCC
		V _{det1_1}	3.98	4.14	4.28		
		V _{det1_2}	3.86	4.02	4.16		
		V _{det1_3}	3.68	3.84	3.98		
		V _{det1_4}	2.99	3.10	3.29		
		V _{det1_5}	2.89	3.00	3.19		
		V _{det1_6}	2.79	2.90	3.09		
		V _{det1_7}	2.68	2.79	2.98		
		V _{det1_8}	2.57	2.68	2.87		
		V _{det1_9}	2.47	2.58	2.67		
		V _{det1_A}	2.37	2.48	2.57		
		V_{det1_B}	2.10	2.20	2.30		
		V _{det1_C}	1.86	1.96	2.06		
		V _{det1_D}	1.80	1.86	1.96		
	Voltage detection circuit (LVD2)* ³	V _{det2_0}	4.08	4.29	4.48	V	Figure 5.77 At falling edge VCC
		V _{det2_1}	3.95	4.14	4.35		
		V _{det2_2}	3.82	4.02	4.22		
		V _{det2_3}	3.62	3.84	4.02		

Note: These characteristics apply when noise is not superimposed on the power supply. When a setting is made so that the voltage detection level overlaps with that of the voltage detection circuit (LVD2), it cannot be specified which of LVD1 and LVD2 is used for voltage detection.

Note 1. n in the symbol Vdet0_n denotes the value of the OFS1.VDSEL[1:0] bits.

Note 2. n in the symbol Vdet1_n denotes the value of the LVDLVLR.LVD1LVL[3:0] bits.

Note 3. n in the symbol Vdet2_n denotes the value of the LVDLVLR.LVD2LVL[1:0] bits.

Table 5.59 Characteristics of Power-On Reset Circuit and Voltage Detection Circuit (2)

Conditions: $1.8 \text{ V} \le \text{VCC0} = \text{VCC}_{\text{USB}} = \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{\text{USB}} = 0 \text{ V}, \text{ T}_{\text{a}} = -40 \text{ to } +105^{\circ}\text{C}$

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Wait time after	At normal startup*1	t _{POR}	—	9.1	—	ms	Figure 5.74
power-on reset cancellation	During fast startup time ^{*2}	t _{POR}	—	1.6	—		
Wait time after voltage monitoring 0 reset cancellation	Power-on voltage monitoring 0 reset disabled* ¹	t _{LVD0}	_	568	_	μs	Figure 5.75
	Power-on voltage monitoring 0 reset enabled* ²		_	100	_		
Wait time after voltage monitoring 1 reset cancellation		t _{LVD1}	—	100	—	μs	Figure 5.76
Wait time after voltage monitoring 2 reset cancellation		t _{LVD2}	—	100	—	μs	Figure 5.77
Response delay time		t _{det}	—	_	350	μs	Figure 5.73
Minimum VCC down time*3		t _{VOFF}	350	_	—	μs	Figure 5.73, VCC = 1.0 V or above
Power-on reset enable time		t _{W(POR)}	1	_	—	ms	Figure 5.74, VCC = below 1.0 V
LVD operation stabilization time (after LVD is enabled)		$Td_{(E-A)}$	_	_	300	μs	Figure 5.76, Figure 5.77
Hysteresis width (power-on rest (POR))		V _{PORH}	—	110	—	mV	
Hysteresis width (voltage detection circuit: LVD1 and LVD2)		V _{LVH}	—	70	—	mV	When Vdet1_0 to Vdet1_4 is selected
			—	60	—		When Vdet1_5 to Vdet1_9 is selected
			—	50	—		When Vdet1_A or Vdet1_B is selected
			—	40	—		When Vdet1_C or Vdet1_D is selected
			—	60	—	1	When LVD2 is selected

Note: These characteristics apply when noise is not superimposed on the power supply. When a setting is made so that the voltage detection level overlaps with that of the voltage detection circuit (LVD1), it cannot be specified which of LVD1 and LVD2 is used for voltage detection.

Note 1. When OFS1.(LVDAS, FASTSTUP) = 11b.

Note 2. When OFS1.(LVDAS, FASTSTUP) \neq 11b.

Note 3. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels V_{POR} , V_{det0} , V_{det1} , and V_{det2} for the POR/LVD.

Appendix 1. Package Dimensions

Information on the latest version of the package dimensions or mountings has been displayed in "Packages" on Renesas Electronics Corporation website.

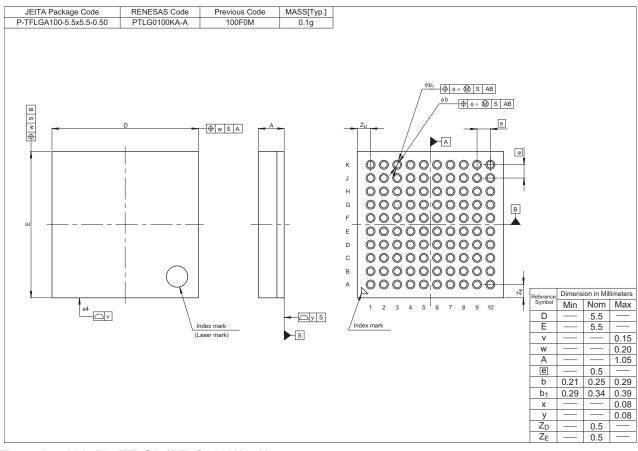


Figure A 100 -Pin TFLGA (PTLG0100KA-A)

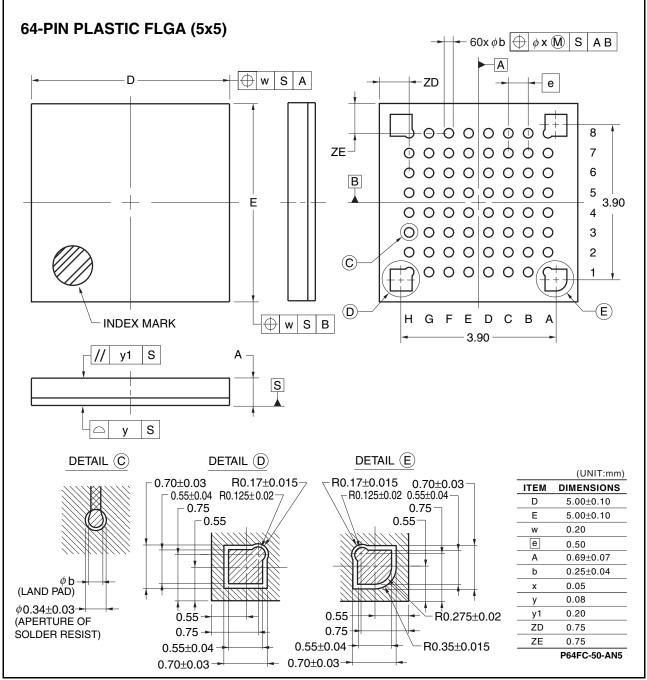


Figure C 64 -Pin WFLGA (PWLG0064KA-A)

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

- ³⁄₄ The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- ³⁄₄ The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- ³⁄₄ The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

³⁄₄ The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.