

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	C28x
Core Size	32-Bit Single-Core
Speed	60MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	45
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	10K x 16
Voltage - Supply (Vcc/Vdd)	1.71V ~ 1.995V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/texas-instruments/tms320f28035pnq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

5	Quality Declaration		75
---	----------------------------	--	----

Summary of Features

1 Summary of Features

The XMC1200 devices are members of the XMC[™]1000 Family of microcontrollers based on the ARM Cortex-M0 processor core. The XMC1200 series devices are optimized for LED Lighting and Human-Machine interface (HMI) applications.

Figure 1 System Block Diagram

CPU Subsystem

- CPU Core
 - High-performance 32-bit ARM Cortex-M0 CPU
 - Most 16-bit Thumb and subset of 32-bit Thumb2 instruction set
 - Single cycle 32-bit hardware multiplier

Summary of Features

- System timer (SysTick) for Operating System support
- Ultra low power consumption
- Nested Vectored Interrupt Controller (NVIC)
- · Event Request Unit (ERU) for processing of external and internal service requests

On-Chip Memories

- 8 kbytes on-chip ROM
- 16 kbytes on-chip high-speed SRAM
- up to 200 kbytes on-chip Flash program and data memory

Communication Peripherals

- Two Universal Serial Interface Channels (USIC), usable as UART, double-SPI, quad-SPI, IIC, IIS and LIN interfaces
- LED and Touch-Sense Controller (LEDTS) for Human-Machine interface

Analog Frontend Peripherals

- A/D Converters
 - up to 12 analog input pins
 - 2 sample and hold stages with 8 analog input channels each
 - fast 12-bit analog to digital converter with adjustable gain
- Up to 8 channels of out of range comparators (ORC)
- Up to 3 fast analog comparators (ACMP)
- Temperature Sensor (TSE)

Industrial Control Peripherals

- Capture/Compare Units 4 (CCU4) as general purpose timers
- Brightness and Colour Control Unit (BCCU), for LED color and dimming application

System Control

- Window Watchdog Timer (WDT) for safety sensitive applications
- Real Time Clock module with alarm support (RTC)
- System Control Unit (SCU) for system configuration and control
- Pseudo random number generator (PRNG) for fast random data generation

Input/Output Lines

- Programmable port driver control module (PORTS)
- Individual bit addressability
- Tri-stated in input mode
- Push/pull or open drain output mode
- Configurable pad hysteresis

General Device Information

2 General Device Information

This section summarizes the logic symbols and package pin configurations with a detailed list of the functional I/O mapping.

2.1 Logic Symbols

Figure 2 XMC1200 Logic Symbol for TSSOP-38, TSSOP-28 and TSSOP-16

XMC[™]1200 AB-Step XMC[™]1000 Family

General Device Information

Figure 5

XMC1200 PG-TSSOP-28 Pin Configuration (top view)

Figure 6 XMC1200 PG-TSSOP-16 Pin Configuration (top view)

General Device Information

2.2.2 Port I/O Functions

The following general building block is used to describe each PORT pin:

Table 7 Port I/O Function Description

Function	Outputs		Inputs	Inputs			
	ALT1	ALTn	Input	Input			
P0.0		MODA.OUT	MODC.INA				
Pn.y	MODA.OUT		MODA.INA	MODC.INB			

Figure 9 Simplified Port Structure

Pn.y is the port pin name, defining the control and data bits/registers associated with it. As GPIO, the port is under software control. Its input value is read via Pn_IN.y, Pn_OUT defines the output value.

Up to seven alternate output functions (ALT1/2/3/4/5/6/7) can be mapped to a single port pin, selected by Pn_IOCR.PC. The output value is directly driven by the respective module, with the pin characteristics controlled by the port registers (within the limits of the connected pad).

The port pin input can be connected to multiple peripherals. Most peripherals have an input multiplexer to select between different possible input sources.

The input path is also active while the pin is configured as output. This allows to feedback an output to on-chip resources without wasting an additional external pin.

