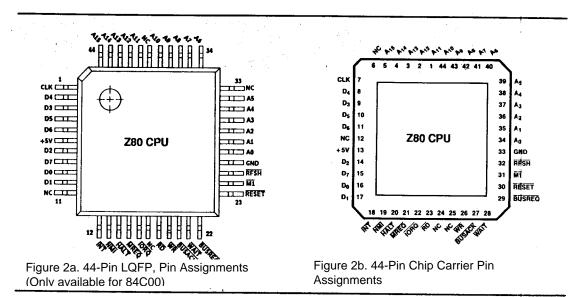

E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**


Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Details	
Product Status	Obsolete
Core Processor	Z80
Number of Cores/Bus Width	1 Core, 8-Bit
Speed	6MHz
Co-Processors/DSP	
RAM Controllers	
Graphics Acceleration	No
Display & Interface Controllers	
Ethernet	
SATA	
USB	
Voltage - I/O	5.0V
Operating Temperature	-40°C ~ 100°C (TA)
Security Features	
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z84c0006fec00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

GENERAL DESCRIPTION

The CPUs are fourth-generation enhanced microprocessors with exceptional computational power. They offer higher system throughput and more efficient memory utilization than comparable second- and third-generation microprocessors. The internal registers contain 208 bits of read/write memory that are accessible to the programmer. These registers include two sets of six general-purpose registers which may be used individually as either 8-bit registers or as 16-bit register pairs. In addition, there are two sets of accumulator and flag registers. A group of "Exchange" instructions makes either set of main or alternate registers accessible to the programmer. The alternate set allows operation in foreground-background mode or it may be reserved for very fast interrupt response. The CPU also contains a Stack Pointer, Program Counter, two index registers, a Refresh register (counter), and an Interrupt register. The CPU is easy to incorporate into a system since it requires only a single + 5V power source. All output signals are fully decoded and timed to control standard memory or peripheral circuits; the CPU is supported by an extensive family of peripheral controllers. The internal block diagram (Figure 3) shows the primary functions of the processors. Subsequent text provides more detail on the I/O controller family, registers, instruction set, interrupts and daisy chaining, and CPU timing.

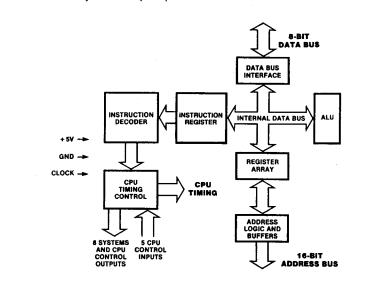


Figure 3. Z80C CPU Block Diagram

70	Λ.
20	U

	Register	Size (Bits)	Remarks
A, A'	Accumulator	8	Stores an operand or the results of an operation.
F, F'	Flags	8	See Instruction Set.
B, B′	General Purpose	8	Can be used separately or as a 16-bit register with C.
C, C'	General Purpose	8	Can be used separately or as a 16-bit register with C.
D, D'	General Purpose	8	Can be used separately or as a 16-bit register with E.
E, E′	General Purpose	8	Can be used separately or as a 16-bit register with E.
Н, Н′	General Purpose	8	Can be used separately or as a 16-bit register with L.
L, L'	General Purpose	8	Can be used separately or as a 16-bit register with L.
			Note: The (B,C), (D,E), and (H,L) sets are combined as follows: B - High byte C - Low byte D - High byte E - Low byte H - High byte L - Low byte
l	Interrupt Register	8	Stores upper eight bits of memory address for vectored interrupt processing.
R	Refresh Register	8	Provides user-transparent dynamic memory refresh. Automatically incremented and placed on the address bus during each instruction fetch cycle.
IX	Index Register	16	Used for indexed addressing.
IY .	Index Register	16	Used for indexed addressing
SP	Stack Pointer	16	Holds address of the top of the stack. See Push or Pop in instruction set.
PC	Program Counter	16	Holds address of next instruction.
IFF1-IFF2	Interrupt Enable	Flip-Flops	Set or reset to indicate interrupt status (see Figure 4).
IMFa-IMFb	Interrupt Mode	Flip-Flops	Reflect Interrupt mode (see Figure 4).

failure has been detected. After recognition of the NMI signal (providing BUSREQ is not active), the CPU jumps to restart location 0066H. Normally, software starting at this address contains the interrupt service routine.

Maskable Interrupt (INT). Regardless of the interrupt mode set by the user, the CPU response to a maskable interrupt input follows a common timing cycle. After the interrupt has been detected by the CPU (provided that interrupts are enabled and $\overline{\text{BUSREQ}}$ is not active) a special interrupt processing cycle begins. This is a special fetch (M1) cycle in which $\overline{\text{IORQ}}$ becomes active rather than $\overline{\text{MREQ}}$, as in a normal M1 cycle. In addition, this special M1 cycle is automatically extended by two WAIT states, to allow for the time required to acknowledge the interrupt request.

Mode 0 Interrupt Operation. This mode is similar to the 8080 microprocessor interrupt service procedures. The interrupting device places an instruction on the data bus. This is normally a Restart instruction, which will initiate a call

to the selected one of eight restart locations in page zero of memory. Unlike the 8080, the Z80 CPU responds to the Call instruction with only one interrupt acknowledge cycle followed by two memory read cycles.

Mode 1 Interrupt Operation. Mode 1 operation is very similar to that for the NMI. The principal difference is that the Mode 1 interrupt has only one restart location, 003/8H.

Mode 2 Interrupt Operation. This interrupt mode has been designed to most effectively utilize the capabilities of the Z80 microprocessor and its associated peripheral family. The interrupting peripheral device selects the starting address of the interrupt service routine. It does this by placing an 8bit vector on the data bus during the interrupt acknowledge cycle. The CPU forms a pointer using this byte as the lower 8 bits and the contents of the I register as the upper 8 bits. This points to an entry in a table of addresses for interrupt service routines. The CPU then jumps to the routine at that address. This flexibility in selecting the interrupt service routine address allows the peripheral device to use several different types of service routines. These routines may be located at any available location in memory. Since the interrupting device supplies the low-order byte of the 2-byte vector, bit 0 (A_n) must be a zero.

