
E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	Z80
Number of Cores/Bus Width	1 Core, 8-Bit
Speed	6MHz
Co-Processors/DSP	-
RAM Controllers	-
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	5.0V
Operating Temperature	-40°C ~ 100°C (TA)
Security Features	-
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z84c0006aeg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

address. This flexibility in selecting the interrupt service routine address allows the peripheral device to use several different types of service routines. These routines may be located at any available location in memory. Since the interrupting device supplies the low-order byte of the 2-byte vector, bit 0 (A_n) must be a zero.

Interrupt Enable/Disable Operation. Two flip-flops, IFF₁ and IFF₂, referred to in the register description, are used to signal the CPU interrupt status. Operation of the two flip-flops is described in Table 2. For more details, refer to the Z80 CPU Technical Manual (03-0029-01) and Z80 Assembly Language Programming Manual (03-0002-01).

Table 2. State of Flip-Flops

Action	IFF ₁	IFF2	Comments
CPU Reset	0	0	Maskable interrupt
DI instruction execution	0	0	Maskable interrupt
El instruction execution	1	1	Maskable interrupt
LD A,I instruction execution	٠	٠	IFF ₂ → Parity flag
LD A,R instruction execution	•	•	IFF ₂ → Parity flag
Accept NMI	0	•	Maskable interrupt
RETN instruction execution	IFF ₂	•	IFF ₂ → IFF ₁ at completion of an MII service routine.

INSTRUCTION SET

The microprocessor has one of the most powerful and versatile instruction sets available in any 8-bit microprocessor. It includes such unique operations as a block move for fast, efficient data transfers within memory, or between memory and I/O. It also allows operations on any bit in any location in memory.

The following is a summary of the instruction set which shows the assembly language mnemonic, the operation, the flag status, and gives comments on each instruction. For an explanation of flag notations and symbols for mnemonic tables, see the Symbolic Notations section which follows these tables. The *Z80 CPU Technical Manual* (03-0029-01), the *Programmer's Reference Guide* (03-0012-03), and *Assembly Language Programming Manual* (03-0002-01) contain significantly more details for programming use.

The instructions are divided into the following categories:

- □ 8-bit loads
- □ 16-bit loads
- Exchanges, block transfers, and searches
- 8-bit arithmetic and logic operations
- General-purpose arithmetic and CPU control
- 16-bit arithmetic operations
- Rotates and shifts

- □ Bit set, reset, and test operations
- Jumps
- □ Calls, returns, and restarts
- Input and output operations

A variety of addressing modes are implemented to permit efficient and fast data transfer between various registers, memory locations, and input/output devices. These addressing modes include:

- □ Immediate
- Immediate extended
- Modified page zero
- □ Relative
- □ Extended
- Indexed
- Register
- Register indirect
- □ Implied
- 🗆 Bit

16-BIT LOAD GROUP (Continued)

Mnemonic	Symbolic Operation	s	z		Fla H	ngs	P/V	N	С	76	Opcod 543	e 210	Hex	No. of Bytes	No. of M Cycles	No. of T States	Comm	ente
	•										.				•			
LD IX, (nn)	IX _H ← (nn + 1)	•	•	X	•	X	•	•	•	11 00	011	101 010	DD 2A	4	6	20		
	i∧ (riii)									00	+n→		24					
											+n→							
LD IY, (nn)	lY _H ← (nn + 1)	•	•	х	•	х	•	•	•	11	. 111		FD	4	6	20		
	IYL + (nn)									00	101		2A					
											← n →	•						
											← n→							
LD (nn), HL	(nn + 1) 🕶 H	٠	٠	х	٠	Х	•	•	٠	00	100	010	22	3	5	16		
	(∩n)+-L										← n→							
											≁ n→							:
LD (nn), dd	(nn + 1) ← dd _H	٠	٠	х	•	Х	•	•	•	11	101		ED	4	6	20		
	(nn) ← dd _L									01	dd0							
											+ n → + n →							
LD (nn), IX	(nn + 1) ← IX _H	•	•	x		х		•		11		101	DĐ	4	6	20		
20 (111), 01	(nn) ← IX ₁		-	~		~				00	100		22	-	U	20		
											+n→							
											+n→							
LD (nn), IY	(nn + 1) ← IY _H	٠	٠	х	٠	Х	•	•	٠	11	111	101	FD	4	6	20		
	(nn) 🛨 IY _L									00	100	010	22					
											← n →							
											← n→							
LD SP, HL	SP - HL	٠	•		•	X	•	•	٠	11	111		F9	1	1	6		
LD SP, IX	4SP + IX	•	•	Х	٠	х	•	•	•	11	011	101	DD	2	2	10		
LD SP, IY	SP ← IY		•	x		x	•		•	11 11	111	001 101	F9 FD	2	2	10		
LD OF, II	3F - 11	•	•	^	•	^	•	•	•	11	111	001	F9	2	2	10	qq	Pair
PUSH qq	(SP - 2) ← qq	•	•	x		x	•	•	•	11	qq0	101		1	3	11		BC
भभ	(SP ~ 1) ← qq _H										797				-			DE
	SP→SP - 2																	HL
PUSHIX	(SP - 2) + IXL	٠	٠	х	•	х	٠	•	•	11	011	101	DD	2	4	15	11	AF
	(SP - 1) + IX _H									11	100	101	E5					
	SP→SP -2																	
PUSHIY	(SP - 2) ← IY _L	٠	٠	х	٠	Х	•	•	•	11	111	101	FD	2	4	15		
	(SP – 1) ← IY _H									11	100	101	E5					
	SP→SP -2											004			0	10		
POP qq	qq _H ← (SP + 1)	•	•	X	٠	Х	•	•	•	11	qq0	001		1	3	10		
	qqL ← (SP) SP → SP + 2																	1
POP IX	$SP \rightarrow SP + 2$ $IX_H \leftarrow (SP + 1)$			y		¥				11	011	101	DD	2	4	14		
	IX _L ← (SP + 1)	-	-	^	•	^	-	-	2	11		001	E1	£	т			
	$SP \rightarrow SP + 2$									••								
POPIY	IY _H ← (SP + 1)	•	•	х	•	х	. •	•	•	11	111	101	FD	2	4	14		
	IYL + (SP)									11		001	E1					
	SP -+ SP +2																	

.