Please refer to the Port I/O Functions table for the complete Port I/O function mapping.

3 Electrical Parameter

This section provides the electrical parameter which are implementation-specific for the XMC1200.

3.1 General Parameters

3.1.1 Parameter Interpretation

The parameters listed in this section represent partly the characteristics of the XMC1200 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the "Symbol" column:

• CC

Such parameters indicate **C**ontroller **C**haracteristics, which are distinctive feature of the XMC1200 and must be regarded for a system design.

SR

Such parameters indicate **S**ystem **R**equirements, which must be provided by the application system in which the XMC1200 is designed in.

3.2.3 Out of Range Comparator (ORC) Characteristics

The Out-of-Range Comparator (ORC) triggers on analog input voltages (V_{AIN}) above the V_{DDP} on selected input pins (ORCx.AIN) and generates a service request trigger (ORCx.OUT).

Note: These parameters are not subject to production test, but verified by design and/or characterization.

		••••	001				• •	
Parameter	Symbol			Values			Note / Test Condition	
			Min.	Тур.	Max.			
DC Switching Level	$V_{ m ODC}$ C	С	54	-	183	mV	$V_{\rm AIN} \geq V_{\rm DDP} + V_{\rm ODC}$	
Hysteresis	$V_{\rm OHYS}$	CC	15	-	54	mV		
Always detected Overvoltage Pulse	t _{OPDD}	CC	103	-	-	ns	$V_{\text{AIN}} \ge V_{\text{DDP}}$ + 150 mV	
			88	-	-	ns	$V_{\rm AIN} \ge V_{\rm DDP}$ + 350 mV	
Never detected	t _{OPDN}	СС	-	-	21	ns	$V_{\text{AIN}} \ge V_{\text{DDP}}$ + 150 mV	
Overvoltage Pulse			—	-	11	ns	$V_{\rm AIN} \ge V_{\rm DDP}$ + 350 mV	
Detection Delay of a	t _{ODD}	CC	39	-	132	ns	$V_{\text{AIN}} \ge V_{\text{DDP}}$ + 150 mV	
persistent Overvoltage			31	-	121	ns	$V_{\rm AIN} \ge V_{\rm DDP}$ + 350 mV	
Release Delay	t _{ORD}	СС	44	-	240	ns	$V_{\text{AIN}} \le V_{\text{DDP}}; V_{\text{DDP}} = 5 \text{ V}$	
			57	-	340	ns	$V_{\text{AIN}} \leq V_{\text{DDP}}; V_{\text{DDP}} = 3.3 \text{ V}$	
Enable Delay	t _{OED}	СС	_	-	300	ns	ORCCTRL.ENORCx = 1	

Table 18Out of Range Comparator (ORC) Characteristics (Operating
Conditions apply; V_{DDP} = 3.0 V - 5.5 V; C₁ = 0.25 pF)

Figure 12 ORCx.OUT Trigger Generation

Figure 13 ORC Detection Ranges

3.2.4 Analog Comparator Characteristics

Table 19 below shows the Analog Comparator characteristics.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 19	Analog Comparator Characteristics (Operating Conditions apply
----------	---

Parameter	Symbol		Li	mit Val	ues	Unit	Notes/
			Min.	Тур.	Max.		Test Conditions
Input Voltage	V_{CMP}	SR	-0.05	-	V _{DDP} + 0.05	V	
Input Offset	V_{CMPOFF}	CC	-	+/-3	-	mV	High power mode $\Delta V_{\rm CMP}$ < 200 mV
			-	+/-20	-	mV	Low power mode $\Delta V_{\rm CMP}$ < 200 mV
Propagation Delay ¹⁾	t _{PDELAY}	СС	-	25	-	ns	High power mode, $\Delta V_{\rm CMP}$ = 100 mV
			-	80	-	ns	High power mode, $\Delta V_{\rm CMP}$ = 25 mV
			-	250	-	ns	Low power mode, $\Delta V_{\rm CMP}$ = 100 mV
			_	700	-	ns	Low power mode, $\Delta V_{\rm CMP}$ = 25 mV
Current Consumption	I _{ACMP}	CC	-	100	-	μA	First active ACMP in high power mode, $\Delta V_{\rm CMP}$ > 30 mV
			-	66	-	μA	Each additional ACMP in high power mode, ΔV_{CMP} > 30 mV
			_	10	-	μΑ	First active ACMP in low power mode
			-	6	-	μA	Each additional ACMP in low power mode
Input Hysteresis	$V_{\rm HYS}$	CC	-	+/-15	-	mV	
Filter Delay ¹⁾	t _{FDELAY}	CC	-	5	-	ns	

