

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	26
Program Memory Size	200KB (200K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38-9
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc1201t038f0200abxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2016-08 Published by Infineon Technologies AG 81726 Munich, Germany © 2016 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Summary of Features

On-Chip Debug Support

- · Support for debug features: 4 breakpoints, 2 watchpoints
- Various interfaces: ARM serial wire debug (SWD), single pin debug (SPD)

1.1 Ordering Information

The ordering code for an Infineon microcontroller provides an exact reference to a specific product. The code "XMC1<DDD>-<Z><PPP><T><FFFF>" identifies:

- <DDD> the derivatives function set
- <Z> the package variant
 - T: TSSOP
 - Q: VQFN
- <PPP> package pin count
- <T> the temperature range:
 - F: -40°C to 85°C
 - X: -40°C to 105°C
- <FFFF> the Flash memory size.

For ordering codes for the XMC1200 please contact your sales representative or local distributor.

This document describes several derivatives of the XMC1200 series, some descriptions may not apply to a specific product. Please see **Table 1**.

For simplicity the term XMC1200 is used for all derivatives throughout this document.

1.2 Device Types

These device types are available and can be ordered through Infineon's direct and/or distribution channels.

Derivative	Package	Flash Kbytes	SRAM Kbytes	
XMC1201-T028F0016	PG-TSSOP-28-16	16	16	
XMC1201-T028F0032	PG-TSSOP-28-16	32	16	
XMC1201-T038F0016	PG-TSSOP-38-9	16	16	
XMC1201-T038F0032	PG-TSSOP-38-9	32	16	
XMC1201-T038F0064	PG-TSSOP-38-9	64	16	
XMC1201-T038F0128	PG-TSSOP-38-9	128	16	
XMC1201-T038F0200	PG-TSSOP-38-9	200	16	
XMC1200-T038F0200	PG-TSSOP-38-9	200	16	

Table 1 Synopsis of XMC1200 Device Types

General Device Information

2 General Device Information

This section summarizes the logic symbols and package pin configurations with a detailed list of the functional I/O mapping.

2.1 Logic Symbols

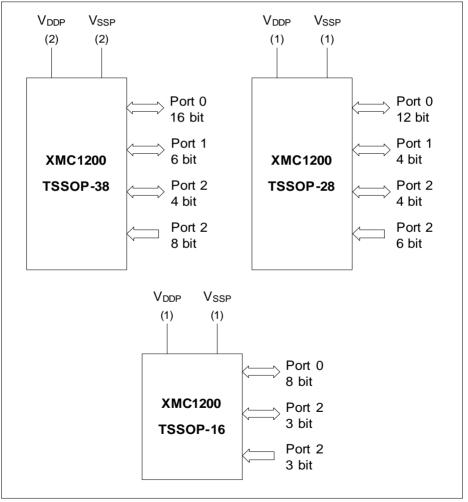


Figure 2 XMC1200 Logic Symbol for TSSOP-38, TSSOP-28 and TSSOP-16

XMC[™]1200 AB-Step XMC[™]1000 Family

General Device Information

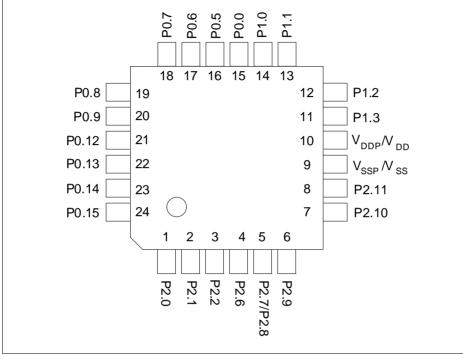


Figure 7 XMC1200 PG-VQFN-24 Pin Configuration (top view)

General Device Information

2.2.1 Package Pin Summary

The following general building block is used to describe each pin:

Table 5 Package Pin Mapping Description

Function	Package A	Package B	 Pad Type
Px.y	Ν	Ν	Pad Class

The table is sorted by the "Function" column, starting with the regular Port pins (Px.y), followed by the supply pins.