NOTE: (PAIR)_H, (PAIR)_L refer to high order and low order eight bits of the register pair respectively, e.g., BC_L = C, AF_H = A.

PS017801-0602

11

Mnemonic	Symbolic Operation	s	z		FI H	aga		/ N	с	76	Opcoc 543	ie 210	Hex	No. of Bytes	No. of M Cycles	No. of T States	Comments
EX DE, HL	DE ++ HL	•	•	x	•	X	•	•	•	11	101	011	EB	 1	1	4	
EX AF, AF'	AF ++ AF'			x	•	x			•	00	001	000	08	1	1	4	
EXX	BC ++ BC'			x		x				11	011	001	D9	1	1	4	De sister bit a
	DE ++ DE' HL ++ HL'	•	-	~	•	Ŷ	·	-	·		011		09	s	ı	4	Register bank and auxiliary register bank exchange
EX (SP), HL	H ↔ (SP + 1) L ↔ (SP)	٠	•	х	٠	x	٠	•	•	11	100	011	E3	1	5	19	excitatige
ex (SP), IX	IX _H ↔ (SP + 1) IX _L ↔ (SP)	٠	٠	х	•	X	٠	•	•	11 11	011 100	101 011	DD E3	2	6	23	
EX (SP), IY	IY _H ++ (SP + 1)	•	•	х		x	•	•		11	111	101	FD	2	6	23	
	IYL ↔ (SP)					~	ብ			11	100	011	E3	2	Ū	25	
LDI	(DE) + (HL)	•	•	х	0	х	Ť	0	•	11	101	101	ED	2	4	16	Load (HL) into
	DE ← DE + 1 HL ← HL + 1 BC ← BC - 1				•			•		10	100	000	AO	L	4	10	(DE), increme the pointers a decrement the
							ø										byte counter
LDIR	(DE) - (HL)			¥	0	x	@	0	•	11	101	101	ED	2	5		(BC)
	$DE \leftarrow DE + 1$ HL \leftarrow HL + 1 BC \leftarrow BC - 1 Repeat until BC = 0	-	-	^	Ū	~	Ū	Ū	•	10	110	000	BO	2	4	21 16	If BC ≠ 0 If BC = 0
							ര										
_DD	(DE) ← (HL) DE ← DE – 1 HL ← HL – 1 BC ← BC – 1	•	•	x	0	x	÷	0	•	11 10	101 101	101 000	ED A8	2	4	16	-
							2										
DDR	(DE) + (HL)	•	•	x	0	х		0	•	11	101	101	ED	2	5	21	lf BC ≠ 0
	DE ← DE 1 HL ← HL 1 BC ← BC 1									10	111	000	B 8	2	4	16	If BC = 0
	BC = 0		~				~										
CPI	A (LH.)	. (ঙ	v		v	() ‡				404		50	•			
261	A – (HL)	ŧ	ŧ	×	Ŧ	X	Ŧ	1	•	11	101	101	ED	2	4	16	
	HL++1 BC++BC-1									10	100	001	A1				

EXCHANGE, BLOCK TRANSFER, BLOCK SEARCH GROUPS

.

② P/V flag is 0 only at completion of instruction.
③ Z flag is 1 if A = HL, otherwise Z = 0.

	Symbolic				Fk	ngs				. (Орсос	ie		No. of	No. of M	No. of T	
Mnemonic	Operation	S	Z		Η	-	P/V	N	C	76	543	210	Hex	Bytes	Cycles	States	Comments
			3				1			•							
CPIR	A – (HL)	\$	ŧ		\$	х		1	•	11	101	101	ED	2	5	21	lf BC ≠ 0 an¦d A ≠ (HL)
•	HL ← HL + 1									10	110	0 01	B1	2	4	16	If BC = 0 or
	BC ← BC – 1																A = (HL)
	Repeat until																
	A = (HL) or																
	BC = 0																
			3				1										
CPD	A – (HL)	+	ŧ	х	\$	Х	\$	1	٠	11	101	101	ED	2	4	16	
	HL+HL-1									10	101	001	A9				
	BC + BC - 1		_														
			3				1										
CPDR	A – (HL)	\$	\$	х	\$	X	\$	1	•	11	101	101	ED	2	5	21	If BC \neq 0 and A \neq (HL)
	HL ← HL – 1									10	111	001	B9	2	4	16	If BC = 0 of
	BC + BC - 1																A = (HL)
	Repeat until																
	A = (HL) or																
	BC = 0																

EXCHANGE, BLOCK TRANSFER, BLOCK SEARCH GROUPS (Continued)

P/V flag is 0 only at completion of instruction.
Z flag is 1 if A = (HL), otherwise Z = 0.

8-BIT ARITHMETIC AND LOGICAL GROUP

Mnemonic	Symbolic Operation	s	z		Fla H	igs	₽/\	'N	с	76	Opcod 543		Hex	No. of Bytes	No. of M Cycies	No. of T States	Com	ments
ADD A, r	A←A+r	;	\$	х	\$	X	٧	0	\$	10	000	r		1	1	4	r	Reg.
ADD A, n	A ← A+n	\$	ŧ	х	ŧ	х	v	0	:	11	000	110		2	2	7	000	В
											←n→						001	C
																	010	D
ADD A, (HL)	A ← A+(HL)	\$;	х	\$	х	v	0	\$	10	000]	110		1	2	7	011	E
ADD A, (IX + d) A←A+(IX+d)	+	\$	х	ŧ	х	۷	0	\$	11	011	101	DD	3	5	19	100	H
										10	000	110					101	L
											+d→						111	A
ADD A, (IY + d) A←A + (IY + d)	\$	\$	х	ŧ	х	v	0	ŧ	11	111	101	FD	3	5	19		
-										10	000	110						
											+ d→							
ADC A, s	A ← A+s+CY	\$	\$	х	\$	х	۷	0	\$		001						s is ar	ny of r, n,
SUB s	A ← A – s	\$	\$	х	\$	х	۷	1	\$		010						(HL),	(IX+d),
SBC A, s	A ← A-s-CY	\$	\$	х	\$	х	۷	1	\$		011						(IY+0	1)as
AND s	A←A>s	\$	+	х	1	х	Ρ	0	0		100						show	n for AD
OR s	A ← A > s	\$	\$	Х	0	х	P	0	0		110						instru	ction. Th
XOR s	A - Aes	\$	+	х	0	х	Ρ	0	0		101						indica	ated bits
CP s	A-s	ŧ	+	х	\$	х	۷	1	\$		111						replac	ce the
																	000	in thệ
																	ADD	set abby