1) Total Analog Comparator Delay is the sum of Propagation Delay and Filter Delay.

3.2.5 Temperature Sensor Characteristics

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Values	3	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Measurement time	t _M CC	-	-	10	ms	
Temperature sensor range	$T_{\rm SR}{ m SR}$	-40	-	115	°C	
Sensor Accuracy ¹⁾	$T_{\rm TSAL}{\rm CC}$	-6	-	6	°C	$T_{\rm J}$ > 20°C
		-10	-	10	°C	$0^{\circ}C \le T_{J} \le 20^{\circ}C$
		-18	-	18	°C	$-25^{\circ}C \le T_{J} < 0^{\circ}C$
		-31	-	31	°C	-40°C ≤ T _J < - 25°C
Start-up time after enabling	t_{TSSTE} SR	-	-	15	μs	

Table 20	Temperature	Sensor	Characteristics

1) The temperature sensor accuracy is independent of the supply voltage.

Figure 14 shows typical graphs for active mode supply current for $V_{DDP} = 5V$, $V_{DDP} = 3.3V$, $V_{DDP} = 1.8V$ across different clock frequencies.

Figure 14 Active mode, a) peripherals clocks enabled, b) peripherals clocks disabled: Supply current I_{DDPA} over supply voltage V_{DDP} for different clock frequencies

Table 22 provides the active current consumption of some modules operating at 5 V power supply at 25 °C. The typical values shown are used as a reference guide on the current consumption when these modules are enabled.

Active Current Consumption	Symbol	Limit Values	Unit	Test Condition		
		Тур.				
Baseload current	I _{CPUDDC}	5.04	mA	Modules including Core, SCU, PORT, memories, ANATOP ¹⁾		
VADC and SHS	I _{ADCDDC}	3.4	mA	Set CGATCLR0.VADC to 1 ²⁾		
USIC0	I _{USICODDC}	0.87	mA	Set CGATCLR0.USIC0 to 1 ³⁾		
CCU40	I _{CCU40DDC}	0.94	mA	Set CGATCLR0.CCU40 to 1 ⁴⁾		
LEDTSx	ILTSxDDC	0.76	mA	Set CGATCLR0.LEDTSx to 1 ⁵⁾		
BCCU0	I _{BCCU0DDC}	0.24	mA	Set CGATCLR0.BCCU0 to 16)		
WDT	I _{WDTDDC}	0.03	mA	Set CGATCLR0.WDT to 17)		
RTC	I _{RTCDDC}	0.01	mA	Set CGATCLR0.RTC to 1 ⁸⁾		

Table 22 Typical Active Current Consumption

1) Baseload current is measured with device running in user mode, MCLK=PCLK=32 MHz, with an endless loop in the flash memory. The clock to the modules stated in CGATSTAT0 are gated.