The following columns, titled with the supported package variants, lists the package pin number to which the respective function is mapped in that package.

The "Pad Type" indicates the employed pad type:

- STD_INOUT (standard bi-directional pads)
- STD_INOUT/AN (standard bi-directional pads with analog input)
- High Current (high current bi-directional pads)
- STD_IN/AN (standard input pads with analog input)
- Power (power supply)

Details about the pad properties are defined in the Electrical Parameters.

F unction	VOEN	TCCOD	TCCOD	VOEN	TCCOD	Ded Turne	Matea
Function	VQFN 40	TSSOP 38	TSSOP 28	VQFN 24	TSSOP 16	Pad Type	Notes
P0.0	23	17	13	15	7	STD_INO UT	
P0.1	24	18	-	-	-	STD_INO UT	
P0.2	25	19	-	-	-	STD_INO UT	
P0.3	26	20	-	-	-	STD_INO UT	
P0.4	27	21	14	-	-	STD_INO UT	
P0.5	28	22	15	16	8	STD_INO UT	
P0.6	29	23	16	17	9	STD_INO UT	

Table 6 Package Pin Mapping

Table 9 Port I/O Functions

Function				Outputs				Inputs							
	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	Input	Input	Input	Input	Input	Input	Input	I
P0.0	ERU0. PDOUT0	LEDTS0. LINE7	ERU0. GOUT0	CCU40. OUT0		USIC0_CH 0.SELO0	USIC0_CH 1.SELO0	BCCU0. TRAPINB	CCU40.IN0 C			USIC0_CH 0.DX2A	USIC0_CH 1.DX2A		T
P0.1	ERU0. PDOUT1	LEDTS0. LINE6	ERU0. GOUT1	CCU40. OUT1		BCCU0. OUT8	SCU. VDROP		CCU40.IN1 C						T
P0.2	ERU0. PDOUT2	LEDTS0. LINE5	ERU0. GOUT2	CCU40. OUT2		VADC0. EMUX02			CCU40.IN2 C						
P0.3	ERU0. PDOUT3	LEDTS0. LINE4	ERU0. GOUT3	CCU40. OUT3		VADC0. EMUX01			CCU40.IN3 C						T
P0.4	BCCU0. OUT0	LEDTS0. LINE3	LEDTS0. COL3	CCU40. OUT1		VADC0. EMUX00	WWDT. SERVICE_ OUT								
P0.5	BCCU0. OUT1	LEDTS0. LINE2	LEDTS0. COL2	CCU40. OUT0		ACMP2. OUT									T
P0.6	BCCU0. OUT2	LEDTS0. LINE1	LEDTS0. COL1	CCU40. OUT0		USIC0_CH 1.MCLKOU T	USIC0_CH 1.DOUT0		CCU40.IN0 B			USIC0_CH 1.DX0C			
P0.7	BCCU0. OUT3	LEDTS0. LINE0	LEDTS0. COL0	CCU40. OUT1		USIC0_CH 0.SCLKOU T	USIC0_CH 1.DOUT0		CCU40.IN1 B			USIC0_CH 0.DX1C	USIC0_CH 1.DX0D	USIC0_CH 1.DX1C	Ť
P0.8	BCCU0. OUT4	LEDTS1. LINE0	LEDTS0. COLA	CCU40. OUT2		USIC0_CH 0.SCLKOU T	USIC0_CH 1.SCLKOU T		CCU40.IN2 B			USIC0_CH 0.DX1B	USIC0_CH 1.DX1B		Ť
P0.9	BCCU0. OUT5	LEDTS1. LINE1	LEDTS0. COL6	CCU40. OUT3		USIC0_CH 0.SELO0	USIC0_CH 1.SELO0		CCU40.IN3 B			USIC0_CH 0.DX2B	USIC0_CH 1.DX2B		T
P0.10	BCCU0. OUT6	LEDTS1. LINE2	LEDTS0. COL5	ACMP0. OUT		USIC0_CH 0.SELO1	USIC0_CH 1.SELO1					USIC0_CH 0.DX2C	USIC0_CH 1.DX2C		Ī
P0.11	BCCU0. OUT7	LEDTS1. LINE3	LEDTS0. COL4	USIC0_CH 0.MCLKOU T		USIC0_CH 0.SELO2	USIC0_CH 1.SELO2					USIC0_CH 0.DX2D	USIC0_CH 1.DX2D		
P0.12	BCCU0. OUT6	LEDTS1. LINE4	LEDTS0. COL3	LEDTS1. COL3		USIC0_CH 0.SELO3		BCCU0. TRAPINA	CCU40.IN0 A	CCU40.IN1 A	CCU40.IN2 A	CCU40.IN3 A	USIC0_CH 0.DX2E		
P0.13	WWDT. SERVICE_ OUT	LEDTS1. LINE5	LEDTS0. COL2	LEDTS1. COL2		USIC0_CH 0.SELO4						USIC0_CH 0.DX2F			T
P0.14	BCCU0. OUT7	LEDTS1. LINE6	LEDTS0. COL1	LEDTS1. COL1		USIC0_CH 0.DOUT0	USIC0_CH 0.SCLKOU T					USIC0_CH 0.DX0A	USIC0_CH 0.DX1A		Ť
	1	1			1		1	1							_

