

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	RXv2
Core Size	32-Bit Single-Core
Speed	54MHz
Connectivity	CANbus, I ² C, IrDA, SCI, SD/SDIO, SPI, SSI, USB OTG
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	30
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-WFQFN Exposed Pad
Supplier Device Package	48-HWQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f52318bdne-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Classification	Module/Function	Description
Timers	Independent watchdog timer (IWDTa)	 14 bits × 1 channel Count clock: Dedicated low-speed on-chip oscillator for the IWDT Frequency divided by 1, 16, 32, 64, 128, or 256
	Realtime clock (RTCe)	 Clock source: Sub-clock Time/calendar Interrupts: Alarm interrupt, periodic interrupt, and carry interrupt Time-capture facility for three values
	Low power timer (LPT)	 16 bits × 1 channel Clock source: Sub-clock, Dedicated low-speed on-chip oscillator for the IWDT Frequency divided by 2, 4, 8, 16, or 32
	8-bit timer (TMR)	 (8 bits × 2 channels) × 2 units Seven internal clocks (PCLK/1, PCLK/2, PCLK/8, PCLK/32, PCLK/64, PCLK/1024, and PCLK/8192) and an external clock can be selected Pulse output and PWM output with any duty cycle are available Two channels can be cascaded and used as a 16-bit timer
Communication functions	Serial communications interfaces (SCIg, SCIh)	 7 channels (channel 0, 1, 5, 6, 8, 9: SClg, channel 12: SClh) SClg Serial communications modes: Asynchronous, clock synchronous, and smart-card interface Multi-processor function On-chip baud rate generator allows selection of the desired bit rate Choice of LSB-first or MSB-first transfer Average transfer rate clock can be input from TMR timers for SCl5, SCl6, and SCl12 Start-bit detection: Level or edge detection is selectable. Simple I²C Simple SPI 9-bit transfer mode Bit rate modulation Event linking by the ELC (only on channel 5) SClh (The following functions are added to SClg) Supports the serial communications protocol, which contains the start frame and information frame Supports the LIN format
	IrDA interface (IRDA)	 1 channel (SCI5 used) Supports encoding/decoding of waveforms conforming to IrDA standard 1.0
	I ² C bus interface (RIICa)	 1 channel Communications formats: I²C bus format/SMBus format Master mode or slave mode selectable Supports fast mode
	Serial peripheral interface (RSPIa)	 1 channel Transfer facility Using the MOSI (master out, slave in), MISO (master in, slave out), SSL (slave select), and RSPCK (RSPI clock) enables serial transfer through SPI operation (four lines) or clock-synchronous operation (three lines) Capable of handling serial transfer as a master or slave Data formats Choice of LSB-first or MSB-first transfer The number of bits in each transfer can be changed to 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits. 128-bit buffers for transmission and reception Up to four frames can be transmitted or received in a single transfer operation (with each frame having up to 32 bits) Double buffers for both transmission and reception
	USB 2.0 host/function module (USBd)	 USB Device Controller (UDC) and transceiver for USB 2.0 are incorporated. Host/function module: 1 port Compliant with USB version 2.0 Transfer speed: Full-speed (12 Mbps), low-speed (1.5 Mbps) OTG (ON-The-Go) is supported. Isochronous transfer is supported. BC1.2 (Battery Charging Specification Revision 1.2) is supported. Internal power supply for USB (allows operation without external power input to the VCC_USB pin when VCC = 4.0 to 5.5V)
	CAN module (RSCAN)	 1 channel Compliance with the ISO11898-1 specification (standard frame and extended frame) 16 Message boxes

Table 1.1Outline of Specifications (3/4)

Table 1.4 List of Products: G Version ($T_a = -40$ to +105°C) (1/2)

