
E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	Z80
Number of Cores/Bus Width	1 Core, 8-Bit
Speed	8MHz
Co-Processors/DSP	-
RAM Controllers	-
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	5.0V
Operating Temperature	-40°C ~ 100°C (TA)
Security Features	-
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z84c0008aeg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

address. This flexibility in selecting the interrupt service routine address allows the peripheral device to use several different types of service routines. These routines may be located at any available location in memory. Since the interrupting device supplies the low-order byte of the 2-byte vector, bit 0 (A_n) must be a zero.

Interrupt Enable/Disable Operation. Two flip-flops, IFF₁ and IFF₂, referred to in the register description, are used to signal the CPU interrupt status. Operation of the two flip-flops is described in Table 2. For more details, refer to the Z80 CPU Technical Manual (03-0029-01) and Z80 Assembly Language Programming Manual (03-0002-01).

Table 2. State of Flip-Flops

Action	IFF ₁	IFF2	Comments
CPU Reset	0	0	Maskable interrupt
DI instruction execution	0	0	Maskable interrupt
El instruction execution	1	1	Maskable interrupt
LD A,I instruction execution	٠	٠	IFF ₂ → Parity flag
LD A,R instruction execution	•	•	IFF ₂ → Parity flag
Accept NMI	0	•	Maskable interrupt
RETN instruction execution	IFF ₂	•	IFF ₂ → IFF ₁ at completion of an MII service routine.

INSTRUCTION SET

The microprocessor has one of the most powerful and versatile instruction sets available in any 8-bit microprocessor. It includes such unique operations as a block move for fast, efficient data transfers within memory, or between memory and I/O. It also allows operations on any bit in any location in memory.

The following is a summary of the instruction set which shows the assembly language mnemonic, the operation, the flag status, and gives comments on each instruction. For an explanation of flag notations and symbols for mnemonic tables, see the Symbolic Notations section which follows these tables. The *Z80 CPU Technical Manual* (03-0029-01), the *Programmer's Reference Guide* (03-0012-03), and *Assembly Language Programming Manual* (03-0002-01) contain significantly more details for programming use.

The instructions are divided into the following categories:

- □ 8-bit loads
- □ 16-bit loads
- Exchanges, block transfers, and searches
- 8-bit arithmetic and logic operations
- General-purpose arithmetic and CPU control
- 16-bit arithmetic operations
- Rotates and shifts

- □ Bit set, reset, and test operations
- Jumps
- □ Calls, returns, and restarts
- Input and output operations

A variety of addressing modes are implemented to permit efficient and fast data transfer between various registers, memory locations, and input/output devices. These addressing modes include:

- □ Immediate
- Immediate extended
- Modified page zero
- □ Relative
- Extended
- Indexed
- Register
- Register indirect
- □ Implied
- 🗆 Bit

8-BIT LOAD GROUP (Continued)

	Symbolic				Fia	aga	,				Opcod	le		No. of	No. of M	No of T	
Mnemonic	Operation	S	Z		н	•		/ N	С		543		Hex	Bytes	Cycles	States	Commente
LD (IY + d), n	(lY+d) ← n	٠	•	х	•	x	٠	•	٠	11	111	101	FD	4	5	19	
										00	110	110	36				
											← d ⊣	•					
											+ n -	•					
LD A, (BC)	A 🛨 (BC)	٠	٠	Х	٠	Х	٠	٠	٠	00	001	010	0A	1	2	7	
LD A, (DE)	A 🗲 (DE)	•	٠	Х	٠	Х	•	٠	٠	00	011	010	1A	1	2	7	
LD A, (nn)	A 🛨 (nn)	٠	٠	х	٠	Х	٠	٠	٠	00	111	010	3A	3	4	13	
											+-n-+	•					
											← n →	•					
LD (BC), A	(BC) 🗕 A	٠	٠	х	٠	х	٠	٠	٠	00	000	010	02	1	2	7	
LD (DE), A	(DE) 🕂 A	٠	٠	х	٠	Х	٠	٠	٠	00	010	010	12	1	2	7	
LD (nn), A	(nn) 🗕 A	٠	٠	х	٠	х	٠	٠	٠	00	110	010	32	3	4	13	
											+- n →	•					
											+ n →	•					
LD A, I	A≁I	+	+	х	0	х	IFF	0	٠	11	101	101	ED	2	2	9	
										01	010	111	57				
LD A, R	A←R	\$	\$	х	0	Х	IFF	0	٠	11	101	101	ED	2	2	9	
										01	011	111	5F				
LD I, A	I←A	•	•	х	•	Х	•	•	•	11	101	101	ED	2	2	9	
	- .									01	000	111	47				
_D R, A	R←A	•	•	х	٠	Х	•	•	•	11	101	101	ED	2	2	9	
										01	001	111	4F				