PS017801-0602

13

÷

8-BIT ARITHMETIC AND LOGICAL GROUP (Continued)

	Symbolic		•		Fk	ngs				(Орсос	le		No. of	No. of M	No. of T	
Mnemonic	Operation	S	Z		H		P/V	N	С	76	543	210	Hex	Bytes	Cycles	States	Commente
INC r	r≁r+1	\$	\$	х	\$	Х	v	0	•	00	r	100		1	1	4	
INC (HL)	(HL) 🛨																
	(HL) + 1	\$	\$	х	\$	х	۷	0	٠	00	110	100		1	3	11	
INC (IX + d)	(IX + d) ←	‡	\$	Х	\$	х	۷	0	٠	11	011	101	DD	3	6	23	
	(IX + d) + 1									00	110	100					
											+-d-						
INC (IY + d)	(IY + d) ←	\$	\$	х	\$	х	۷	0	•	11	111	101	FD	3	6	23	
	(IY+d)+1									00	110	100					
											+ d -						
DECm	m+m−1	+	ŧ	Х	\$	х	V	1	٠			101					

GENERAL-PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

	Symbolic				Fk	ngs					Opcod	•		No. of	No. of M	No. of T	
Mnemonic	Operation	8	Z		Η	_	PΛ	/ N	C	76	543	210	Hex	Bytes	Cycles	States	Comments
DAA	@	\$	\$	х	\$	X	Ρ	•	\$	00	100	111	27	1	1	4	Decimal adjus accumulator
CPL	A←A	•	•	×	1	X	•	1	•	00	101	111	2F	1	1	4	Complement accumulator (one's complement).
NEG	A ← 0 – A	ŧ	\$	х	\$	х	۷	1	\$	11	101	101	ED	2	2	8	Negate acc.
										01	000	100	44				(two's
																	complement).
CCF	CY + CY	•	٠	х	х	X	٠	0	\$	00	111	111	ЗF	1	. 1	4	Complement carry flag.
SCF	CY + 1	٠	٠	Х	0	Х	٠	0	1	00	110	111	37	1	1	4	Set carry flag.
NOP	No operation	٠	٠	Х	•	Х	٠	٠	٠	00	000	000	00	1	1	4	- 1
HALT	CPU halted	٠	٠	Х	•	х	٠	٠	٠	01	110	110	76	1	1	4	
DI 🛨	IFF 🕶 0	٠	٠	Х	٠	Х	٠	٠	٠	11	110	011	F3	1	1	4	
El 🛨	IFF 🛨 1	٠	٠	х	٠	х	٠	٠	٠	11	111	011	FB	1	1	4	
IM 0	Set interrupt	٠	٠	Х	٠	х	٠	٠	٠	11	101	101	ED	2	2	8	
	mode 0									01	000	110	46				
IM 1	Set interrupt	٠	٠	х	٠	х	٠	٠	٠	11	101	101	ED	2	2	8	
	mode 1									01	010	110	56				
M 2	Set interrupt	٠	٠	х	٠	х	٠	٠	٠	11	101	101	ED	2	2	8	-
	mode 2									01	011	110	5E				

NOTES: @ converts accumulator content into packed BCD following add or subtract with packed BCD operands. IFF indicates the interrupt enable flip-flop. CY indicates the carry flip-flop. * indicates interrupts are not sampled at the end of EI or DI.

	Symbolic				Fk	lgs				(Opcod	e		No. of	No. of M	No. of T		
Mnemonic	Operation	8	Z		H	•	P/V	N	С	76	543	210	Hex	Bytes	Cycles	States	Соп	ments
BIT b, r	Z ← r _b	х	\$	x	1	х	х	0	•	11	001	011	СВ	2	2	8	r	Reg.
										01	ь	r					000	В
BIT b, (HL)	Z ← (HL) _b	х	\$	х	1	х	х	0	٠	11	001	011	СВ	2	3	12	001	С
										01	b	110					010	D
BIT b,(IX + d)b	Z + (IX + d) _b	х	\$	х	1	х	Х	0	٠	11	011	101	DD	4	5	20	011	Е
										11	001	011	СВ				100	н
											+d-	•					101	L
										01	b	110					111	Α
																	ь	Bit Tester
BIT b, (IY + d) _b	Z ← (IY + d) _b	х	\$	х	1	х	Х	0	٠	11	111	101	FD	4	5	20	000	0
_										11	001	011	CB				001	1
											+ d -						010	2
		•								01	b	110					011	3
SET b, r	r _b ← 1	٠	•	х	٠	х	٠	٠	.•	11	001	011	СВ	2	2	8	100	4
	-									[1]	b	r					101	5
SET b, (HL)	(HL) _b ← 1	٠	٠	х	٠	х	٠	٠	٠	11	001	011	CB	2	4	15	110	6
										11	b	110					111	7
SET b, (1X + d)	(IX+d) _b + 1	٠	٠	х	٠	х	٠	٠	٠	11	011	101	DD	4	6	23		
										11	001	011	CB					
											+d-	•						
										11	ь	110						
SET b, (IY + d)	(IY+d) _b ← 1	٠	٠	Х	٠	х	•	٠	٠	11	111	101	FD	4	6	23		
										11	001	011	CB					
											+ d →	•						
										11	ь	110						
RES b, m	m _b ← 0	٠	٠	х	٠	х	•	٠	•	10							To fo	rm neiv
	m≡r, (HL),														•		opco	ode replac
	(1X + d), (1Y + d)																11	of SET b, s
	· · · ·																with	10 Flag
																	and	time
																	state	s for SET
																	instr	uction.