Group	Part No.	Order Part No.	Package	ROM Capacity	RAM Capacity	E2 DataFlash	Operating Frequency	Security Function	SDHI	CAN	Operating Temperature
RX231	R5F52318AGFP	R5F52318AGFP#30	PLQP0100KB-B	512 Kbytes	64 Kbytes	8 Kbytes	54 MHz	Not available	Not available	Available	–40 to +105°C
	R5F52318BGFP	R5F52318BGFP#30						Available	Available	Available	1
	R5F52318AGND	R5F52318AGND#U0	PWQN0064KC-A					Not available	Not available	Available	1
	R5F52318BGND	R5F52318BGND#U0						Available	Available	Available	1
	R5F52318AGFM	R5F52318AGFM#30	PLQP0064KB-C					Not available	Not available	Available	
	R5F52318BGFM	R5F52318BGFM#30						Available	Available	Available	
	R5F52318AGNE	R5F52318AGNE#U0	PWQN0048KB-A					Not available	Not available	Available	
	R5F52318BGNE	R5F52318BGNE#U0						Available	Not available	Available	
	R5F52318AGFL	R5F52318AGFL#30	PLQP0048KB-B					Not available	Not available	Available	
	R5F52318BGFL	R5F52318BGFL#30						Available	Not available	Available	
	R5F52317AGFP	R5F52317AGFP#30	PLQP0100KB-B	384 Kbytes				Not available	Not available	Available	
	R5F52317BGFP	R5F52317BGFP#30						Available	Available	Available	1
	R5F52317AGND	R5F52317AGND#U0	PWQN0064KC-A					Not	Not	Available	
	DEEEOOAZDOND							available	available	A	-
	R5F52317BGND	R5F52317BGND#00		-				Not	Not	Available	-
		101 323 17 01 10#30	T EQT 0004RB-0					available	available	Available	
	R5F52317BGFM	R5F52317BGFM#30						Available	Available	Available	
	R5F52317AGNE	R5F52317AGNE#U0	PWQN0048KB-A					Not available	Not available	Available	
	R5F52317BGNE	R5F52317BGNE#U0						Available	Not available	Available	-
	R5F52317AGFL	R5F52317AGFL#30	PLQP0048KB-B					Not available	Not available	Available	
	R5F52317BGFL	R5F52317BGFL#30						Available	Not available	Available	
	R5F52316AGFP	R5F52316AGFP#30	PLQP0100KB-B	256 Kbytes	32 Kbytes			Not available	Not available	Available	
	R5F52316CGFP	R5F52316CGFP#30						Not available	Not available	Not available	
	R5F52316AGND	R5F52316AGND#U0	PWQN0064KC-A					Not available	Not available	Available	
	R5F52316CGND	R5F52316CGND#U0						Not available	Not available	Not available	
	R5F52316AGFM	R5F52316AGFM#30	PLQP0064KB-C					Not available	Not available	Available	
	R5F52316CGFM	R5F52316CGFM#30						Not available	Not available	Not available	
	R5F52316AGNE	R5F52316AGNE#U0	PWQN0048KB-A					Not available	Not available	Available	
	R5F52316CGNE	R5F52316CGNE#U0						Not available	Not available	Not available	-
	R5F52316AGFL	R5F52316AGFL#30	PLQP0048KB-B					Not available	Not available	Available	
	R5F52316CGFL	R5F52316CGFL#30						Not available	Not available	Not available	1
	R5F52315AGFP	R5F52315AGFP#30	PLQP0100KB-B	128 Kbytes				Not available	Not available	Available	-
	R5F52315CGFP	R5F52315CGFP#30						Not available	Not available	Not available	
	R5F52315AGND	R5F52315AGND#U0	PWQN0064KC-A					Not available	Not available	Available	
	R5F52315CGND	R5F52315CGND#U0						Not available	Not available	Not available	1
	R5F52315AGFM	R5F52315AGFM#30	PLQP0064KB-C	1				Not available	Not available	Available	1
	R5F52315CGFM	R5F52315CGFM#30						Not available	Not available	Not available	1
	R5F52315AGNE	R5F52315AGNE#U0	PWQN0048KB-A	1				Not available	Not available	Available	1
	R5F52315CGNE	R5F52315CGNE#U0						Not available	Not available	Not available	1