Interrupt Enable/Disable Operation. Two flip-flops, IFF₁ and IFF₂, referred to in the register description, are used to signal the CPU interrupt status. Operation of the two flip-flops is described in Table 2. For more details, refer to the Z80 CPU Technical Manual (03-0029-01) and Z80 Assembly Language Programming Manual (03-0002-01).

Table 2. State of Flip-Flops

Action	IFF ₁	IFF2	Comments
CPU Reset	0	0	Maskable interrupt
DI instruction execution	0	0	Maskable interrupt
El instruction execution	1	1	Maskable interrupt
LD A,I instruction execution	٠	٠	IFF ₂ → Parity flag
LD A,R instruction execution	•	•	$IFF_2 \rightarrow Parity flag$
Accept NMI	0	•	Maskable interrupt
RETN instruction execution	IFF ₂	•	IFF ₂ → IFF ₁ at completion of an MII service routine.

INSTRUCTION SET

The microprocessor has one of the most powerful and versatile instruction sets available in any 8-bit microprocessor. It includes such unique operations as a block move for fast, efficient data transfers within memory, or between memory and I/O. It also allows operations on any bit in any location in memory.

The following is a summary of the instruction set which shows the assembly language mnemonic, the operation, the flag status, and gives comments on each instruction. For an explanation of flag notations and symbols for mnemonic tables, see the Symbolic Notations section which follows these tables. The *Z80 CPU Technical Manual* (03-0029-01), the *Programmer's Reference Guide* (03-0012-03), and *Assembly Language Programming Manual* (03-0002-01) contain significantly more details for programming use.

The instructions are divided into the following categories:

- □ 8-bit loads
- □ 16-bit loads
- Exchanges, block transfers, and searches
- 8-bit arithmetic and logic operations
- General-purpose arithmetic and CPU control
- 16-bit arithmetic operations
- Rotates and shifts

- □ Bit set, reset, and test operations
- Jumps
- □ Calls, returns, and restarts
- Input and output operations

A variety of addressing modes are implemented to permit efficient and fast data transfer between various registers, memory locations, and input/output devices. These addressing modes include:

- □ Immediate
- Immediate extended
- Modified page zero
- □ Relative
- □ Extended
- Indexed
- Register
- Register indirect
- □ Implied
- 🗆 Bit

8-BIT LOAD GROUP

	Symbolic				Fk	lgs					Opcod	e		No. of	No. of M	No. of T		
Vnemonic	Operation	S	Z		H			N	С		543		Hex	Bytes	Cycles		Com	ments
LD r, r'	r ← r'	٠	٠	х	•	х	•	•	•	01	r	r'		1	1	4	r, r'	Reg
Dr, n	r+−n	٠	٠	х	•	х	٠	٠	٠	00	r	110		2	2	7	000	B
											+n-						001	С
_D r, (HL)	r 🛨 (HL)	٠	٠	Х	٠	Х	٠	٠	٠	01	r	110		1	2	7	010	D
_D r, (IX + d)	r ← (IX + d)	٠	٠	Х	٠	х	٠	٠	٠	11	011	101	DD	3	5	19	011	Ε
										01	r	110					100	н
							• •				+-d-→						101	L
Dr, (IY+d)	r ← (IY + d)	٠	٠	х	٠	х	٠	٠	٠	11	111	101	FD	3	5	19	111	Ā
										01	r	110						
											+- d →							
_D (HL), r	(HL) ← r	٠	٠	Х	٠	Х	٠	٠	٠	01	110	r		1	2	7		
D (IX + d), r	(lX+d) ← r	٠	٠	Х	٠	Х	٠	٠	٠	11	011	101	DD	3	5	19		
										01	110	r						
											+ d →							
.D (IY + d), r	(IY+d) + r	٠	٠	х	٠	х	•	٠	٠	11	111	101	FD	3	5	19		
		•								01	110	r						
											+ d →							
.D (HL), n	(HL) 🕂 n	•	٠	х	٠	х	٠	٠	٠	00	110	110	36	2	3	10		
											+n→							
.D (IX + d), n	(IX + d) 🕶 n	٠	•	х	٠	х	٠	٠	٠	11	011	101	DD	4	5	19		
										00	110	110	36					
											+-d →							
											← n→							

PS017801-0602

9

ł

16-BIT LOAD GROUP (Continued)

Mnemonic	Symbolic Operation	s	z		Fla H	ngs	P/V	N	С	76	Opcod 543	e 210	Hex	No. of Bytes	No. of M Cycles	No. of T States	Comm	ente
	•										.				•			
LD IX, (nn)	IX _H ← (nn + 1)	•	•	X	•	X	•	•	•	11 00	011	101 010	DD 2A	4	6	20		
	i∧ <u>i</u> ← (riii)									00	+n→		24					
											+n→							
LD IY, (nn)	lY _H ← (nn + 1)	•	•	х	•	х	•	•	•	11	. 111		FD	4	6	20		
	IYL + (nn)									00	101		2A					
											← n →	•						
											← n→							
LD (nn), HL	(nn + 1) 🕶 H	٠	٠	х	٠	Х	•	•	٠	00	100	010	22	3	5	16		
	(∩n)+-L										← n→							
											≁ n→							:
LD (nn), dd	(nn + 1) ← dd _H	٠	٠	х	•	Х	•	•	•	11	101		ED	4	6	20		
	(nn) ← dd _L									01	dd0							
											+ n → + n →							
LD (nn), IX	(nn + 1) ← IX _H	•	•	x		х		•		11		101	DÐ	4	6	20		
20 (111), 01	(nn) ← IX ₁		-	~		~				00	100		22	-	U	20		
											+n→							
											+n→							
LD (nn), IY	(nn + 1) ← IY _H	٠	٠	х	٠	Х	•	•	٠	11	111	101	FD	4	6	20		
	(nn) 🛨 IY _L									00	100	010	22					
											← n →							
											← n→							
LD SP, HL	SP - HL	٠	•		•	X	•	•	٠	11	111		F9	1	1	6		
LD SP, IX	4SP + IX	•	•	Х	٠	х	•	•	•	11	011	101	DD	2	2	10		
LD SP, IY	SP ← IY		•	x		x	•		•	11 11	111	001 101	F9 FD	2	2	10		
LD OF, II	3F - 11	•	•	^	•	^	•	•	•	11	111	001	F9	2	2	10	qq	Pair
PUSH qq	(SP - 2) ← qq	•	•	x		x	•	•	•	11	qq0	101		1	3	11		BC
भभ	(SP ~ 1) ← qq _H										777				-			DE
	SP→SP - 2																	HL
PUSHIX	(SP - 2) + IXL	٠	٠	х	•	х	٠	•	•	11	011	101	DD	2	4	15	11	AF
	(SP - 1) + IX _H									11	100	101	E5					
	SP→SP -2																	
PUSHIY	(SP - 2) ← IY _L	٠	٠	х	٠	Х	•	•	•	11	111	101	FD	2	4	15		
	(SP – 1) ← IY _H									11	100	101	E5					
	SP→SP -2											004			0	10		
POP qq	qq _H ← (SP + 1)	•	•	X	٠	Х	•	•	•	11	qq0	001		1	3	10		
	qqL ← (SP) SP → SP + 2																	1
POP IX	$SP \rightarrow SP + 2$ $IX_H \leftarrow (SP + 1)$			y		¥				11	011	101	DD	2	4	14		
	IX _L ← (SP + 1)	-	-	^	•	^	-	-	2	11		001	E1	£	т			
	$SP \rightarrow SP + 2$									••								
POPIY	IY _H ← (SP + 1)	•	•	х	•	х	. •	•	•	11	111	101	FD	2	4	14		
	IYL + (SP)									11		001	E1					
	SP -+ SP +2																	