BIT SET, RESET AND TEST GROUP

NOTE: The notation mb indicates location m, bit b (0 to 7).

JUMP GROUP

Mnemonic	Symbolic Operation	s	z		Fi	aga		VN	с		Opcod 543		Hex	No. of Bytes	No. of M Cycles	No. of T States	•	iments
JP nn	PC ← nn	•	•	х	•	х	•	•	•	11	000	011	C3	3	3	10	œ	Condition
											← n →						000	NZ (non-zero)
											←n→						001	Z (zero)
JP cc, nn	If condition cc	٠	٠	Х	٠	Х	•	٠	٠	11	c c	010		3	3	10	010	NC (non-carry)
	is true PC+-nn,										+n→						011	C (carry)
	otherwise										+n→						100	PO (parity odd)
	continue																101	PE (parity even)
JRe	PC+PC+e	٠	٠	х	٠	Х	٠	٠	٠	00	011	000	18	2	3	12	110	P (sign positive)
										•	-e-2	~					111	M (sign neglative
JRC,e	₩C=0,	٠	٠	Х	٠	Х	٠	٠	٠	00	111	000	38	2	2	7	If cor	ndition not met.
	continue									•	-e-2							
	IfC=1,													2	3	12	If cor	ndition is met.
	PC ← PC + e																	
JR NC, e	IF C = 1,	٠	٠	х	٠	Х	٠	٠	٠	00	110	000	30	2	2	7	lf cor	ndition not met.
	continue									•	-e-2-	•						
	lf C = 0,													2	3	12	If cor	ndition is met.
	PC + PC + e																	
JP Z, e	lfZ=0	٠	٠	х	•	х	٠	٠	٠	00	101	000	28	2	2	7	lf cor	ndition not met.
	continue									•	-e-2·	•						
	lf Z = 1,													2	3	12	If cor	ndition is met.
	PC ← PC + e																	
JR NZ, e	lf Z = 1,	٠	٠	X	٠	х	٠	٠	٠	00	100	000	20	2	2	7	If cor	ndition not met.
	continue									•	-e-2·	•						
	lf Z = 0,													2	3	12	If cor	ndition is met.
	PC+PC+e																	
JP (HL)	PC + HL	٠	٠	х	٠	Х	٠	٠	٠	11	101	001	E9	1	1	4		
JP (IX)	PC + IX	٠	٠	х	٠	х	٠	٠	•	11	011	101	DD	2	2	8		
										11	101	001	E9					
JP (IY)	PC + IY	٠	٠	х	٠	Х	٠	٠	٠	11	111	101	FD	2	2	8		
										11	101	001	E9					
DJNZ, e	B ← B-1	•	٠	х	٠	х	٠	٠	•	00	010	000	10	2	2	8	If B =	0
	lf B = 0,									+	-e-2-	•						
	continue																	
	lf B≠0,													2	3	13	If B≠	0.
	PC+PC+e																	

NOTES: e represents the extension in the relative addressing mode. e is a signal two's complement number in the range < - 126, 129 >. e - 2 in the opcode provides an effective address of pc + e as PC is incremented by 2 prior to the addition of e.

INPUT AND OUTPUT GROUP

Maamania	Symbolic	~				aga			~		Opcod			No. of		No. of T	•
mnemonic	Operation		Z		H		P /	VN	<u> </u>	76	543	210	Hex	Bytes	Cycles	States	Comments
N A, (n)	A 🛨 (n)	٠	` •	Х	٠	Х	٠	٠	٠	11	011	01	DB	2	3	11	n to A ₀ ~ A ₇
											←n→						Acc. to $A_8 \sim A_{15}$
N r, (C)	r ← (C)	\$	+	Х	\$	Х	Ρ	0	٠	11	101	101	ED	2	3	12	C to $A_0 \sim A_7$
	if r = 110 only									01	r	000					B to A ₈ ~ A ₁₅
	the flags will																
	be affected		_														
			C	· · ·													
11	(HL) ← (C)	Х	\$	X	X	X	X	1	x	11	101	101	ED	2	4	16	C to $A_0 \sim A_7$
	B←B-1		~							10	100	010	A2				B to Ag ~ A ₁₅
	HL←HL+1		Ø														
liR	(HL) ← (C)	X	1	X	X	x	Х	1	x	11	101	101	ED	2	5	21	C to A ₀ ~ A ₇
	B+B-1									10	110	010	B2		(lf B≠0)		B to A ₈ ~ A ₁₅
	HL ← HL+1													2	4	16	
	Repeat until								٦.						(If B = 0)		
	B=0		\sim														
		••	Ý	۱.,	••	••	• •		۰.					~			• • •
1D	(HL) ← (C)	X	\$	Х	X	Х	X	1	Х	11	101	101	ED	2	4	16	C to $A_0 \sim A_7$
	B←B-1		~							10	101	010	AA				B to $A_8 \sim A_{15}$
			Q)	.,	.,	.,							-	_	·	.
IDR	(HL) ← (C)	X	1	X	X	X	X	1	x	11	101	101	ED	2	5	21	C to $A_0 \sim A_7$
	B←B-1									10	111	010	BA		(lf B≠0)		B to A8 ~ A15
	HL←HL-1													2	4	16	
	Repeat until B = 0														(If B = 0)		
UT (n), A				v	•	x	•			11	010	011	D3	2	3	11	
-	(1) N	Ē	•	^	•	^	Ī	•	•		+ n →	VII	05	· 2	3		
UT (C), r	(C) + r			x	•	х				11	101	101	ED	2	3	12	Acc. to $A_8 \sim A_{15}$ C to $A_0 \sim A_7$
01(0),1		•	•	^	•		•	•	•	01	r	001		2	3	12	$B to A_8 \sim A_{15}$
			ി							01	ſ	001					D 10 18 10 115
UTI	(C) + (HL)	x	Ť	x	x	x	x	1	x	11	101	101	ED	2 ;	4	16	C to A ₀ ~ A ₇
	B←B-1	~	•	n	~	~	Ŷ	•	^	10	100	011	A3	-	-	.0	B to $A_8 \sim A_{15}$
	HL←HL+1		0	ŀ								•	~~~				01010-015
rir	(C) ← (HL)		1	x	x	x	x	1	x	11	101	101	ED	2	5	21	C to A ₀ ~ A ₇
-	B←B-1		•			.,		•		10		011	83	-	(If B≠0)		B to A ₈ ~ A ₁₅
	 HL ← HL + 1											••••		2	4	16	0 10 18 10 115
	Repeat until													-	(If B = 0)		
	B=0														(
	-		ി														
JTD	(C) ← (HL)		¥	х	х	х	х	1	х	11	101	101	ED	2	4	16	C to $A_0 \sim A_7$
	B+B-1		,							10		011	AB	-	•		B to $A_8 \sim A_{15}$
	HL+HL-1																
	,		Ć)														
DR	(C) ~ (HL)		1	х	х	х	х	1	х	11	101	101	ED	2	5	21	C to $A_0 \sim A_7$
	B←B-1									10	-	011		-	(lf B≠0)		B to A ₈ ~ A ₁₅
	HL←HL-1													2	4	16	
	Repeat until														(If B=0)		
	B=0														··· = -/		