Table 1.5	Pin Functions (3/4)
-----------	---------------------

Classifications	Pin Name	I/O	Description
Serial	 Simple SPI mode 		
communications interface (SCIg)	SCK0, SCK1, SCK5, SCK6, SCK8, SCK9	I/O	Input/output pins for the clock.
	SMISO0, SMISO1, SMISO5, SMISO6, SMISO8, SMISO9	I/O	Input/output pins for slave transmit data.
	SMOSI0, SMOSI1, SMOSI5, SMOSI6, SMOSI8, SMOSI9	I/O	Input/output pins for master transmit data.
	SS0#, SS1#, SS5#, SS6#, SS8#, SS9#	Input	Slave-select input pins.
IrDA interface	IRTXD5	Output	Data output pin in the IrDA format.
	IRRXD5	Input	Data input pin in the IrDA format.
Serial	Asynchronous mode/clock s	synchrono	us mode
communications interface (SCIh)	SCK12	I/O	Input/output pin for the clock.
	RXD12	Input	Input pin for receiving data.
	TXD12	Output	Output pin for transmitting data.
	CTS12#	Input	Input pin for controlling the start of transmission and reception.
	RTS12#	Output	Output pin for controlling the start of transmission and reception.
	Simple I ² C mode		
	SSCL12	I/O	Input/output pin for the I ² C clock.
	SSDA12	I/O	Input/output pin for the I ² C data.
	Simple SPI mode		
	SCK12	I/O	Input/output pin for the clock.
	SMISO12	I/O	Input/output pin for slave transmit data.
	SMOSI12	I/O	Input/output pin for master transmit data.
	SS12#	Input	Slave-select input pin.
	Extended serial mode		
	RXDX12	Input	Input pin for data reception by SCIf.
	TXDX12	Output	Output pin for data transmission by SCIf.
	SIOX12	I/O	Input/output pin for data reception or transmission by SCIf.
I ² C bus interface	SCL	I/O	Input/output pin for I ² C bus interface clocks. Bus can be directly driven by the N-channel open drain output.
	SDA	I/O	Input/output pin for I ² C bus interface data. Bus can be directly driven by the N-channel open drain output.
Serial peripheral	RSPCKA	I/O	Input/output pin for the RSPI clock.
interface	MOSIA	I/O	Input/output pin for transmitting data from the RSPI master.
	MISOA	I/O	Input/output pin for transmitting data from the RSPI slave.
	SSLA0	I/O	Input/output pin to select the slave for the RSPI.
	SSLA1 to SSLA3	Output	Output pins to select the slave for the RSPI.
Serial sound	SSISCK0	I/O	SSI serial bit clock pin.
interface	SSIWS0	I/O	Word selection pin.
	SSITXD0	Output	Serial data output pin.
	SSIRXD0	Input	Serial data input pin.
	AUDIO_MCLK	Input	Master clock pin for audio.
CAN module	CRXD0	Input	Input pin
	CTXD0	Output	Output pin
SD host	SDHI_CLK	Output	SD clock output pin
interface	SDHI_CMD	I/O	SD command output, response input signal pin

Figure 1.4 Pin Assignments of the 100-Pin LFQFP

2. CPU

Figure 2.1 shows register set of the CPU.

	General-purpose register	Control register
	b31	b0 b31
	R0 (SP) ^{*1}	ISP (Interrupt stack pointer)
	R1	USP (User stack pointer)
	R2	
	R3	IN I B (Interrupt table register)
	R4	PC (Program counter)
	R5	
	R6	PSW (Processor status word)
	R7	BPC (Backup PC)
	R8	
	R9	BPSW (Backup PSW)
	R10	FINTV (Fast interrupt vector register)
	R11	
	R12	
	R13	EXTB (Exception table register)
	R14	
	R15	
)SP inst	truction register	
071	5	
	AC	C0 (Accumulator 0)
	AC.	C1 (Accumulator 1)
	AC	

Figure 2.1 Register Set of the CPU

3. Address Space

3.1 Address Space

This LSI has a 4-Gbyte address space, consisting of the range of addresses from 0000 0000h to FFFF FFFFh. That is, linear access to an address space of up to 4 Gbytes is possible, and this contains both program and data areas. Figure 3.1 shows the memory maps in the respective operating modes. Accessible areas will differ according to the operating mode and states of control bits.