.

NOTE: (PAIR)_H, (PAIR)_L refer to high order and low order eight bits of the register pair respectively, e.g., BC_L = C, AF_H = A.

PS017801-0602

11

Mnemonic	Symbolic Operation	s	z		FI H	aga		/ N	с	76	Opcoc 543	ie 210	Hex	No. of Bytes	No. of M Cycles	No. of T States	Comments
EX DE, HL	DE ++ HL	•	•	x	•	X	•	•	•	11	101	011	EB	 1	1	4	
EX AF, AF'	AF ++ AF'			x	•	x			•	00	001	000	08	1	1	4	
EXX	BC ++ BC'			x		x				11	011	001	D9	1	1	4	De sister bit a
	DE ++ DE' HL ++ HL'	•	-	~	•	Ŷ	·	-	·		011		09	s	ı	4	Register bank and auxiliary register bank exchange
EX (SP), HL	H ↔ (SP + 1) L ↔ (SP)	٠	•	х	٠	x	٠	•	•	11	100	011	E3	1	5	19	excitatige
ex (SP), IX	IX _H ↔ (SP + 1) IX _L ↔ (SP)	٠	٠	х	•	X	٠	•	•	11 11	011 100	101 011	DD E3	2	6	23	
EX (SP), IY	IY _H ++ (SP + 1)	•	•	х		x	•	•		11	111	101	FD	2	6	23	
	IYL ↔ (SP)					~	ብ			11	100	011	E3	2	Ū	25	
LDI	(DE) + (HL)	•	•	х	0	х	Ť	0	•	11	101	101	ED	2	4	16	Load (HL) into
	DE ← DE + 1 HL ← HL + 1 BC ← BC - 1				•			•		10	100	000	AO	L	4	10	(DE), increme the pointers a decrement the
							ø										byte counter
LDIR	(DE) - (HL)			¥	0	x	@	0	•	11	101	101	ED	2	5		(BC)
	$DE \leftarrow DE + 1$ HL \leftarrow HL + 1 BC \leftarrow BC - 1 Repeat until BC = 0	-	-	^	Ū	~	Ū	Ū	•	10	110	000	BO	2	4	21 16	If BC ≠ 0 If BC = 0
							ര										
_DD	(DE) ← (HL) DE ← DE – 1 HL ← HL – 1 BC ← BC – 1	•	•	x	0	x	Ť	0	•	11 10	101 101	101 000	ED A8	2	4	16	-
							2										
DDR	(DE) + (HL)	•	•	x	0	х		0	•	11	101	101	ED	2	5	21	lf BC ≠ 0
	DE ← DE 1 HL ← HL 1 BC ← BC 1									10	111	000	B 8	2	4	16	If BC = 0
	BC = 0		~				~										
CPI	A (LH.)	. (ঙ	v		v	() ‡				404		50	•			
261	A – (HL)	ŧ	ŧ	×	Ŧ	X	Ŧ	1	•	11	101	101	ED	2	4	16	
	HL++1 BC++BC-1									10	100	001	A1				

EXCHANGE, BLOCK TRANSFER, BLOCK SEARCH GROUPS

.

② P/V flag is 0 only at completion of instruction.
 ③ Z flag is 1 if A = HL, otherwise Z = 0.

ROTATE AND SHIFT GROUP (Continued)

Mnemonic	Symbolic Operation	S	z		Fla H	ngs		/ N	C	76	Opcod 543	e 210	Hex	No. of Byt es	No. of M Cycles	No. of T States	Comment
RLC r		\$	\$	x	0	x	P	0	• ŧ	11 00	001 000	011 r	СВ	2	2	8	Rotate left circular register r.
RLC (HL)		;	\$	x	0	X	Ρ	0	\$	11 00	001 000	011 110	СВ	2	4	15	<u>r Re</u> 000 B
RLC (IX + d)	r,(HL),(IX + d),(IY +	t d)	\$	X	0	х	P	0	+	11 11 00	011 001 ← d → 000		DD CB	4	6	23	001 C 010 D 011 E 001 H 101 L
RLC (IY + d)	ļ	‡	ŧ	x	0	x	Ρ	0	*	11 11	111 001	101 011	FD CB	4	6	23	111 A
1 6 171	[cy]+7●]+-] m = r,(HL,(IX + d),(i	‡ Y+0		x	0	x	P	0	ŧ	00	+-d-+ 000 010	110					Instruction format and states are as shown for
IRCm ⊊	<u>7+0</u> -€CY m = r,(HL),(IX + d),(I			x	0	x	Ρ	0	ŧ		001						RLCs. To for new opcode replace 000 or RLCs with
	7+e]€cy-] m = r,(HL),(IX + d),(I	•		x	0	x	Ρ	0	ŧ		011						shown code
	cv][70]-+-0 m = r,(HL),(IX + d),(I			ĸ	0	x	Ρ	0	ŧ		100						
	<mark>7>●]</mark> >[cv] m = r,(HL),(IX + d),(I	•		<	0	x	Ρ	0	ŧ	- 1.	101						
	<u>7</u> €CY m = r,(HL),(IX + d),(I	‡ Y+c		(0	x	P	0	\$		[111]						
LD 7-4	30 7-4 30 4 7-4 30 4 7-4 30 (HL)	:	; >	¢	0	x	P	0	•	11 01		101 111	ED 6F	2	5		Rotate digit left and right betwee the accumu-
RD 74	30)	•	;)	[0	x	Ρ	0	•	11 01		101 111	ED 67	2	5	18	lator and location (HL) The content of the upper half of the accumulator is unaffected

.