.

NOTES: (1) If the result of B - 1 is zero, the Z flag is set; otherwise it is reset. (2) Z flag is set upon instruction completion only.

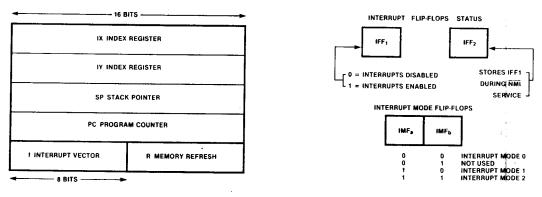

CPU REGISTERS

Figure 4 shows three groups of registers within the CPU. The first group consists of duplicate sets of 8-bit registers: a principal set and an alternate set [designated by ' (prime), e.g., A']. Both sets consist of the Accumulator register, the Flag register, and six general-purpose registers. Transfer of data between these duplicate sets of registers is accomplished by use of "Exchange" instructions. The result is faster response to interrupts and easy, efficient implementation of such versatile programming techniques

as background-foreground data processing. The second set of registers consists of six registers with assigned functions. These are the I (Interrupt register), the R (Refresh register), the IX and IY (Index registers), the SP (Stack Pointer), and the PC (Program Counter). The third group consists of two interrupt status flip-flops, plus an additional pair of flip-flops which assists in identifying the interrupt mode at any particular time. Table 1 provides further information on these registers.

GISTER SET	ALTERNATE	REGISTER SET
F FLAG REGISTER	A' ACCUMULATOR	F' FLAG REGISTER
C GENERAL PURPOSE	8' GENERAL PURPOSE	C' GENERAL PURPOSE
E · GENERAL PURPOSE	D' GENERAL PURPOSE	E' GENERAL PURPOSE
L GENERAL PURPOSE	H' GENERAL PURPOSE	L' GENERAL PURPOSE
	F FLAG REGISTER C GENERAL PURPOSE E GENERAL PURPOSE	F FLAG REGISTER A' ACCUMULATOR C GENERAL PURPOSE B' GENERAL PURPOSE E GENERAL PURPOSE D' GENERAL PURPOSE

8 BITS ------

INTERRUPTS: GENERAL OPERATION

The CPU accepts two interrupt input signals: $\overline{\text{NMI}}$ and $\overline{\text{INT}}$. The $\overline{\text{NMI}}$ is a non-maskable interrupt and has the highest priority. $\overline{\text{INT}}$ is a lower priority interrupt and it requires that interrupts be enabled in software in order to operate. $\overline{\text{INT}}$ can be connected to multiple peripheral devices in a wired-OR configuration.

The Z80 has a single response mode for interrupt service on the non-maskable interrupt. The maskable interrupt, \overline{INT} , has three programmable response modes available. These are:

- Mode 0 similar to the 8080 microprocessor.
- Mode 1 Peripheral Interrupt service, for use with non-8080/Z80 systems.

Mode 2 - a vectored interrupt scheme, usually daisychained, for use with the Z80 Family and compatible peripheral devices.

The CPU services interrupts by sampling the NMI and INT signals at the rising edge of the last clock of an instruction. Further interrupt service processing depends upon the type of interrupt that was detected. Details on interrupt responses are shown in the CPU Timing Section.

Non-Maskable Interrupt (NMI). The nonmaskable interrupt cannot be disabled by program control and therefore will be accepted at all times by the CPU. NMI is usually reserved for servicing only the highest priority type interrupts, such as that for orderly shutdown after power

PS017801-0602

PIN DESCRIPTIONS

A₀-A₁₅. Address Bus (output, active High, 3-state). A₀-A₁₅ form a 16-bit address bus. The Address Bus provides the address for memory data bus exchanges (up to 64K bytes) and for I/O device exchanges.

BUSACK. Bus Acknowledge (output, active Low). Bus Acknowledge indicates to the requesting device that the CPU address bus, data bus, and control signals MREQ, IORQ, RD, and WR have entered their high-impedance states. The external circuitry can now control these lines.

BUSREQ. Bus Request (input, active Low). Bus Request has a higher priority than NMI and is always recognized at the end of the current machine cycle. BUSREQ forces the CPU address bus, data bus, and control signals MREQ, IORQ, RD, and WR to go to a high-impedance state so that other devices can control these lines. BUSREQ is normally wired-OR and requires an external pullup for these applications. Extended BUSREQ periods due to extensive DMA operations can prevent the CPU from properly refreshing dynamic RAMs.

D₀-D₇. Data Bus (input/output, active High, 3-state). D_0 - D_7 constitute an 8-bit bidirectional data bus, used for data exchanges with memory and I/O.