Longword-size I/O registers

MOV.L #SFR_ADDR, R1 MOV.L #SFR_DATA, [R1] CMP [R1].L, R1 ;; Next process

If multiple registers are written to and a subsequent instruction should be executed after the write operations are entirely completed, only read the I/O register that was last written to and execute the operation using the value; it is not necessary to read or execute operation for all the registers that were written to.

(3) Number of Access Cycles to I/O Registers

For numbers of clock cycles for access to I/O registers, see Table 4.1, List of I/O Registers (Address Order). The number of access cycles to I/O registers is obtained by following equation.^{*1}

Number of access cycles to I/O registers = Number of bus cycles for internal main bus 1 + Number of divided clock synchronization cycles + Number of bus cycles for internal peripheral bus 1 to 6

The number of bus cycles of internal peripheral bus 1 to 6 differs according to the register to be accessed.

When peripheral functions connected to internal peripheral bus 2 to 6 or registers for the external bus control unit (except for bus error related registers) are accessed, the number of divided clock synchronization cycles is added.

The number of divided clock synchronization cycles differs depending on the frequency ratio between ICLK and PCLK (or FCLK, BCLK) or bus access timing.

In the peripheral function unit, when the frequency ratio of ICLK is equal to or greater than that of PCLK (or FCLK), the sum of the number of bus cycles for internal main bus 1 and the number of the divided clock synchronization cycles will be one cycle of PCLK (or FCLK) at a maximum. Therefore, one PCLK (or FCLK) has been added to the number of access cycles shown in Table 4.1.

When the frequency ratio of ICLK is lower than that of PCLK (or FCLK), the subsequent bus access is started from the ICLK cycle following the completion of the access to the peripheral functions. Therefore, the access cycles are described on an ICLK basis.

In the external bus control unit, the sum of the number of bus cycles for internal main bus 1 and the number of divided clock synchronization cycles will be one cycle of BCLK at a maximum. Therefore, one BCLK is added to the number of access cycles shown in Table 4.1.

Note 1. This applies to the number of cycles when the access from the CPU does not conflict with the instruction fetching to the external memory or bus access from the different bus master (DMAC or DTC).

(4) Restrictions in Relation to RMPA and String-Manipulation Instructions

The allocation of data to be handled by RMPA or string-manipulation instructions to I/O registers is prohibited, and operation is not guaranteed if this restriction is not observed.

(5) Notes on Sleep Mode and Mode Transitions

During sleep mode or mode transitions, do not write to the system control related registers (indicated by 'SYSTEM' in the Module Symbol column in Table 4.1, List of I/O Registers (Address Order)).

Figure 5.1 Voltage Dependency in High-Speed Operating Mode (Reference Data)

5.2.2 Normal I/O Pin Output Characteristics (2)

Figure 5.13 to Figure 5.17 show the characteristics when high-drive output is selected by the drive capacity control register.

Figure 5.13 V_{OH}/V_{OL} and I_{OH}/I_{OL} Voltage Characteristics at T_a = 25°C When High-Drive Output is Selected (Reference Data)

Figure 5.14 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics at VCC = 1.8 V When High-Drive Output is Selected (Reference Data)

5.2.3 Normal I/O Pin Output Characteristics (3)

Figure 5.18 to Figure 5.21 show the characteristics of the RIIC output pin.

Figure 5.26 IWDT-Dedicated Clock Oscillation Start Timing

Figure 5.27 HOCO Clock Oscillation Start Timing (After Reset is Canceled by Setting OFS1.HOCOEN Bit to 0)

Figure 5.28 HOCO Clock Oscillation Start Timing (Oscillation is Started by Setting HOCOCR.HCSTP Bit)