Input

26

Data Sheet

XMC[™]1200 AB-Step XMC[™]1000 Family

Function		Outputs		Inputs		Pu	I Control	
	HWO0	HWO1	HWI0	HWI1	HW0_PD	HW0_PU	HW1_PD	HW1_PU
P1.3		USIC0_CH0.DOUT3		USIC0_CH0.HWIN3	BCCU0.OUT5	BCCU0.OUT5		
P1.4					BCCU0.OUT6	BCCU0.OUT6		
P1.5					BCCU0.OUT7	BCCU0.OUT7		
P1.6					BCCU0.OUT8	BCCU0.OUT8		
P2.0					BCCU0.OUT1	BCCU0.OUT1		
P2.1					BCCU0.OUT6	BCCU0.OUT6		
P2.2					BCCU0.OUT0	BCCU0.OUT0	CCU40.OUT3	CCU40.OUT3
P2.3					ACMP2.OUT	ACMP2.OUT		
P2.4					BCCU0.OUT8	BCCU0.OUT8		
P2.5					ACMP1.OUT	ACMP1.OUT		
P2.6					BCCU0.OUT2	BCCU0.OUT2	CCU40.OUT3	CCU40.OUT3
P2.7					BCCU0.OUT8	BCCU0.OUT8	CCU40.OUT3	CCU40.OUT3
P2.8					BCCU0.OUT1	BCCU0.OUT1	CCU40.OUT2	CCU40.OUT2
P2.9					BCCU0.OUT7	BCCU0.OUT7	CCU40.OUT2	CCU40.OUT2
P2.10					BCCU0.OUT4	BCCU0.OUT4		
P2.11					BCCU0.OUT5	BCCU0.OUT5		

XMC[™]1200 AB-Step XMC[™]1000 Family

Infineon

3 Electrical Parameter

This section provides the electrical parameter which are implementation-specific for the XMC1200.

3.1 General Parameters

3.1.1 Parameter Interpretation

The parameters listed in this section represent partly the characteristics of the XMC1200 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the "Symbol" column:

• CC

Such parameters indicate **C**ontroller **C**haracteristics, which are distinctive feature of the XMC1200 and must be regarded for a system design.

SR

Such parameters indicate **S**ystem **R**equirements, which must be provided by the application system in which the XMC1200 is designed in.

