

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	C28x
Core Size	32-Bit Single-Core
Speed	60MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	45
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	10K x 16
Voltage - Supply (Vcc/Vdd)	1.71V ~ 1.995V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/texas-instruments/tms320f28035pnqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

About this Document

About this Document

This Data Sheet is addressed to embedded hardware and software developers. It provides the reader with detailed descriptions about the ordering designations, available features, electrical and physical characteristics of the XMC1200 series devices.

The document describes the characteristics of a superset of the XMC1200 series devices. For simplicity, the various device types are referred to by the collective term XMC1200 throughout this document.

XMC[™]1000 Family User Documentation

The set of user documentation includes:

- Reference Manual
 - decribes the functionality of the superset of devices.
- Data Sheets
 - list the complete ordering designations, available features and electrical characteristics of derivative devices.
- Errata Sheets
 - list deviations from the specifications given in the related Reference Manual or Data Sheets. Errata Sheets are provided for the superset of devices.

Attention: Please consult all parts of the documentation set to attain consolidated knowledge about your device.

Application related guidance is provided by Users Guides and Application Notes.

Please refer to http://www.infineon.com/xmc1000 to get access to the latest versions of those documents.

XMC[™]1200 AB-Step XMC[™]1000 Family

General Device Information

Figure 5

XMC1200 PG-TSSOP-28 Pin Configuration (top view)

Figure 6 XMC1200 PG-TSSOP-16 Pin Configuration (top view)

.

General Device Information

Table 6 Package Pin Mapping (control)									
Function	VQFN 40	TSSOP 38	TSSOP 28	VQFN 24	TSSOP 16	Pad Type	Notes		
P0.7	30	24	17	18	10	STD_INO UT			
P0.8	33	27	18	19	11	STD_INO UT			
P0.9	34	28	19	20	12	STD_INO UT			
P0.10	35	29	20	-	-	STD_INO UT			
P0.11	36	30	-	-	-	STD_INO UT			
P0.12	37	31	21	21	-	STD_INO UT			
P0.13	38	32	22	22	-	STD_INO UT			
P0.14	39	33	23	23	13	STD_INO UT			
P0.15	40	34	24	24	14	STD_INO UT			
P1.0	22	16	12	14	-	High Current			
P1.1	21	15	11	13	-	High Current			
P1.2	20	14	10	12	-	High Current			
P1.3	19	13	9	11	-	High Current			
P1.4	18	12	-	-	-	High Current			
P1.5	17	11	-	-	-	High Current			
P1.6	16	-	-	-	-	STD_INO UT			
P2.0	1	35	25	1	15	STD_INO UT/AN			

General Device Information

Function	VQFN 40	TSSOP 38	TSSOP 28	VQFN 24	TSSOP 16	Pad Type	Notes	
P2.1	2	36	26	2	-	STD_INO UT/AN		
P2.2	3	37	27	3	-	STD_IN/A N		
P2.3	4	38	-	-	-	STD_IN/A N		
P2.4	5	1	-	-	-	STD_IN/A N		
P2.5	6	2	28	-	-	STD_IN/A N		
P2.6	7	3	1	4	16	STD_IN/A N		
P2.7	8	4	2	5	1	STD_IN/A N		
P2.8	9	5	3	5	1	STD_IN/A N		
P2.9	10	6	4	6	2	STD_IN/A N		
P2.10	11	7	5	7	3	STD_INO UT/AN		
P2.11	12	8	6	8	4	STD_INO UT/AN		
VSS	13	9	7	9	5	Power	Supply GND, ADC reference GND	
VDD	14	10	8	10	6	Power	Supply VDD, ADC reference voltage/ ORC reference voltage	
VDDP	15	10	8	10	6	Power	When VDD is supplied, VDDP has to be supplied with the same voltage.	

Table 6 Package Pin Mapping (cont'd)

General Device Information

2.2.3 Hardware Controlled I/O Function Description

The following general building block is used to describe the hardware I/O and pull control functions of each PORT pin:

			•			
Function	Outputs	Inputs	Pull Control			
	HWO0	HWI0	HW0_PD	HW0_PU		
P0.0	MODB.OUT	MODB.INA				
Pn.y			MODC.OUT	MODC.OUT		

Table 8 Hardware Controlled I/O Function Description

By Pn_HWSEL, it is possible to select between different hardware "masters" (HWO0/HWI0, HWO1/HWI1). The selected peripheral can take control of the pin(s). Hardware control overrules settings in the respective port pin registers. Additional hardware signals HW0_PD/HW1_PD and HW0_PU/HW1_PU controlled by the peripherals can be used to control the pull devices of the pin.