5.3.4 **Control Signal Timing**

Table 5.33 **Control Signal Timing**

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC}_{\text{USB}} = \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS}_{\text{USB}} = 0 \text{ V}, \text{ T}_{a} = -40 \text{ to } +105^{\circ}\text{C}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions		
NMI pulse width	t _{NMIW}	200			ns	NMI digital filter is disabled	t _{Pcyc} × 2 ≤ 200 ns	
		t _{Pcyc} × 2*1				(NMIFLTE.NFLTEN = 0)	t _{Pcyc} × 2 > 200 ns	
		200				NMI digital filter is enabled	t _{NMICK} × 3 ≤ 200 ns	
		t _{NMICK} × 3.5* ²				(NMIFLTE.NFLTEN = 1)	t _{NMICK} × 3 > 200 ns	
IRQ pulse width	t _{IRQW}	200			ns	IRQ digital filter is disabled	t _{Pcyc} × 2 ≤ 200 ns	
		t _{Pcyc} × 2*1				(IRQFLTE0.FLTENi = 0)	t _{Pcyc} × 2 > 200 ns	
		200				IRQ digital filter is enabled	t _{IRQCK} × 3 ≤ 200 ns	
		t _{IRQCK} × 3.5 ^{*3}	_			(IRQFLIE0.FLIEN) = 1)	t _{IRQCK} × 3 > 200 ns	

200 ns minimum in software standby mode. Note:

Note 1. t_{Pcyc} indicates the cycle of PCLKB. Note 2. t_{NMICK} indicates the cycle of the NMI digital filter sampling clock. Note 3. t_{IRQCK} indicates the cycle of the IRQi digital filter sampling clock (i = 0 to 7).

Figure 5.36 **NMI Interrupt Input Timing**

Figure 5.37 **IRQ Interrupt Input Timing**

Figure 5.50 SCK Clock Input Timing

Figure 5.51 SCI Input/Output Timing: Clock Synchronous Mode

RENESAS

Table 5.50 A/D Conversion Characteristics (5)

Conditions: 1.8V ≤ VCC = VCC_USB = AVCC0 ≤ 5.5V, 1.8V ≤ VREFH0 ≤ AVCC0, VSS = AVSS0 = VSS_USB = 0V, reference voltage = VREFH0 selected, Ta = -40 to +105°C

Item		Min.	Тур.	Max.	Unit	Test Conditions
Frequency		1	—	8	MHz	
Resolution		-	—	12	Bit	
Conversion time ^{*1} (Operation at PCLKD = 8 MHz)	Permissible signal source impedance (Max.) = 5 kΩ	6.75	—	_	μs	High-precision channel The ADCSR.ADHSC bit is 1 The ADSSTRn register is 0Dh
		10.13	—	—		Normal-precision channel The ADCSR.ADHSC bit is 1 The ADSSTRn register is 28h
Analog input capacitance	Cs	_	—	15	pF	Pin capacitance included Figure 5.68
Analog input resistance	Rs	_	—	2.5	kΩ	Figure 5.68
Offset error		_	±1	±7.5	LSB	
Full-scale error		_	±1.5	±7.5	LSB	
Quantization error		_	±0.5	—	LSB	
Absolute accuracy		_	±3.0	±8.0	LSB	
DNL differential non-linearity	/ error	—	±1.0	—	LSB	
INL integral non-linearity err	or	_	±1.25	±3.0	LSB	

Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential non-linearity error, and INL integral non-linearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated.

Table 5.51 A/D Converter Channel Classification

Classification	Channel	Conditions	Remarks
High-precision channel	AN000 to AN007	AVCC0 = 1.8 to 5.5 V	Pins AN000 to AN007 cannot be used as digital
Normal-precision channel	AN016 to AN031		outputs when the A/D converter is in use.
Internal reference voltage input channel	Internal reference voltage	AVCC0 = 2.0 to 5.5 V	
Temperature sensor input channel	Temperature sensor output	AVCC0 = 2.0 to 5.5 V	

Figure 5.68 Equivalent Circuit

Figure 5.69 Illustration of A/D Converter Characteristic Terms

Absolute accuracy

Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics and the actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of analog input voltage (1-LSB width), that can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as an analog input voltage. For example, if 12-bit resolution is used and if reference voltage (VREFH0 = 3.072 V), then 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, 1.5 mV, ... are used as analog input voltages.

If analog input voltage is 6 mV, absolute accuracy = ± 5 LSB means that the actual A/D conversion result is in the range of 003h to 00Dh, although an output code, 008h, can be expected from the theoretical A/D conversion characteristics.

Integral non-linearity error (INL)

The integral non-linearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code.