NOTE: IFF, the content of the interrupt enable flip-flop, (IFF2), is copied into the P/V flag.

16-BIT LOAD GROUP

Mnemonic	Symbolic Operation	S	z		Fla H	ngs	P/\	N	c		Opcod 543		Hex	No. of Byt es	No. of M Cycles	No. of T States	Con	nmenti
LD dd, nn	dd 🛨 nn	٠	•	х	٠	х	•	٠	٠	00				3	3	10	dd	Pair
											+n-+						00	BC
											+ n→						01	DE
LD IX, nn	IX 🕂 nn	•	•	Х	٠	х		٠	•	11	011	101	DD	4	4	14	10	HL
										00	100	001	21				11	SP
											+ n →							
											+ n →							
LD IY, nn	IY 🕂 nn	•	•	Х	٠	х	٠	٠	٠	11	111	101	FD	4	4	14		
										00	100	001	21					
											+ n→							
											←n→							
LD HL, (nn)	H 🗲 (nn + 1)	٠	٠	х	٠	х	٠	٠	٠	00	101	010	2A	3	5	16		
	L 🗲 (nn)										←n→							
											←n→							
LD dd, (nn)	dd _H +- (nn + 1)	•	٠	х	٠	х	٠	•	٠	11	101	101	ED	4	6	20		
	dd _L 🛨 (nn)									01	dd1	011						
											←n →							
											+ n→							

.

NOTE: $(PAIR)_H$, $(PAIR)_L$ refer to high order and low order eight bits of the register pair respectively. e.g., $BC_L = C$, $AF_H = A$.

١

Mnemonic	Symbolic Operation	s	z		FI H	aga		/ N	с	76	Opcoc 543	ie 210	Hex	No. of Bytes	No. of M Cycles	No. of T States	Comments
EX DE, HL	DE ++ HL	•	•	x	•	X	•	•	•	11	101	011	EB	 1	1	4	
EX AF, AF'	AF ++ AF'			x	•	x			•	00	001	000	08	1	1	4	
EXX	BC ++ BC'			x		x				11	011	001	D9	1	1	4	De sister bit a
	DE ++ DE' HL ++ HL'	•	-	~	•	Ŷ	·	-	·		011		09	s	ı	4	Register bank and auxiliary register bank exchange
EX (SP), HL	H ↔ (SP + 1) L ↔ (SP)	•	•	х	•	x	٠	•	•	11	100	011	E3	1	5	19	excitatige
ex (SP), IX	IX _H ↔ (SP + 1) IX _L ↔ (SP)	٠	٠	х	•	X	٠	•	•	11 11	011 100	101 011	DD E3	2	6	23	
EX (SP), IY	IY _H ++ (SP + 1)	•	•	х		x	•	•		11	111	101	FD	2	6	23	
	IYL ↔ (SP)					~	ብ			11	100	011	E3	2	Ū	25	
LDI	(DE) + (HL)	•	•	х	0	х	Ť	0	•	11	101	101	ED	2	4	16	Load (HL) into
	DE ← DE + 1 HL ← HL + 1 BC ← BC - 1				•			•		10	100	000	AO	L	7	10	(DE), increme the pointers a decrement the
							ø										byte counter
LDIR	(DE) - (HL)			¥	0	x	@	0	•	11	101	101	ED	2	5		(BC)
	$DE \leftarrow DE + 1$ HL \leftarrow HL + 1 BC \leftarrow BC - 1 Repeat until BC = 0	-	-	^	Ū	~	Ū	Ū	•	10	110	000	BO	2	4	21 16	If BC ≠ 0 If BC = 0
							ര										
_DD	(DE) ← (HL) DE ← DE – 1 HL ← HL – 1 BC ← BC – 1	•	•	x	0	x	Ť	0	•	11 10	101 101	101 000	ED A8	2	4	16	-
							2										
DDR	(DE) + (HL)	•	•	x	0	х		0	•	11	101	101	ED	2	5	21	lf BC ≠ 0
	DE ← DE 1 HL ← HL 1 BC ← BC 1									10	111	000	B 8	2	4	16	If BC = 0
	BC = 0		~				~										
CPI	A (LH.)	. (ঙ	v		v	() ‡				404		50	•			
261	A – (HL)	ŧ	ŧ	×	Ŧ	X	Ŧ	1	•	11	101	101	ED	2	4	16	
	HL++1 BC++BC-1									10	100	001	A1				