Please refer to the **Hardware Controlled I/O Functions** table for the complete hardware I/O and pull control function mapping.

Fable 13 PN-Junction Characterisitics for positive Overload						
Pad Type	$I_{\rm OV}$ = 5 mA, $T_{\rm J}$ = -40 °C	I _{ον} = 5 mA, T _J = 115 °C				
Standard, High-current, AN/DIG_IN	$V_{\rm IN} = V_{\rm DDP}$ + 0.5 V	$V_{\rm IN} = V_{\rm DDP}$ + 0.5 V				

Table 14 **PN-Junction Characterisitics for negative Overload**

Pad Type	I _{ον} = 5 mA, T _J = -40 °C	$I_{\rm OV}$ = 5 mA, $T_{\rm J}$ = 115 °C
Standard, High-current, AN/DIG_IN	$V_{\rm IN}$ = $V_{\rm SS}$ - 0.5 V	$V_{\rm IN} = V_{\rm SS}$ - 0.5 V

Table 16 Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter	Symbol		Limit Values		Unit	Test Conditions	
			Min.	Max.			
Input low voltage on port pins (Large Hysteresis)	V_{ILPL}	SR	-	$0.08 \times V_{ m DDP}$	V	CMOS Mode (5 V, 3.3 V & 2.2 V) ¹⁰⁾	
Input high voltage on port pins (Large Hysteresis)	V_{IHPL}	SR	$0.85 \times V_{ m DDP}$	-	V	CMOS Mode (5 V, 3.3 V & 2.2 V) ¹⁰⁾	
Rise time on High	t _{HCPR}	CC	-	9	ns	50 pF @ 5 V ²⁾	
Current Pad ¹⁾			-	12	ns	50 pF @ 3.3 V ³⁾	
			-	25	ns	50 pF @ 1.8 V ⁴⁾	
Fall time on High	t _{HCPF}	CC	-	9	ns	50 pF @ 5 V ²⁾	
Current Pad ¹⁾			_	12	ns	50 pF @ 3.3 V ³⁾	
			-	25	ns	50 pF @ 1.8 V ⁴⁾	
Rise time on Standard	t _R	CC	-	12	ns	50 pF @ 5 V ⁵⁾	
Pad ¹⁾			_	15	ns	50 pF @ 3.3 V ⁶⁾	
			-	31	ns	50 pF @ 1.8 V ⁷⁾	
Fall time on Standard	t _F	CC	-	12	ns	50 pF @ 5 V ⁵⁾	
Pad ¹⁾			-	15	ns	50 pF @ 3.3 V ⁶⁾	
			-	31	ns	50 pF @ 1.8 V ⁷⁾	
Input Hysteresis ⁸⁾	HYS	СС	$0.08 \times V_{ m DDP}$	-	V	CMOS Mode (5 V), Standard Hysteresis	
			$0.03 imes V_{ m DDP}$	-	V	CMOS Mode (3.3 V), Standard Hysteresis	
			$0.02 imes V_{ m DDP}$	-	V	CMOS Mode (2.2 V), Standard Hysteresis	
			$0.5 imes V_{ m DDP}$	$0.75 imes V_{ m DDP}$	V	CMOS Mode(5 V), Large Hysteresis	
			$0.4 imes V_{ m DDP}$	$0.75 \times V_{ m DDP}$	V	CMOS Mode(3.3 V), Large Hysteresis	
			$0.2 \times V_{ m DDP}$	$0.65 \times V_{ m DDP}$	V	CMOS Mode(2.2 V), Large Hysteresis	

3.2.2 Analog to Digital Converters (ADC)

Table 17 shows the Analog to Digital Converter (ADC) characteristics.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol	<u>،</u> ا	/alues	;	Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Supply voltage range (internal reference)	$V_{\rm DD_int}{ m SR}$	2.0	-	3.0	V	SHSCFG.AREF = 11_B CALCTR.CALGNSTC = $0C_H$	
		3.0	-	5.5	V	SHSCFG.AREF = 10_B	
Supply voltage range (external reference)	V_{DD_ext} SR	3.0	-	5.5	V	SHSCFG.AREF = 00 _B	
Analog input voltage range	$V_{\rm AIN}{ m SR}$	V _{SSP} - 0.05	-	V _{DDP} + 0.05	V		
Auxiliary analog reference ground	V_{REFGND} SR	V _{SSP} - 0.05	-	1.0	V	G0CH0	
		V _{SSP} - 0.05	-	0.2	V	G1CH0	
Internal reference voltage (full scale value)	V _{REFINT} CC		5		V		
Switched capacitance of an analog input	$C_{\rm AINS}{ m CC}$	-	1.2	2	pF	GNCTRxz.GAINy=00 _B (unity gain)	
		-	1.2	2	pF	GNCTRxz.GAINy=01 _B (gain g1)	
		_	4.5	6	pF	GNCTRxz.GAINy=10 _B (gain g2)	
		_	4.5	6	pF	GNCTRxz.GAINy=11 _B (gain g3)	
Total capacitance of an analog input	C_{AINT} CC	-	-	10	pF		
Total capacitance of the reference input	C _{AREFT} CC	_	-	10	pF		