3.1.2 Absolute Maximum Ratings

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Parameter	Syml	loc		Va	lues	Unit	Note /
			Min	Тур.	Max.	-	Test Cond ition
Junction temperature	TJ	SR	-40	-	115	°C	-
Storage temperature	$T_{\rm ST}$	SR	-40	-	125	°C	-
Voltage on power supply pin with respect to $V_{\rm SSP}$	$V_{ m DDP}$ R	S	-0.3	-	6	V	-
Voltage on any pin with respect to $V_{\rm SSP}$	V _{IN}	SR	-0.5	-	V_{DDP} + 0.5 or max. 6	V	whichever is lower
Voltage on any analog input pin with respect to $V_{\rm SSP}$	V_{AIN} V_{AREF}	SR	-0.5	-	V_{DDP} + 0.5 or max. 6	V	-
Input current on any pin during overload condition	I _{IN}	SR	-10	-	10	mA	-
Absolute maximum sum of all input currents during overload condition	$\Sigma I_{\rm IN}$	SR	-50	-	+50	mA	-
Analog comparator input voltage	V_{CM}	SR	-0.3	-	V _{DDP} + 0.3	V	

Table 11 Absolute Maximum Rating Parameters

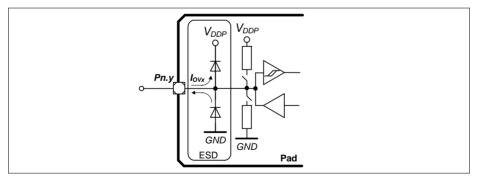
3.1.3 Pin Reliability in Overload

When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification.

 Table 12 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met:

- full operation life-time is not exceeded
- Operating Conditions are met for
 - pad supply levels (V_{DDP})
 - temperature

If a pin current is outside of the **Operating Conditions** but within the overload conditions, then the parameters of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters.


Note: An overload condition on one or more pins does not require a reset.

Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery.

Table 12 Overload Parameters	Table 12	Overload Parameters
------------------------------	----------	----------------------------

Parameter	Symbol		Values	5	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Input current on any port pin during overload condition	I _{OV} SR	-5	-	5	mA	
Absolute sum of all input circuit currents during overload condition	I _{OVS} SR	-	-	25	mA	

Figure 10 shows the path of the input currents during overload via the ESD protection structures. The diodes against V_{DDP} and ground are a simplified representation of these ESD protection structures.

Figure 10 Input Overload Current via ESD structures

Table 13 and Table 14 list input voltages that can be reached under overload conditions.Note that the absolute maximum input voltages as defined in the Absolute MaximumRatings must not be exceeded during overload.

3.1.4 Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation and reliability of the XMC1200. All parameters specified in the following tables refer to these operating conditions, unless noted otherwise.

Parameter	Symbol		Values	S	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Ambient Temperature	$T_{A} \operatorname{SR}$	-40	-	85	°C	Temp. Range F
		-40	-	105	°C	Temp. Range X
Digital supply voltage ¹⁾	$V_{\rm DDP}{ m SR}$	1.8	-	5.5	V	
MCLK Frequency	$f_{\rm MCLK}{ m CC}$	-	-	33.2	MHz	CPU clock
PCLK Frequency	$f_{\rm PCLK}{ m CC}$	-	-	66.4	MHz	Peripherals clock
Short circuit current of digital outputs	I _{SC} SR	-5	-	5	mA	
Absolute sum of short circuit currents of the device	$\Sigma I_{SC_D} SR$	-	-	25	mA	

Table 15	Operating Conditions P	Parameters
----------	------------------------	------------

1) See also the Supply Monitoring thresholds, Chapter 3.3.2.

3.2 DC Parameters

3.2.1 Input/Output Characteristics

- Table 16 provides the characteristics of the input/output pins of the XMC1200.
- Note: These parameters are not subject to production test, but verified by design and/or characterization.
- Note: Unless otherwise stated, input DC and AC characteristics, including peripheral timings, assume that the input pads operate with the standard hysteresis.