PS017801-0602

16

INPUT AND OUTPUT GROUP

Maamania	Symbolic	~				aga			~		Opcod			No. of		No. of T	•
mnemonic	Operation		Z		H		P /	VN	<u> </u>	76	543	210	Hex	Bytes	Cycles	States	Comments
N A, (n)	A 🛨 (n)	٠	` •	Х	٠	Х	٠	٠	٠	11	011	01	DB	2	3	11	n to A ₀ ~ A ₇
											←n→						Acc. to $A_8 \sim A_{15}$
N r, (C)	r ← (C)	\$	+	Х	\$	Х	Ρ	0	٠	11	101	101	ED	2	3	12	C to $A_0 \sim A_7$
	if r = 110 only									01	r	000					B to A ₈ ~ A ₁₅
	the flags will																
	be affected		_														
			C	· · ·													
11	(HL) ← (C)	Х	\$	X	Х	X	X	1	x	11	101	101	ED	2	4	16	C to $A_0 \sim A_7$
	B←B-1		~							10	100	010	A2				B to Ag ~ A ₁₅
	HL←HL+1		Ø														
liR	(HL) ← (C)	X	1	X	X	x	Х	1	x	11	101	101	ED	2	5	21	C to A ₀ ~ A ₇
	B+B-1									10	110	010	B2		(lf B≠0)		B to A ₈ ~ A ₁₅
	HL ← HL+1													2	4	16	
	Repeat until								٦.						(If B = 0)		
	B=0		\sim														
		••	Ý	۱.,	••	••	• •		۰.					~			• • •
1D	(HL) ← (C)	X	\$	Х	X	Х	X	1	Х	11	101	101	ED	2	4	16	C to $A_0 \sim A_7$
	B←B-1		~							10	101	010	AA				B to $A_8 \sim A_{15}$
			Q)	.,	.,	.,							-	_	·	.
IDR	(HL) ← (C)	X	1	X	X	X	X	1	x	11	101	101	ED	2	5	21	C to $A_0 \sim A_7$
	B←B-1									10	111	010	BA		(lf B≠0)		B to A8 ~ A15
	HL←HL-1													2	4	16	
	Repeat until B = 0														(If B = 0)		
UT (n), A				v	•	x	•			11	010	011	D3	2	3	11	
-	(1) N	7	•	^	•	^	Ī	•	•		+ n →	VII	05	· 2	3		
UT (C), r	(C) + r			x	•	х				11	101	101	ED	2	з	12	Acc. to $A_8 \sim A_{15}$ C to $A_0 \sim A_7$
01(0),1		•	•	^	•		•	•	•	01	r	001		2	3	12	$B to A_8 \sim A_{15}$
			ി							01	ſ	001					D 10 18 10 115
UTI	(C) + (HL)	x	Ť	x	x	x	x	1	x	11	101	101	ED	2 [;]	4	16	C to A ₀ ~ A ₇
	B←B-1	~	•	~	~	~	Ŷ	•	^	10	100	011	A3	-	-	.0	B to $A_8 \sim A_{15}$
	HL←HL+1		0	ŀ								•	~~~				01010-015
rir	(C) ← (HL)		1	x	x	x	x	1	x	11	101	101	ED	2	5	21	C to A ₀ ~ A ₇
-	B←B-1		•			.,		•		10		011	83	-	(lf B≠0)		B to A ₈ ~ A ₁₅
	 HL ← HL + 1											••••		2	4	16	0 10 18 10 115
	Repeat until													-	(If B = 0)		
	B=0														(
	-		ി														
JTD	(C) ← (HL)		¥	х	х	х	х	1	х	11	101	101	ED	2	4	16	C to $A_0 \sim A_7$
	B+B-1		,							10		011	AB	-	•		B to $A_8 \sim A_{15}$
	HL+HL-1																
	,		Ć)														
DR	(C) ~ (HL)		1	х	х	х	х	1	х	11	101	101	ED	2	5	21	C to $A_0 \sim A_7$
	B←B-1									10	-	011		-	(lf B≠0)		B to A ₈ ~ A ₁₅
	HL←HL-1													2	4	16	
	Repeat until														(If B=0)		
	B=0														··· = -/		

.

NOTES: (1) If the result of B - 1 is zero, the Z flag is set; otherwise it is reset. (2) Z flag is set upon instruction completion only.