Table 17	ADC Characteristics	(Operating	Conditions	apply) ¹⁾
		(Operating	oonantiono	

Figure 13 ORC Detection Ranges

3.2.7 Flash Memory Parameters

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.	-	
Erase Time per page / sector	t _{ERASE} CC	6.8	7.1	7.6	ms	
Program time per block	t _{PSER} CC	102	152	204	μS	
Wake-Up time	t _{WU} CC	-	32.2	-	μS	
Read time per word	t _a CC	-	50	-	ns	
Data Retention Time	t _{RET} CC	10	-	-	years	Max. 100 erase / program cycles
Flash Wait States 1)	$N_{\rm WSFLASH}$ CC	0	0	0		$f_{\rm MCLK} = 8 \rm MHz$
		0	1	1		$f_{\rm MCLK}$ = 16 MHz
		1	1.3	2		$f_{\rm MCLK} = 32 \ \rm MHz$
Fixed Flash Wait States configured in bit NVM_NVMCONF.WS	N _{FWSFLASH} SR	0	0	1		NVM_CONFIG1. FIXWS = 1_B , $f_{MCLK} \le 16$ MHz
		1	1	1		NVM_CONFIG1. FIXWS = 1_B , 16 MHz < f_{MCLK} \leq 32 MHz
Erase Cycles	N _{ECYC} CC	-	_	5*10 ⁴	cycles	Sum of page and sector erase cycles
Total Erase Cycles	$N_{\rm TECYC} {\rm CC}$	-	-	2*10 ⁶	cycles	

Table 23 Flash Memory Parameters

1) Flash wait states are automatically inserted by the Flash module during memory read when needed. Typical values are calculated from the execution of the Dhrystone benchmark program.

3.3 AC Parameters

3.3.1 Testing Waveforms

Figure 16 Rise/Fall Time Parameters

Figure 17 Testing Waveform, Output Delay

Figure 18 Testing Waveform, Output High Impedance

Table 24 Power-Up and Supply Monitoring Parameters (Operating Conditions apply)¹⁾ (cont'd)

Parameter	Symbol	,	Values		Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
V_{DDP} brownout reset voltage	V _{DDPBO} CC	1.55	1.62	1.75	V	calibrated, before user code starts running
V_{DDP} voltage to ensure defined pad states	V _{DDPPA} CC	_	1.0	-	V	
Start-up time from power-on reset	t _{SSW} SR	-	320	_	μs	Time to the first user code instruction in all start-up modes ⁴⁾
BMI program time	t _{BMI} SR	_	8.25	_	ms	Time taken from a user-triggered system reset after BMI installation is is requested

1) Not all parameters are 100% tested, but are verified by design/characterisation.

 A capacitor of at least 100 nF has to be added between V_{DDP} and V_{SSP} to fulfill the requirement as stated for this parameter.

- 3) Valid for a 100 nF buffer capacitor connected to supply pin where current from capacitor is forwarded only to the chip. A larger capacitor value has to be chosen if the power source sink a current.
- 4) This values does not include the ramp-up time. During startup firmware execution, MCLK is running at 32 MHz and the clocks to peripheral as specified in register CGATSTAT0 are gated.

Figure 19 Supply Threshold Parameters

3.3.3 On-Chip Oscillator Characteristics

Note: These parameters are not subject to production test, but verified by design and/or characterization.

 Table 25 provides the characteristics of the 64 MHz clock output from the digital controlled oscillator, DCO1 in XMC1200.

Parameter	Sym	Symbol		Limit Values			Test Conditions
				Тур.	Max.		
Nominal frequency	f _{nom}	CC	-	64	-	MHz	under nominal conditions ¹⁾ after trimming
Accuracy ²⁾	Δf _{LT}	CC	-1.7	-	3.4	%	with respect to f_{NOM} (typ), over temperature (0 °C to 85 °C)
			-3.9	-	4.0	%	with respect to f_{NOM} (typ), over temperature (-40 °C to 105 °C)

Table 25 64 MHz DCO1 Characteristics (Operating Conditions apply)

1) The deviation is relative to the factory trimmed frequency at nominal V_{DDC} and T_{A} = + 25 °C.