HALT. Halt State (output, active Low). HALT indicates that the CPU has executed a Halt instruction and is awaiting either a nonmaskable or a maskable interrupt (with the mask enabled) before operation can resume. While halted, the CPU executes NOPs to maintain memory refresh.

INT. Interrupt Request (input, active Low). Interrupt Request is generated by I/O devices. The CPU honors a request at the end of the current instruction if the internal software-controlled interrupt enable flip-flop (IFF) is enabled. INT is normally wired-OR and requires an external pullup for these applications.

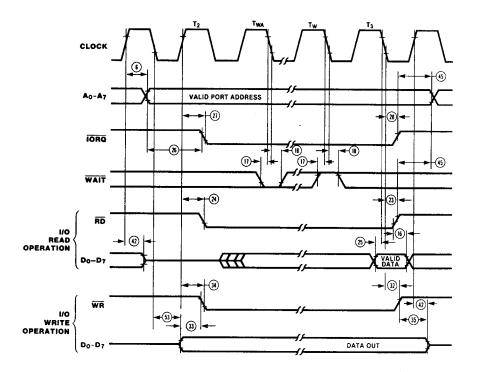
IORQ. Input/Output Request (output, active Low, 3-state). IORQ indicates that the lower half of the address bus holds a valid I/O address for an I/O read or write operation. IORQ is also generated concurrently with M1 during an interrupt acknowledge cycle to indicate that an interrupt response vector can be placed on the data bus. **M1.** Machine Cycle One (output, active Low). M1, together with MREQ, indicates that the current machine cycle is the opcode fetch cycle of an instruction execution. M1, together with IORQ, indicates an interrupt acknowledge cycle.

MREQ. Memory Request (output, active Low, 3-state). MREQ indicates that the address bus holds a valid address for a memory read or memory write operation.

NMI. Non-Maskable Interrupt (input, negative edgetriggered). NMI has a higher priority than INT. NMI is always recognized at the end of the current instruction, independent of the status of the interrupt enable flip-flop, and automatically forces the CPU to restart at location 0066H.

RD. *Read* (output, active Low, 3-state). RD indicates that the CPU wants to read data from memory or an I/O device. The addressed I/O device or memory should use this signal to gate data onto the CPU data bus.

RESET. Reset (input, active Low). RESET initializes the CPU as follows: it resets the interrupt enable flip-flop, clears the PC and Registers I and R, and sets the interrupt status to Mode 0. During reset time, the address and data bus go to a high-impedance state, and all control output signals go to the inactive state. Note that RESET must be active for a minimum of three full clock cycles before the reset operation is complete.

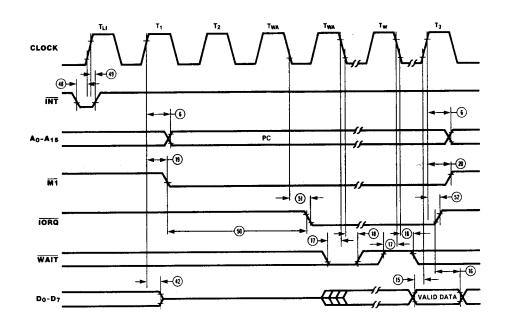

RFSH. Refresh (output, active Low). RFSH, together with MREQ, indicates that the lower seven bits of the \$ystem's address bus can be used as a refresh address to the system's dynamic memories.

WAIT. Wait (input, active Low). WAIT indicates to the CPU that the addressed memory or I/O devices are not ready for a data transfer. The CPU continues to enter a Wait state as long as this signal is active. Extended WAIT periods can prevent the CPU from properly refreshing dynamic memory.

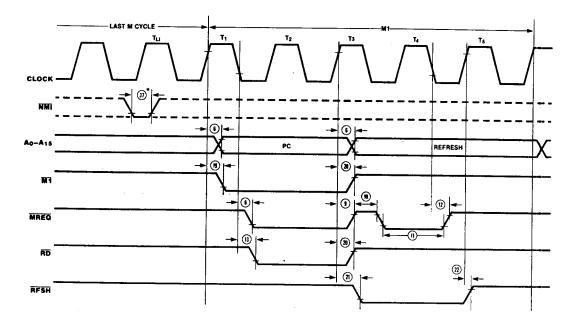
WR. Write (output, active Low, 3-state). WR indicates that the CPU data bus holds valid data to be stored at the addressed memory or I/O location.

Input or Output Cycles. Figure 7 shows the timing for an I/O read or I/O write operation. During I/O operations, the CPU automatically inserts a single Wait state (T_{WA}). This

extra Wait state allows sufficient time for an I/O port to decode the address from the port address lines.


 $T_{WA} = One$ wait cycle automatically inserted by CPU.

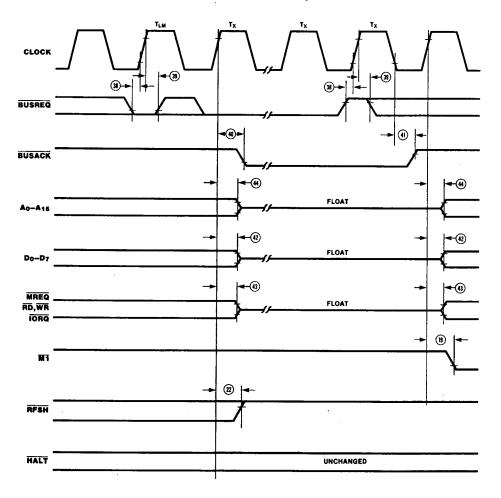
.


Figure 7. Input or Output Cycles

Interrupt Request/Acknowledge Cycle. The CPU samples the interrupt signal with the rising edge of the last clock cycle at the end of any instruction (Figure 8). When an interrupt is accepted, a special $\overline{M1}$ cycle is generated.

During this $\overline{M1}$ cycle, \overline{IORQ} becomes active (instead of \overline{MREQ}) to indicate that the interrupting device can place an 8-bit vector on the data bus. The CPU automatically adds two Wait states to this cycle.