SUMMARY OF FLAG OPERATION

	D ₇				-			Do	}
Instructions	S	Z		Н		P/V	N	Ċ	Comments
ADD A, s; ADC A, s	\$	\$	X	+	Х	V	0	\$	8-bit add or add with carry.
SUB s; SBC A, s; CP s; NEG	\$ '	\$	х	\$	х	۷	1	+	8-bit subtract, subtract with carry, compare and negate accumulator.
AND s	\$	\$	Х	1	Х	Ρ	0	0	Logical operation.
OR s, XOR s	\$	\$	х	0	х	Ρ	0	0	Logical operation.
INCs	+	‡.	Х	\$	Х	V	0	•	8-bit increment.
DEC s	‡ -	‡	Х	*	Х	V	1	•	8-bit decrement.
ADD DD, ss	•	•	Х	X	Х	•	0	\$	16-bit add.
ADC HL, ss	\$	\$	Х	х	Х	V	0	‡	16-bit add with carry.
SBC HL. ss	+	\$	х	х	х	V	1	\$	16-bit subtract with carry.
RLA; RLCA; RRA; RRCA		•	х	0	Х	٠	0	‡	Rotate accumulator.
RL m; RLC m; RR m; RRC m; SLA m;	ŧ	\$	х	0	х	Ρ	0	\$	Rotate and shift locations.
SRA m; SRL m						_			.
RLD; RRD	+	+	X	0	X	P	0	•	Rotate digit left and right.
DAA	\$	ŧ	X	\$	X	Ρ	•	+	Decimal adjust accumulator.
CPL	٠	٠	Х	1	X	•	1	•	Complement accumulator.
SCF	٠	٠	X	0	X	•	0	1	Set carry.
CCF	•	•	х	х	Х	٠	0	ŧ	Complement carry.
IN r (C)	\$	ŧ	Х	0	Х	Ρ	0	•	Input register indirect.
INI; IND; OUTI; OUTD	х	+	Х	х	Х	х	1	•	Block input and output. $Z = 1$ if $B \neq 0$, otherwise $Z = 0$.
INIR; INDR; OTIR; OTDR	х	1	Х	х	Х	х	1	٠	Block input and output. $Z = 1$ if $B \neq 0$, otherwise $Z = 0$.
LDI; LDD	х	х	Х	0	Х	\$	0	٠	Block transfer instructions. $PN = 1$ if BC $\neq 0$, otherwise $PN = 0$.
LDIR; LDDR	х	Х	х	0	Х	0	0	•	Block transfer instructions. $PN = 1$ if BC $\neq 0$, otherwise $PN \models 0$.
CPI; CPIR; CPD; CPDR	х	\$	X	x	х	ŧ	1	٠	Block search instructions. $Z = 1$ if $A = (HL)$, otherwise $Z = 0$. P/V = 1 if BC $\neq 0$, otherwise P/V = 0.
LD A; I, LD A, R	\$	\$	х	0	х	IFF	0	٠	IFF, the content of the interrupt enable flip-flop, (IFF ₂), is copied into the P/V flag.
BIT b, s	х	ŧ	х	1	х	х	0	•	The state of bit b of location s is copied into the Z flag.

SYMBOLIC NOTATION

Symbol Operation

- S Sign flag. S = 1 if the MSB of the result is 1.
- Z Zero flag. Z = 1 if the result of the operation is 0.
 P/V Parity or overflow flag. Parity (P) and overflow (V) share the same flag. Logical operations affect this flag with the parity of the result while arithmetic operations affect this flag with the overflow of the result. If P/V holds parity: P/V = 1 if the result of the operation is even; P/V = 0 if result is odd. If P/V holds overflow, P/V = 1 if the result of the operation produced an overflow. If P/V does not hold overflow, P/V = 0.
- H* Half-carry flag. H = 1 if the add or subtract operation produced a carry into, or borrow from, bit 4 of the accumulator.
- N* Add/Subtract flag. N = 1 if the previous operation was a subtract.
- C Carry/Link flag. C = 1 if the operation produced a carry from the MSB of the operand or result.

Symbol Operation

\$	The flag is affected according to the result of the operation.
•	The flag is unchanged by the operation.
0	The flag is reset by the operation.
1	The flag is set by the operation.
Х	The flag is indeterminate.
V	P/V flag affected according to the overflow result of the operation.
Р	PN flag affected according to the parity result of the operation.
r	Any one o the CPU registers A, B, C, D, E, H, L
s	Any 8-bit location for all the addressing modes allowed for the particular instruction.
SS	Any 16-bit location for all the addressing modes allowed for that instruction.
ü	Any one of the two index registers IX or IY.
R	Refresh counter.
n	8-bit value in range < 0, 255 >.
nn	16-bit value in range < 0, 65535 >.

* H and N flags are used in conjunction with the decimal adjust instruction (DAA) to properly correct the result into packed BCD format following addition or subtraction usin ... perands with packed BCD format.

CPU TIMING

The Z80 CPU executes instructions by proceeding through a specific sequence of operations:

- Memory read or write
- I/O device read or write
- Interrupt acknowledge

The basic clock period is referred to as a T time or cycle, and three or more T cycles make up a machine cycle (M1, M2 or M3 for instance). Machine cycles can be extended either by the CPU automatically inserting one or more Wait states or by the insertion of one or more Wait states by the user. Instruction Opcode Fetch. The CPU places the contents of the Program Counter (PC) on the address bus at the start of the cycle (Figure 5). Approximately one-half clock cycle later, MREQ goes active. When active, RD indicates that the memory data can be enabled onto the CPU data bus.

The CPU samples the \overline{WAIT} input with the falling edge of clock state T_2 . During clock states T_3 and T_4 of an $\overline{M1}$ cycle, dynamic RAM refresh can occur while the CPU starts decoding and executing the instruction. When the Refresh Control signal becomes active, refreshing of dynamic memory can take place.

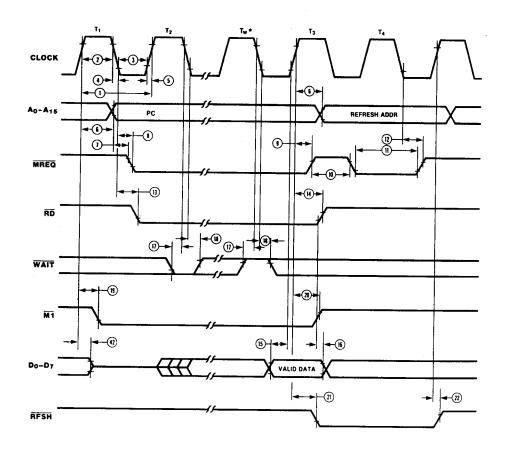


Figure 5. Instruction Opcode Fetch

Memory Read or Write Cycles. Figure 6 shows the timing of memory read or write cycles other than an opcode fetch (M1) cycle. The MREQ and RD signals function exactly as in the fetch cycle. In a memory write cycle, MREQ also

becomes active when the address bus is stable. The \overline{WR} line is active when the data bus is stable, so that it can be used directly as an R/\overline{W} pulse to most semiconductor memories.