Parameter	Symbol		Limit Values		Unit	Test Conditions	
			Min.	Max.			
Output low voltage on port pins	V_{OLP}	CC	-	1.0	V	I _{OL} = 11 mA (5 V) I _{OL} = 7 mA (3.3 V)	
(with standard pads)			-	0.4	V	I _{OL} = 5 mA (5 V) I _{OL} = 3.5 mA (3.3 V)	
Output low voltage on high current pads	V_{OLP1}	CC	-	1.0	V	I_{OL} = 50 mA (5 V) I_{OL} = 25 mA (3.3 V)	
			-	0.32	V	$I_{\rm OL}$ = 10 mA (5 V)	
			-	0.4	V	$I_{\rm OL}$ = 5 mA (3.3 V)	
Output high voltage on port pins (with standard pads)	V _{OHP}	СС	V _{DDP} - 1.0	-	V	I _{OH} = -10 mA (5 V) I _{OH} = -7 mA (3.3 V)	
			V _{DDP} - 0.4	-	V	I _{OH} = -4.5 mA (5 V) I _{OH} = -2.5 mA (3.3 V)	
Output high voltage on high current pads	V _{OHP1}	CC	V _{DDP} - 0.32	_	V	I _{OH} = -6 mA (5 V)	
			V _{DDP} - 1.0	_	V	I _{OH} = -8 mA (3.3 V)	
			V _{DDP} - 0.4	_	V	I _{OH} = -4 mA (3.3 V)	
Input low voltage on port pins (Standard Hysteresis)	V _{ILPS}	SR	-	$0.19 \times V_{ m DDP}$	V	CMOS Mode (5 V, 3.3 V & 2.2 V)	
Input high voltage on port pins (Standard Hysteresis)	V _{IHPS}	SR	$0.7 \times V_{ m DDP}$	-	V	CMOS Mode (5 V, 3.3 V & 2.2 V)	

 Table 16
 Input/Output Characteristics (Operating Conditions apply)

Table 16	Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter	Symbol		Limit	Values	Unit	Test Conditions
			Min.	Max.		
Pin capacitance (digital inputs/outputs)	C _{IO}	СС	-	10	pF	
Pull-up resistor on port pins	R _{PUP}	СС	20	50	kohm	$V_{\rm IN} = V_{\rm SSP}$
Pull-down resistor on port pins	R _{PDP}	СС	20	50	kohm	$V_{\rm IN} = V_{\rm DDP}$
Input leakage current ⁹⁾	I _{OZP}	CC	-1	1	μA	$0 < V_{IN} < V_{DDP},$ $T_A \le 105 \text{ °C}$
Voltage on any pin during $V_{\rm DDP}$ power off	V _{PO}	SR	-	0.3	V	10)
Maximum current per pin (excluding P1, $V_{\rm DDP}$ and $V_{\rm SS}$)	I _{MP}	SR	-10	11	mA	-
Maximum current per high currrent pins	I _{MP1A}	SR	-10	50	mA	-
Maximum current into V_{DDP} (TSSOP28/16, VQFN24)	I _{MVDD1}	SR	-	130	mA	10)
Maximum current into V_{DDP} (TSSOP38, VQFN40)	I _{MVDD2}	SR	-	260	mA	10)
$\begin{tabular}{l} \hline \hline \\ \hline Maximum current out of \\ V_{\rm SS} (TSSOP28/16, \\ VQFN24) \end{tabular}$	I _{MVSS1}	SR	-	130	mA	10)
Maximum current out of $V_{\rm SS}$ (TSSOP38, VQFN40)	I _{MVSS2}	SR	-	260	mA	10)

1) Rise/Fall time parameters are taken with 10% - 90% of supply.

2) Additional rise/fall time valid for C_L = 50 pF - C_L = 100 pF @ 0.150 ns/pF at 5 V supply voltage.

3) Additional rise/fall time valid for C_L = 50 pF - C_L = 100 pF @ 0.205 ns/pF at 3.3 V supply voltage.