Non-Maskable Interrupt Request Cycle. NMI is sampled at the same time as the maskable interrupt input INT but has higher priority and cannot be disabled under software control. The subsequent timing is similar to that of a normal memory read operation except that data put on the bus by the memory is ignored. The CPU instead executes a restart (RST) operation and jumps to the $\overline{\text{NMI}}$ service routine located at address 0066H (Figure 9).

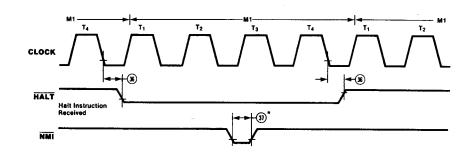


*Although NMI is an asynchronous input, to guarantee its being recognized on the following machine cycle, NMI's falling edge must occur no later than the rising edge of the clock cycle preceding the last state of any instruction cycle (TLI).

Figure 9. Non-Maskable Interrupt Request Operation

Bus Request/Acknowledge Cycle. The CPU samples BUSREQ with the rising edge of the last clock period of any machine cycle (Figure 10). If BUSREQ is active, the CPU sets its address, data, and MREQ, IORQ, RD, and WR lines

to a high-impedance state with the rising edge of the next clock pulse. At that time, any external device can take control of these lines, usually to transfer data between memory and I/O devices.



NOTES: 1) T_{LM} = Last state of any M cycle. 2) T_X = An arbitrary clock cycle used by requesting device.

Figure 10. BUS Request/Acknowledge Cycle

Halt Acknowledge Cycle. When the CPU receives a HALT instruction, it executes NOP states until either an INT or NMI input is received. When in the Halt state, the HALT output is

active and remains so until an interrupt is received (Figure 11). INT will also force a Halt exit.

*Although NMI is an asynchronous input, to guarantee its being recognized on the following machine cycle, NMI's falling edge must occur no later than the rising edge of the clock cycle preceding the last state of any instruction cycle (T_{LI}).

Figure 11. Halt Acknowledge

Reset Cycle. RESET must be active for at least three clock cycles for the CPU to properly accept it. As long as RESET remains active, the address and <u>data buses</u> float, and the control outputs are inactive. Once RESET goes inactive, two

internal T cycles are consumed before the CPU resumes normal processing operation. RESET clears the PC register, so the first opcode fetch will be to location 0000H (Figure 12).

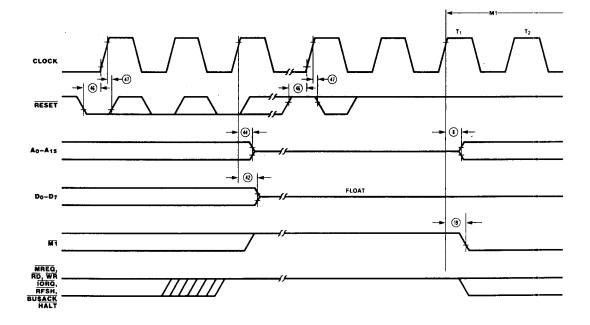
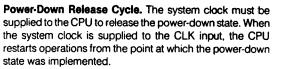
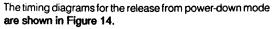




Figure 12. Reset Cycle

NOTES:

- When the external oscillator has been stopped to enter the power-down state, some warm-up time may be required to obtain a stable clock for the release.
- 2) When the HALT instruction is executed to enter the power-down state, the CPU will also enter the Halt state. An interrupt signal (either NMI or INT) or a RESET signal must be applied to the CPU after the system clock is supplied in order to release the power-down state.

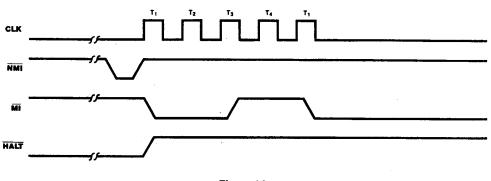


Figure 14a.

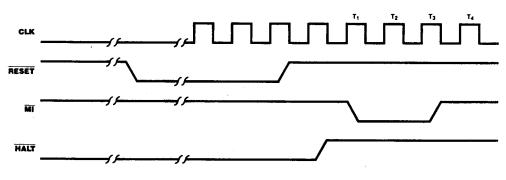


Figure 14b.

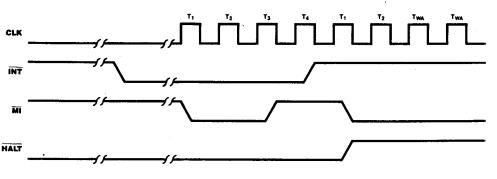


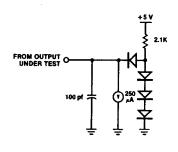
Figure 14c.

Figure 13. Power-Down Release

ABSOLUTE MAXIMUM RATINGS

Voltage on V _{CC} with respect to V_{SS} 0.3V to +7V
Voltages on all inputs with respect
to V_{SS}
Operating Ambient
Temperature
Storage Temperature 65°C to + 150°C

STANDARD TEST CONDITIONS


The DC Characteristics and capacitance sections below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND (0V). Positive current flows into the referenced pin.

Available operating temperature ranges are:

S = 0°C to +70°C Voltage Supply Range: NMOS: +4.75V ≤ VCC ≤ +5.25V CMOS: +4.50V ≤ VCC ≤ +5.50V E = -40°C to 100°C, +4.50V ≤ VCC ≤ +5.50V

All ac parameters assume a load capacitance of 100 pf. Add 10 ns delay for each 50 pf increase in load up to a maximum of 200 pf for the data bus and 100 pf for address and control lines. AC timing measurements are referenced to 1.5 volts (except for clock, which is referenced to the 10% and 90% points). Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

The Ordering Information section lists temperature ranges and product numbers. Package drawings are in the Package Information section. Refer to the Literature List for additional documentation.