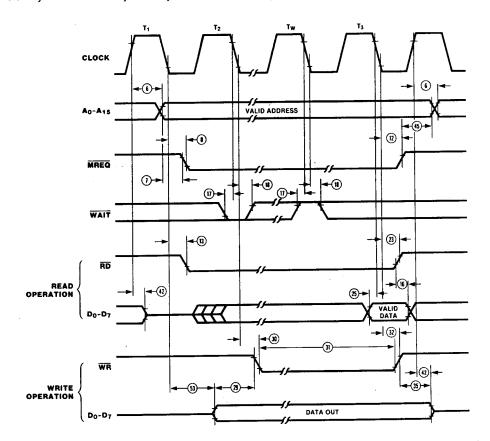
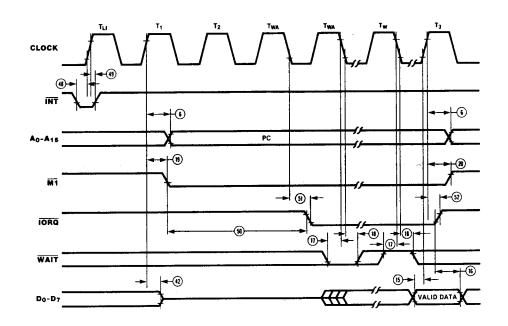
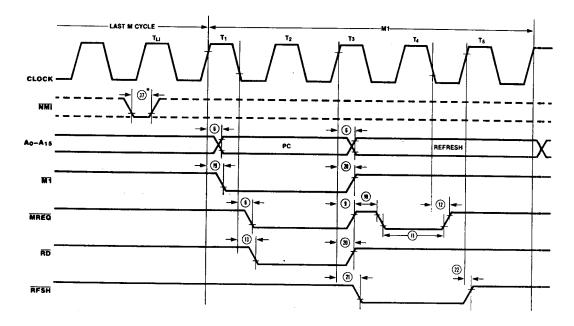



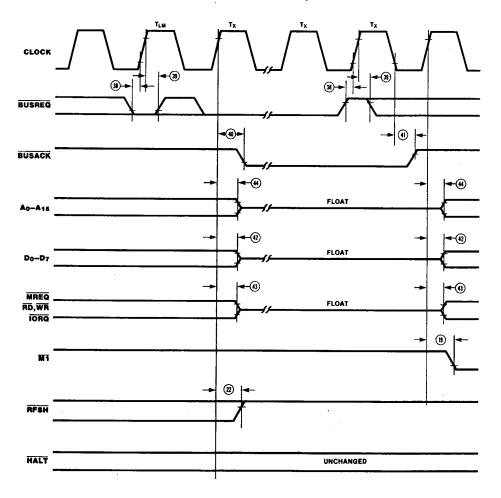
Figure 6. Memory Read or Write Cycles


.

Interrupt Request/Acknowledge Cycle. The CPU samples the interrupt signal with the rising edge of the last clock cycle at the end of any instruction (Figure 8). When an interrupt is accepted, a special $\overline{M1}$ cycle is generated.

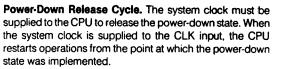
During this $\overline{M1}$ cycle, \overline{IORQ} becomes active (instead of \overline{MREQ}) to indicate that the interrupting device can place an 8-bit vector on the data bus. The CPU automatically adds two Wait states to this cycle.

Non-Maskable Interrupt Request Cycle. NMI is sampled at the same time as the maskable interrupt input INT but has higher priority and cannot be disabled under software control. The subsequent timing is similar to that of a normal memory read operation except that data put on the bus by the memory is ignored. The CPU instead executes a restart (RST) operation and jumps to the $\overline{\text{NMI}}$ service routine located at address 0066H (Figure 9).



*Although NMI is an asynchronous input, to guarantee its being recognized on the following machine cycle, NMI's falling edge must occur no later than the rising edge of the clock cycle preceding the last state of any instruction cycle (TLI).

Figure 9. Non-Maskable Interrupt Request Operation


Bus Request/Acknowledge Cycle. The CPU samples BUSREQ with the rising edge of the last clock period of any machine cycle (Figure 10). If BUSREQ is active, the CPU sets its address, data, and MREQ, IORQ, RD, and WR lines

to a high-impedance state with the rising edge of the next clock pulse. At that time, any external device can take control of these lines, usually to transfer data between memory and I/O devices.

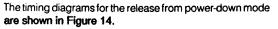

NOTES: 1) T_{LM} = Last state of any M cycle. 2) T_X = An arbitrary clock cycle used by requesting device.

Figure 10. BUS Request/Acknowledge Cycle

NOTES:

- When the external oscillator has been stopped to enter the power-down state, some warm-up time may be required to obtain a stable clock for the release.
- 2) When the HALT instruction is executed to enter the power-down state, the CPU will also enter the Halt state. An interrupt signal (either NMI or INT) or a RESET signal must be applied to the CPU after the system clock is supplied in order to release the power-down state.

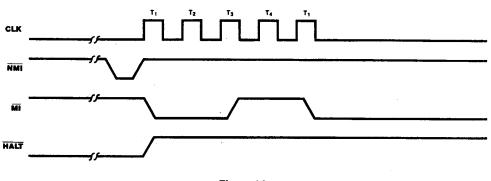


Figure 14a.

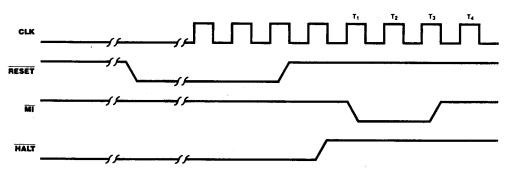


Figure 14b.

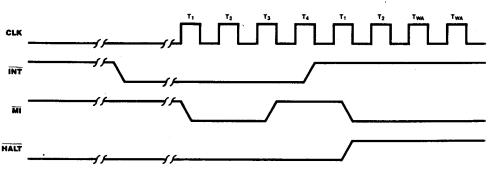


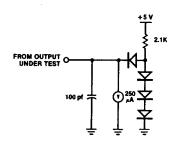
Figure 14c.