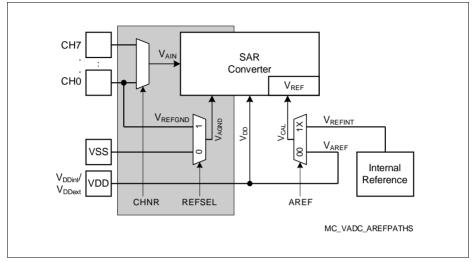
4) Additional rise/fall time valid for C_L = 50 pF - C_L = 100 pF @ 0.445 ns/pF at 1.8 V supply voltage.

5) Additional rise/fall time valid for $C_L = 50 \text{ pF} - C_L = 100 \text{ pF} @ 0.225 \text{ ns/pF} at 5 V supply voltage.$

6) Additional rise/fall time valid for $C_L = 50 \text{ pF} - C_L = 100 \text{ pF} @ 0.288 \text{ ns/pF}$ at 3.3 V supply voltage.

7) Additional rise/fall time valid for $C_L = 50 \text{ pF} - C_L = 100 \text{ pF} @ 0.588 \text{ ns/pF}$ at 1.8 V supply voltage.

3.2.2 Analog to Digital Converters (ADC)


Table 17 shows the Analog to Digital Converter (ADC) characteristics.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol	١	/alues		Unit	Note / Test Condition	
		Min. Typ.		Max.			
Supply voltage range (internal reference)	$V_{\rm DD_int}{ m SR}$	2.0	-	3.0	V	SHSCFG.AREF = 11_B CALCTR.CALGNSTC = $0C_H$	
		3.0	-	5.5	V	SHSCFG.AREF = 10_B	
Supply voltage range (external reference)	$V_{\text{DD_ext}}$ SR	3.0	-	5.5	V	SHSCFG.AREF = 00 _B	
Analog input voltage range	$V_{\rm AIN}{ m SR}$	V _{SSP} - 0.05	-	V _{DDP} + 0.05	V		
Auxiliary analog reference ground	V_{REFGND} SR	V _{SSP} - 0.05	-	1.0	V	G0CH0	
		V _{SSP} - 0.05	-	0.2	V	G1CH0	
Internal reference voltage (full scale value)	V _{REFINT} CC	5		V			
Switched capacitance of an analog input	$C_{\rm AINS}{ m CC}$	-	1.2	2	pF	GNCTRxz.GAINy=00 _B (unity gain)	
		-	1.2	2	pF	GNCTRxz.GAINy=01 _B (gain g1)	
		_	4.5	6	pF	GNCTRxz.GAINy=10 _B (gain g2)	
		_	4.5	6	pF	GNCTRxz.GAINy=11 _B (gain g3)	
Total capacitance of an analog input	C_{AINT} CC	_	-	10	pF		
Total capacitance of the reference input	C _{AREFT} CC	-	-	10	pF		

Table 17	ADC Characteristics (Operating Co	onditions apply) ¹⁾
----------	-----------------------------------	--------------------------------

Figure 15 shows typical graphs for sleep mode current for $V_{DDP} = 5V$, $V_{DDP} = 3.3V$, $V_{DDP} = 1.8V$ across different clock frequencies.

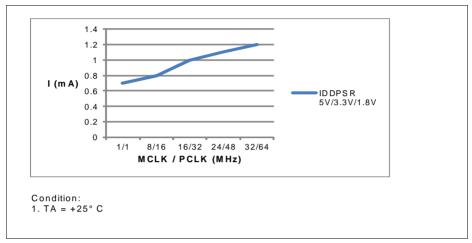


Figure 15 Sleep mode, peripherals clocks disabled, Flash powered down: Supply current I_{DDPSR} over supply voltage V_{DDP} for different clock frequencies