2) The accuracy of the DCO1 oscillator can be further improved through alternative methods, refer to XMC1000 Oscillator Handling Application Note.

decision time is less robust.

3.3.5 SPD Timing Requirements

The optimum SPD decision time between 0_B and 1_B is 0.75 µs. With this value the system has maximum robustness against frequency deviations of the sampling clock on tool and on device side. However it is not always possible to exactly match this value with the given constraints for the sample clock. For instance for a oversampling rate of 4, the sample clock will be 8 MHz and in this case the closest possible effective decision time is 5.5 clock cycles (0.69 µs).

Sample Freq.	Sampling Factor	Sample Clocks 0 _B	Sample Clocks 1 _B	Effective Decision Time ¹⁾	Remark	
8 MHz	4	1 to 5	6 to 12	0.69 µs	The other closest option $(0.81 \ \mu s)$ for the effective	

Table 28 Optimum Number of Sample Clocks for SPD

1) Nominal sample frequency period multiplied with $0.5 + (max. number of 0_{B} sample clocks)$

For a balanced distribution of the timing robustness of SPD between tool and device, the timing requirements for the tool are:

- Frequency deviation of the sample clock is +/- 5%
- Effective decision time is between 0.69 µs and 0.75 µs (calculated with nominal sample frequency)

Figure 22 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration, for which the slave select signal is low-active, and the serial clock signal is not shifted and not inverted.

Figure 23 USIC IIC Stand and Fast Mode Timing

3.3.6.3 Inter-IC Sound (IIS) Interface Timing

The following parameters are applicable for a USIC channel operated in IIS mode. *Note: Operating Conditions apply.*

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Clock period	t ₁ CC	2/f _{MCLK}	-	-	ns	$V_{\text{DDP}} \ge 3 \text{ V}$
		4/f _{MCLK}	-	-	ns	$V_{ m DDP}$ < 3 V
Clock HIGH	t ₂ CC	0.35 x	-	-	ns	
		t _{1min}				
Clock Low	t ₃ CC	0.35 x	-	-	ns	
		t _{1min}				
Hold time	$t_4 \text{ CC}$	0	-	-	ns	
Clock rise time	t ₅ CC	-	-	0.15 x	ns	
				t _{1min}		

Table 33 USIC IIS Master Transmitter Timing

Figure 24	USIC IIS Master	Transmitter	Timing

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Clock period	t ₆ SR	4/f _{MCLK}	-	-	ns	
Clock HIGH	t ₇ SR	0.35 x	-	-	ns	
		t _{6min}				
Clock Low	t ₈ SR	0.35 x	-	-	ns	
		t _{6min}				
Set-up time	t ₉ SR	0.2 x	-	-	ns	
		t _{6min}				
Hold time	t ₁₀ SR	10	-	-	ns	

Table 34	USIC IIS Slave Receiver	Timing
----------	-------------------------	--------

Figure 25 USIC IIS Slave Receiver Timing

Package and Reliability

4 Package and Reliability

The XMC1200 is a member of the XMC[™]1000 Family of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies.

Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the exposed die pad may vary.

If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration.

4.1 Package Parameters

Table 35 provides the thermal characteristics of the packages used in XMC1200.

Parameter	Symbol	Limit Values		Unit	Package Types	
		Min.	Max.			
Exposed Die Pad	$Ex \times Ey$	-	2.7 × 2.7	mm	PG-VQFN-24-19	
Dimensions	CC	-	3.7 imes 3.7	mm	PG-VQFN-40-13	
Thermal resistance	R _{OJA} CC	-	104.6	K/W	PG-TSSOP-16-8 ¹⁾	
Junction-Ambient		-	83.2	K/W	PG-TSSOP-28-16 ¹⁾	
		-	70.3	K/W	PG-TSSOP-38-9 ¹⁾	
		-	46.0	K/W	PG-VQFN-24-19 ¹⁾	
		-	38.4	K/W	PG-VQFN-40-131)	

Table 35 Thermal Characteristics of the Package	Table 35	Thermal Characteristics of the Packages
---	----------	---

1) Device mounted on a 4-layer JEDEC board (JESD 51-5); exposed pad soldered.

Note: For electrical reasons, it is required to connect the exposed pad to the board ground V_{SSP} , independent of EMC and thermal requirements.

4.1.1 Thermal Considerations

When operating the XMC1200 in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage.

The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance $R_{\Theta JA}$ " quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 115 °C.

68

Package and Reliability

Figure 29 PG-VQFN-24-19

www.infineon.com

Published by Infineon Technologies AG