Figure 13. Power-Down Release

ABSOLUTE MAXIMUM RATINGS

Voltage on V _{CC} with respect to V_{SS} 0.3V to +7V
Voltages on all inputs with respect
to V_{SS}
Operating Ambient
Temperature
Storage Temperature 65°C to + 150°C

STANDARD TEST CONDITIONS


The DC Characteristics and capacitance sections below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND (0V). Positive current flows into the referenced pin.

Available operating temperature ranges are:

S = 0°C to +70°C Voltage Supply Range: NMOS: +4.75V ≤ VCC ≤ +5.25V CMOS: +4.50V ≤ VCC ≤ +5.50V E = -40°C to 100°C, +4.50V ≤ VCC ≤ +5.50V

All ac parameters assume a load capacitance of 100 pf. Add 10 ns delay for each 50 pf increase in load up to a maximum of 200 pf for the data bus and 100 pf for address and control lines. AC timing measurements are referenced to 1.5 volts (except for clock, which is referenced to the 10% and 90% points). Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

The Ordering Information section lists temperature ranges and product numbers. Package drawings are in the Package Information section. Refer to the Literature List for additional documentation.

DC CHARACTERISTICS (Z84C00/CMOS Z80 CPU)

Symbol	Parameter	Min	Max	Unit	Condition
VILC	Clock Input Low Voltage	~0.3	0.45	v	
VIHC	Clock Input High Voltage	V _{CC} – .6	V _{CC} +.3	v	
V _{IL}	Input Low Voltage	- 0.3	0.8	v	
VIH	Input High Voltage	2.2	Vcc	v	
V _{OL}	Output Low Voltage		0.4	v	l _{OL} = 2.0 mA
V _{OH1}	Output High Voltage	2.4		v	l _{OH} = −1.6 mA
V _{OH2}	Output High Voltage	V _{CC} -0.8		v	$I_{OH} = -250 \mu A$
ICC1	Power Supply Current 4 MHz 6 MHz 8 MHz 10 MHz 20 MHz		20 30 40 50 100	mA mA mA mA	$V_{CC} = 5V$ $V_{IH} = V_{CC} - 0.2V$ $V_{IL} = 0.2V$ $V_{IL} = 5V$
ICC2	Standby Supply Current		10	μA	$V_{oc} = 5V$ $V_{CC} = 5V$
					CLK = (0) $V_{IH} = V_{CC} - 0.2V$ $V_{IL} = 0.2V$
ILI	Input Leakage Current	-10	10	μA	$V_{IN} = 0.4$ to V_{CC}
lo	3-State Output Leakage Current in Float	- 10	10 ²	μA	$V_{OUT} = 0.4$ to V_{CC}

Measurements made with outputs floating.
 A₁₅-A₀, D₇-D₀, MREQ, IORQ, RD, and WR.
 I_{CC2} standby supply current is guaranteed only when the supplied clock is stopped at a low level during T₄ of the machine cycle immediately following the execution of a HALT instruction.

CAPACITANCE

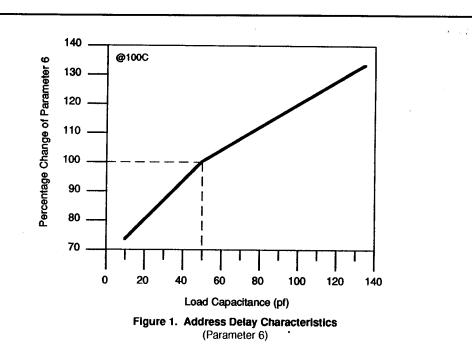
Symbol	Parameter	Min	Max	Unit
CCLOCK	Clock Capacitance		10	pf
C _{IN}	Input Capacitance		5	pf
COUT	Output Capacitance		15	pif

 $T_A = 25$ °C, f = 1 MHz. Unmeasured pins returned to ground.

AC CHARACTERISTICS[†] (Z84C00/CMOS Z80 CPU; Continued) V_{cc} =5.0V ± 10%, unless otherwise specified

			Z84C0004 Z84C0006		Z84C0008 Z		Z84(Z84C0010		Z84C0020[1]		Note		
No	Symbol	Parameter	Min	Мах	Min	Мах	Min	Max	Min	Max	Min	Max		
39	ThBUSREQ	/BUSREQ hold time	10		10		10		10	•••••	10		nS	
	(Cr)	after Clock Rise												
40	TdCr	Clock Rise to /BASACK		100		90		80		75		40	nS	
	(BUSACKf)	Fall delay												
41	TdCf	Clock Fall to /BASACK		100		90		80		75		40	nS	
	(BUSACKr)	Rise delay												
42	TdCr(Dz)	Clock Rise to Data float delay		90		80		70		6 5		40	nS	
43	TdCr(CTz)	Clock Rise to Control Outputs												
		Float Delay (/MREQ, /IORQ,												
		/RD and /WR)		80		70		60		65		40	nS	
44	TdCr(Az)	Clock Rise to Address		90		80		70		75		40	nS	
		float delay												
45	TdCTr(A)	Address Hold time from /MREQ,	80*		35*		20*		20*		0*		nS	
		/IORQ, /RD or /WR												
46	TsRESET(Cr)	/RESET to Clock Rise setup time	60		60		45		40		15		nS	
47	ThRESET(Cr)	/RESET to Clock Rise Hold time	10		10		10		10		10		nS	
48	TsINTf(Cr)	/INT Fall to Clock Rise	80		70		55		50		15		nS	
		Setup Time												
49	ThINTr(Cr)	/INT Rise to Clock Rise	10		10		10		10		10		nS	
		Hold Time												
50	TdM1f	/M1 Fall to /IORQ Fall delay	565'	,	359*		270'	*	220'	•	100*	r	nS	
	(IORQf)													
51	TdCf(IORQf)	/Clock Fall to /IORQ Fall delay		8 5		70		60		55		45	nS	
52	TdCf(IORQr)	Clock Rise to /IORQ Rise delay		85		70		60		55		45	nS	
53	TdCf(D)	Clock Fall to Data Valid delay		150		130		115		110		75	nS	

Notes: * For Clock periods other than the minimum shown, calculate parameters using the following table.