DC CHARACTERISTICS (Z84C00/CMOS Z80 CPU)

Symbol	Parameter	Min	Max	Unit	Condition
VILC	Clock Input Low Voltage	~0.3	0.45	v	
VIHC	Clock Input High Voltage	V _{CC} – .6	V _{CC} +.3	v	
VIL	Input Low Voltage	- 0.3	0.8	v	
VIH	Input High Voltage	2.2	Vcc	v	
V _{OL}	Output Low Voltage		0.4	v	l _{OL} = 2.0 mA
V _{OH1}	Output High Voltage	2.4		v	l _{OH} = −1.6 mA
V _{OH2}	Output High Voltage	V _{CC} -0.8		v	$I_{OH} = -250 \mu A$
ICC1	Power Supply Current 4 MHz 6 MHz 8 MHz 10 MHz 20 MHz		20 30 40 50 100	mA mA mA mA	$V_{CC} = 5V$ $V_{IH} = V_{CC} - 0.2V$ $V_{IL} = 0.2V$
ICC2	Standby Supply Current		10	μA	$V_{oc} = 5V$ $V_{CC} = 5V$
					CLK = (0) $V_{IH} = V_{CC} - 0.2V$ $V_{IL} = 0.2V$
ILI	Input Leakage Current	-10	10	μA	$V_{IN} = 0.4$ to V_{CC}
lo	3-State Output Leakage Current in Float	- 10	10 ²	μA	$V_{OUT} = 0.4$ to V_{CC}

Measurements made with outputs floating.
A₁₅-A₀, D₇-D₀, MREQ, IORQ, RD, and WR.
I_{CC2} standby supply current is guaranteed only when the supplied clock is stopped at a low level during T₄ of the machine cycle immediately following the execution of a HALT instruction.

CAPACITANCE

Symbol	Parameter	Min	Max	Unit
CCLOCK	Clock Capacitance		10	pf
C _{IN}	Input Capacitance		5	pf
COUT	Output Capacitance		15	pif

 $T_A = 25$ °C, f = 1 MHz. Unmeasured pins returned to ground.

AC CHARACTERISTICS[†] (Z84C00/CMOS Z80 CPU; Continued) V_{cc} =5.0V ± 10%, unless otherwise specified

			Z84(C0004	Z840	20006	Z840	20008	Z84(C0010	Z840	20020[1]	Unit	Note
No	Symbol	Parameter	Min	Мах	Min	Мах	Min	Max	Min	Max	Min	Max		
39	ThBUSREQ	/BUSREQ hold time	10		10		10		10	•••••	10		nS	
	(Cr)	after Clock Rise												
40	TdCr	Clock Rise to /BASACK		100		90		80		75		40	nS	
	(BUSACKf)	Fall delay												
41	TdCf	Clock Fall to /BASACK		100		90		80		75		40	nS	
	(BUSACKr)	Rise delay												
42	TdCr(Dz)	Clock Rise to Data float delay		90		80		70		6 5		40	nS	
43	TdCr(CTz)	Clock Rise to Control Outputs												
		Float Delay (/MREQ, /IORQ,												
		/RD and /WR)		80		70		60		65		40	nS	
44	TdCr(Az)	Clock Rise to Address		90		80		70		75		40	nS	
		float delay												
45	TdCTr(A)	Address Hold time from /MREQ,	80*		35*		20*		20*		0*		nS	
		/IORQ, /RD or /WR												
46	TsRESET(Cr)	/RESET to Clock Rise setup time	60		60		45		40		15		nS	
47	ThRESET(Cr)	/RESET to Clock Rise Hold time	10		10		10		10		10		nS	
48	TsINTf(Cr)	/INT Fall to Clock Rise	80		70		55		50		15		nS	
		Setup Time												
49	ThINTr(Cr)	/INT Rise to Clock Rise	10		10		10		10		10		nS	
		Hold Time												
50	TdM1f	/M1 Fall to /IORQ Fall delay	565'	,	359*	,	270'	,	220'	•	100*	r	nS	
	(IORQf)													
51	TdCf(IORQf)	/Clock Fall to /IORQ Fall delay		8 5		70		60		55		45	nS	
52	TdCf(IORQr)	Clock Rise to /IORQ Rise delay		85		70		60		55		45	nS	
53	TdCf(D)	Clock Fall to Data Valid delay		150		130		115		110		75	nS	

Notes: * For Clock periods other than the minimum shown, calculate parameters using the following table.

Calculated values above assumed TrC = TfC = maximum. ** 4 MHz CMOS Z80 is obsoleted and replaced by 6 MHz

Z84C0020 parameters are guuaranteed with 50pF load Capacitance.
If Capacitive Load is other than 50pF, please use Figure 1. to calculate the value.
Increasing delay by 10nS for each 50pF increase in loading, 200pF max for data lines, and 100pF for control lines.

FOOTNOTES TO AC CHARACTERISTICS

No	Symbol	Parameter	Z84C0004	[*] Z84C0006	Z84C0008	Z84C0010	Z84C0020
1	TcC	TwCh + TwCl + TrC + TfC					
7	TdA(MREQf)	TwCh + TfC	-65	-50	-45	-45	-45
10	TwMREQh	TwCh + TfC	-20	-20	-20	-20	-20
11	TwMREQI	TcC	-30	-30	-25	-25	-25
26	TdA(IORQf)	TcC	-70	-55	-50	-50	-50
29	TdD(WRf)	TcC	-170	-140	-120	-60	-60
31	TwWR	TcC /	-30	-30	-25	-25	-25
33	TdD(WRf)	TwCI + TrC	-140	-140	-120	-60	-60
35	TdWRr(D)	TwCl + TrC	-70	-55	-50	-40	-25
45	TdCTr(A)	TwCI + TrC	-50	-50	-45	-30	-30
50	TdM1f(IORQf)	2TcC + TwCh + TfC	-65	-50	-45	-30	-30
AC Test	Conditions: $V_{IH} = 2.0$ $V_{IL} = 0.8$		V _{IHC} = V _{ILC} =	V _{CC} -0.6 V 0.45 V	Float = 1	E0.5 V	

PS017801-0602

Customer Support

For answers to technical questions about the product, documentation, or any other issues with Zilog's offerings, please visit Zilog's Knowledge Base at http://www.zilog.com/kb.

For any comments, detail technical questions, or reporting problems, please visit Zilog's Technical Support at <u>http://support.zilog.com</u>.