3.3 AC Parameters

3.3.1 Testing Waveforms

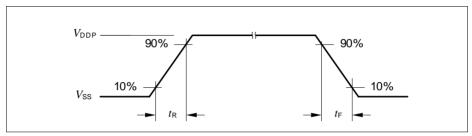


Figure 16 Rise/Fall Time Parameters

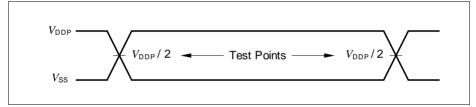


Figure 17 Testing Waveform, Output Delay

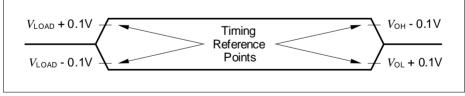


Figure 18 Testing Waveform, Output High Impedance

3.3.2 Power-Up and Supply Monitoring Characteristics

Table 24 provides the characteristics of the power-up and supply monitoring inXMC1200.

The guard band between the lowest valid operating voltage and the brownout reset threshold provides a margin for noise immunity and hysteresis. The electrical parameters may be violated while V_{DDP} is outside its operating range.

The brownout detection triggers a reset within the defined range. The prewarning detection can be used to trigger an early warning and issue corrective and/or fail-safe actions in case of a critical supply voltage drop.

Parameter	Symbol	V	/alues		Unit	Note / Test Condition
		Min.	Тур.	Max.		
V_{DDP} ramp-up time	<i>t</i> _{RAMPUP} SR	$\begin{array}{c} V_{\rm DDP} / \\ S_{\rm VDDPrise} \end{array}$	-	10 ⁷	μS	
$V_{\rm DDP}$ slew rate	S_{VDDPOP} SR	0	-	0.1	V/µs	Slope during normal operation
	$S_{\rm VDDP10}~{ m SR}$	0	-	10	V/µs	Slope during fast transient within +/- 10% of V_{DDP}
	$S_{\rm VDDPrise}~{ m SR}$	0	_	10	V/µs	Slope during power-on or restart after brownout event
	S _{VDDPfall} ²⁾ SR	0	-	0.25	V/µs	Slope during supply falling out of the +/-10% limits ³⁾
$V_{\rm DDP}$ prewarning voltage	V _{DDPPW} CC	2.1	2.25	2.4	V	ANAVDEL.VDEL_ SELECT = 00 _B
		2.85	3	3.15	V	ANAVDEL.VDEL_ SELECT = 01 _B
		4.2	4.4	4.6	V	ANAVDEL.VDEL_ SELECT = 10 _B

Table 24Power-Up and Supply Monitoring Parameters (Operating Conditions
apply)¹⁾

Note: These parameters are not subject to production test, but verified by design and/or characterization.

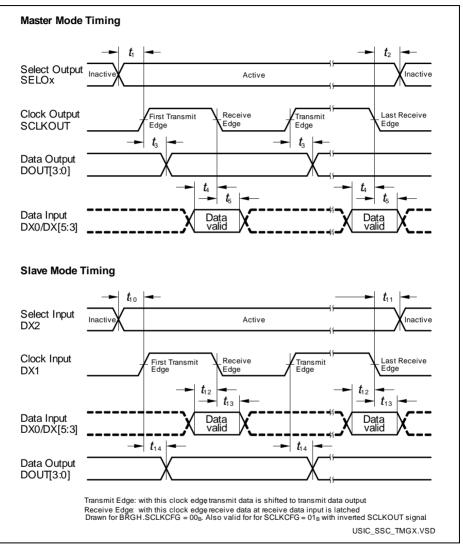


Figure 22 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration, for which the slave select signal is low-active, and the serial clock signal is not shifted and not inverted.

Package and Reliability

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta JA}$

The internal power consumption is defined as

 $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$ (switching current and leakage current).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}}-V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OI}} \times I_{\text{OI}})$

 $F_{\text{IOSTAT}} = 2((v_{\text{DDP}} - v_{\text{OH}}) \times I_{\text{OH}}) + 2(v_{\text{OL}} \times I_{\text{OL}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- Reduce the system frequency
- Reduce the number of output pins
- Reduce the load on active output drivers