Calculated values above assumed TrC = TfC = maximum. ** 4 MHz CMOS Z80 is obsoleted and replaced by 6 MHz

Z84C0020 parameters are guuaranteed with 50pF load Capacitance.
 If Capacitive Load is other than 50pF, please use Figure 1. to calculate the value.
 Increasing delay by 10nS for each 50pF increase in loading, 200pF max for data lines, and 100pF for control lines.

FOOTNOTES TO AC CHARACTERISTICS

No	Symbol	Parameter	Z84C0004	[*] Z84C0006	Z84C0008	Z84C0010	Z84C0020
1	TcC	TwCh + TwCl + TrC + TfC					
7	TdA(MREQf)	TwCh + TfC	-65	-50	-45	-45	-45
10	TwMREQh	TwCh + TfC	-20	-20	-20	-20	-20
11	TwMREQI	TcC	-30	-30	-25	-25	-25
26	TdA(IORQf)	TcC	-70	-55	-50	-50	-50
29	TdD(WRf)	TcC	-170	-140	-120	-60	-60
31	TwWR	TcC /	-30	-30	-25	-25	-25
33	TdD(WRf)	TwCI + TrC	-140	-140	-120	-60	-60
35	TdWRr(D)	TwCl + TrC	-70	-55	-50	-40	-25
45	TdCTr(A)	TwCI + TrC	-50	-50	-45	-30	-30
50	TdM1f(IORQf)	2TcC + TwCh + TfC	-65	-50	-45	-30	-30
AC Test	Conditions: $V_{IH} = 2.0$ $V_{IL} = 0.8$		V _{IHC} = V _{ILC} =	V _{CC} -0.6 V 0.45 V	Float = 1	E0.5 V	

PS017801-0602

DC CHARACTERISTICS (Z8400/NMOS Z80 CPU)

All parameters are tested unless otherwise noted.

Symbol	Parameter	Min	Max	Unit	Test Condition
V _{ILC}	Clock Input Low Voltage	-0.3	0.45	v	
VIHC	Clock Input High Voltage	V _{CC} – .6	V _{CC} +.3	v	
VIL	Input Low Voltage	- 0.3	0.8	v	
VIH	Input High Voltage	2.0 ¹	V _{CC}	v	
VOL	Output Low Voltage		0.4	v	l _{Oi} = 2.0 mA
V _{OH}	Output High Voltage	2.4 ¹		v .	l _{OH} = -250 μA
ICC.	Power Supply Current		200	mA	Note 3
lLi	Input Leakage Current		10	μA	$V_{IN} = 0$ to V_{CC}
ILO	3-State Output Leakage Current in Float	- 10	10 ²	μΑ	$V_{OUT} = 0.4$ to V_{CC}

For military grade parts, refer to the Z80 Military Electrical Specification.
 A₁₅-A₀, D₇-D₀, MREO, IORO, RD, and WR.
 Measurements made with outputs floating.

CAPACITANCE

Guaranteed by design and characterization.

Symbol	Parameter	Min	Max	Unit
C _{CLOCK}	Clock Capacitance		35	pf
C _{IN}	Input Capacitance		5	pf
COUT	Output Capacitance		15	pf

NOTES:

 $T_A = 25$ °C, f = 1 MHz. Unmeasured pins returned to ground.

•

PS017801-0602

AC CHARACTERISTICS[†] (Z8400/NMOS Z80 CPU; Continued)

			Z08 4	10004	Z08 4	0006	Z08 4	8000
Number	Symbol	Parameter	Min	Max	Min	Max	Min	Max
39	ThBUSREQ(Cr)	BUSREQ Hold Time after Clock t	0		0	-	0	•
40	TdCr(BUSACKf)	Clock t to BUSACK I Delay		100		90		80
41	TdCf(BUSACKr)	Clock ↓ to BUSACK ↑ Delay		100		90		80
42	TdCr(Dz)	Clock t to Data Float Delay		90		80		70
43	TdCr(CTz)	Clock t to Control Outputs Float Delay (MREQ, IORQ, RD, and WR)		80		70		60
44	TdCr(Az)	Clock t to Address Float Delay		90		80		70
45	TdCTr(A)	MREQ t, IORQ t, RD t, and WR t to Address Hold Time	. 80*		35*		20*	
46	TsRESET(Cr)	RESET to Clock † Setup Time	60		60		45	
47	ThRESET(Cr)	RESET to Clock t Hold Time		0		0		0
48	TsINTf(Cr)	INT to Clock † Setup Time	80		70		55	
49	ThINTr(Cr)	INT to Clock t Hold Time		0		0		0
50	TdM1f(IORQf)	M1 ↓ to IORQ ↓ Delay	565*		365*		270*	
51	TdCf(IORQf)	Clock ↓ to IORQ ↓ Delay		85		70		60
52	TdCf(IORQr)	Clock † IORQ † Delay		85		70		60
53	TdCf(D)	Clock I to Data Valid Delay		150		130		115

*For clock periods other than the minimums shown, calculate parameters using the following table. Calculated values above assumed TrC = TfC = 20 ns. †Units in nanoseconds (ns).

FOOTNOTES TO AC CHARACTERISTICS

Number	Symbol	General Parameter	Z0840004	Z0840006	Z0840008
1	TcC	TwCh + TwCl + TrC + TfC			
7	TdA(MREQf)	TwCh + TfC	- 65	- 50	- 45
10	TwMREQh	TwCh + TfC	- 20	- 20	- 20
11	TwMREQI	TcC	- 30	- 30	- 25
26	TdA(IORQf)	TcC	- 70	55	- 50
29	TdD(WRf)	TcC	- 170	- 140	- 120
31	TwWR	TcC	- 30	- 30	- 25
33	TdD(WRf)	TwCI + TrC	- 140	- 140	- 120
35	TdWRr(D)	TwCl + TrC	- 70	- 55	50
45	TdCTr(A)	TwCI + TrC	- 50	- 50	45
50	TdM1f(IORQf)	2TcC + TwCh + TfC	- 65	- 50	45

- AC Test Conditions: $V_{IH} = 2.0 V$ $V_{IL} = 0.8 V$ $V_{\rm IHC} = V_{\rm CC} - 0.6 V$ $V_{\rm ILC} = 0.45 V$

V_{OH} = 1.5 V V_{OL} = 1.5 V FLOAT = ±0.5 V

~