2) Active current is measured with: module enabled, MCLK=32 MHz, running in auto-scan conversion mode

3) Active current is measured with: module enabled, alternating messages sent to PC at 57.6kbaud every 200ms

4) Active current is measured with: module enabled, MCLK=PCLK=32 MHz, 1 CCU4 slice for PWM switching from 1500Hz and 1000Hz at regular intervals, 1 CCU4 slice in capture mode for reading period and duty cycle

5) Active current is measured with: module enabled, MCLK=32 MHz, 1 LED column, 6 LED/TS lines, Pad Scheme A with large pad hysteresis config, time slice duration = 1.048 ms

6) Active current is measured with: module enabled, MCLK=32 MHz, PCLK=64MHz, FCLK=0.8MHz, Normal mode (BCCU Clk = FCLK/4), 3 BCCU Channels and 1 Dimming Engine, change color or dim every 1s

 Active current is measured with: module enabled, MCLK=32 MHz, time-out mode; WLB = 0, WUB = 0x00008000; WDT serviced every 1s

8) Active current is measured with: module enabled, MCLK=32 MHz, Periodic interrupt enabled

3.3 AC Parameters

3.3.1 Testing Waveforms

Figure 16 Rise/Fall Time Parameters

Figure 17 Testing Waveform, Output Delay

Figure 18 Testing Waveform, Output High Impedance

Table 24 Power-Up and Supply Monitoring Parameters (Operating Conditions apply)¹⁾ (cont'd)

Parameter	Symbol	,	Values		Unit	Note / Test Condition
		Min.	Тур.	Max.	1	
V_{DDP} brownout reset voltage	V _{DDPBO} CC	1.55	1.62	1.75	V	calibrated, before user code starts running
V_{DDP} voltage to ensure defined pad states	V _{DDPPA} CC	_	1.0	-	V	
Start-up time from power-on reset	t _{SSW} SR	-	320	_	μs	Time to the first user code instruction in all start-up modes ⁴⁾
BMI program time	t _{BMI} SR	-	8.25	_	ms	Time taken from a user-triggered system reset after BMI installation is is requested

1) Not all parameters are 100% tested, but are verified by design/characterisation.

 A capacitor of at least 100 nF has to be added between V_{DDP} and V_{SSP} to fulfill the requirement as stated for this parameter.

- 3) Valid for a 100 nF buffer capacitor connected to supply pin where current from capacitor is forwarded only to the chip. A larger capacitor value has to be chosen if the power source sink a current.
- 4) This values does not include the ramp-up time. During startup firmware execution, MCLK is running at 32 MHz and the clocks to peripheral as specified in register CGATSTAT0 are gated.

Figure 19 Supply Threshold Parameters

Figure 20 shows the typical curves for the accuracy of DCO1, with and without calibration based on temperature sensor, respectively.

Figure 20 Typical DCO1 accuracy over temperature

Table 26 provides the characteristics of the 32 kHz clock output from digital controlled oscillators, DCO2 in XMC1200.

Parameter	Sym	Symbol		Limit Values			Test Conditions			
			Min.	Тур.	Max.					
Nominal frequency	$f_{\sf NOM}$	СС	-	32.75	-	kHz	under nominal conditions ¹⁾ after trimming			
Accuracy	Δf_{LT}	СС	-1.7	-	3.4	%	with respect to f_{NOM} (typ), over temperature (0 °C to 85 °C)			
			-3.9	-	4.0	%	with respect to $f_{\rm NOM}$ (typ), over temperature (-40 °C to 105 °C)			

Table 26 32 kHz DCO2 Characteristics (Operating Conditions apply)

1) The deviation is relative to the factory trimmed frequency at nominal V_{DDC} and T_{A} = + 25 °C.

Package and Reliability

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta JA}$

The internal power consumption is defined as

 $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$ (switching current and leakage current).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}}-V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OI}} \times I_{\text{OI}})$

 $F_{\text{IOSTAT}} = 2((v_{\text{DDP}} - v_{\text{OH}}) \times I_{\text{OH}}) + 2(v_{\text{OL}} \times I_{\text{OL}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- Reduce the system frequency
- Reduce the number of output pins
- Reduce the load on active output drivers

Package and Reliability

4.2 **Package Outlines**

XMC[™]1200 AB-Step XMC[™]1000 Family

Package and Reliability

Figure 27 PG-TSSOP-28-16

www.infineon.com

Published by Infineon Technologies AG