Figure 5.73 Voltage Detection Reset Timing

Figure 5.74 Power-On Reset Timing

Figure 5.75 Voltage Detection Circuit Timing (Vdet0)

Figure 5.76 Voltage Detection Circuit Timing (V_{det1})

Figure 5.77 Voltage Detection Circuit Timing (V_{det2})

ROM (Flash Memory for Code Storage) Characteristics 5.13

Table 5.62	ROM (Flash Memory	for Code Storage) Characteristics (1)
------------	-------------------	---------------------------------------

Item		Symbol	Min.	Тур.	Max.	Unit	Conditions
Reprogramming/erasure cycle*1		N _{PEC}	1000			Times	
Data hold time	After 1000 times of N_{PEC}	t _{DRP}	20*2, *3			Year	T _a = +85°C

Note 1. Definition of reprogram/erase cycle: The reprogram/erase cycle is the number of erasing for each block. When the reprogram/ erase cycle is n times (n = 1000), erasing can be performed n times for each block. For instance, when 4-byte programming is performed 256 times for different addresses in a 1-Kbyte block and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasing is not enabled (overwriting is prohibited).

Note 2. Characteristic when using the flash memory programmer and the self-programming library provided from Renesas Electronics. Note 3. This result is obtained from reliability testing.

Table 5.63 ROM (Flash Memory for Code Storage) Characteristics (2) High-Speed Operating Mode

Conditions: 2.7 V ≤ VCC = VCC USB = AVCC0 ≤ 5.5 V, VSS = AVSS0 = VSS USB = 0 V

Temperature range for the programming/erasure operation: $T_a = -40$ to $+105^{\circ}C$

Itom		Symbol	F	CLK = 1 M⊦	lz	FC	Linit		
item		Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Onic
Programming time	8-byte	t _{P8}	_	112	967	_	52.3	491	μs
Erasure time	2-Kbyte	t _{E2K}	_	8.75	278		5.50	215	ms
	512-Kbyte (when block erase command is used)	t _{E512K}	_	928	19218	_	72.0	1679	ms
	512-Kbyte (when all- block erase command is used)	t _{EA512K}	_	923	19013	_	66.7	1469	ms
Blank check time	8-byte	t _{BC8}	_	—	55.0		—	16.1	μs
	2-Kbyte	t _{BC2K}	_	—	1840	_	—	136	ms
Erase operation forced stop time		t _{SED}		—	18.0	_	—	10.7	μs
Start-up area switching s	setting time	t _{SAS}		12.3	566.5	_	6.2	434	ms
Access window time		t _{AWS}		12.3	566.5	_	6.2	434	ms
ROM mode transition wa	ait time 1	t _{DIS}	2.0			2.0	—		μs
ROM mode transition wa	ait time 2	t _{MS}	5.0	_		5.0	_	_	μs

Note: The time until each operation of the flash memory is started after instructions are executed by software is not included. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below Note:

4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

The frequency accuracy of FCLK must be within ±3.5%. Note:

5.15 Usage Notes

5.15.1 Connecting VCL Capacitor and Bypass Capacitors

This MCU integrates an internal voltage-down circuit, which is used for lowering the power supply voltage in the internal MCU automatically to the optimum level. A 4.7- μ F capacitor needs to be connected between this internal voltage-down power supply (VCL pin) and the VSS pin. Figure 5.80 to Figure 5.82 shows how to connect external capacitors. Place an external capacitor close to the pins. Do not apply the power supply voltage to the VCL pin. Insert a multilayer ceramic capacitor as a bypass capacitor between each pair of the power supply pins. Implement a bypass capacitor as closer to the MCU power supply pins as possible. Use a recommended value of 0.1 μ F as the capacitance of the capacitors. For the capacitors related to crystal oscillation, see section 9, Clock Generation Circuit in the User's Manual: Hardware. For the capacitors related to analog modules, also see section 43, 12-Bit A/D Converter (S12ADE) in the User's Manual: Hardware.

For notes on designing the printed circuit board, see the descriptions of the application note, the Hardware Design Guide (R01AN1411EJ). The latest version can be downloaded from the Renesas Electronics website.