EXCHANGE, BLOCK TRANSFER, BLOCK SEARCH GROUPS

.

② P/V flag is 0 only at completion of instruction.
 ③ Z flag is 1 if A = HL, otherwise Z = 0.

8-BIT ARITHMETIC AND LOGICAL GROUP (Continued)

	Symbolic		•		Fk	ngs				(Opcod	le		No. of	No. of M	No. of T	
Mnemonic	Operation	S	Z		H		P/V	N	С	76	543	210	Hex	Bytes	Cycles	States	Commente
INC r	r≁r+1	\$	\$	х	\$	Х	v	0	•	00	r	100		1	1	4	
INC (HL)	(HL) 🛨																
	(HL) + 1	\$	\$	х	\$	х	۷	0	٠	00	110	100		1	3	11	
INC (IX + d)	(IX + d) ←	‡	\$	Х	\$	х	۷	0	٠	11	011	101	DD	3	6	23	
	(IX + d) + 1									00	110	100					
											+-d-						
INC (IY + d)	(IY + d) ←	\$	\$	х	\$	х	۷	0	•	11	111	101	FD	3	6	23	
	(IY+d)+1									00	110	100					
											+ d -						
DECm	m+m−1	+	ŧ	Х	\$	х	V	1	٠			101					

GENERAL-PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

	Symbolic				Fk	ngs				(Opcod	•		No. of	No. of M	No. of T	
Mnemonic	Operation	8	Z		Η	_	PΛ	/ N	C	76	543	210	Hex	Bytes	Cycles	States	Comments
DAA	@	\$	\$	х	\$	X	Ρ	•	\$	00	100	111	27	1	1	4	Decimal adjus accumulator
CPL	A←A	•	•	×	1	X	•	1	•	00	101	111	2F	1	1	4	Complement accumulator (one's complement).
NEG	A ← 0 – A	ŧ	\$	х	\$	х	۷	1	\$	11	101	101	ED	2	2	8	Negate acc.
										01	000	100	44				(two's
																	complement).
CCF	CY + CY	•	٠	х	х	X	٠	0	\$	00	111	111	ЗF	1	. 1	4	Complement carry flag.
SCF	CY + 1	٠	٠	Х	0	Х	٠	0	1	00	110	111	37	1	1	4	Set carry flag.
NOP	No operation	٠	٠	Х	•	Х	٠	٠	٠	00	000	000	00	1	1	4	- 1
HALT	CPU halted	٠	٠	Х	•	х	٠	٠	٠	01	110	110	76	1	1	4	
DI 🛨	IFF 🕶 0	٠	٠	Х	٠	Х	٠	٠	٠	11	110	011	F3	1	1	4	
El 🛨	IFF 🛨 1	٠	٠	х	٠	х	٠	٠	٠	11	111	011	FB	1	1	4	
IM 0	Set interrupt	٠	٠	Х	٠	х	٠	٠	٠	11	101	101	ED	2	2	8	
	mode 0									01	000	110	46				
IM 1	Set interrupt	٠	٠	х	٠	х	٠	٠	٠	11	101	101	ED	2	2	8	
	mode 1									01	010	110	56				
M 2	Set interrupt	٠	٠	х	٠	х	٠	٠	٠	11	101	101	ED	2	2	8	-
	mode 2									01	011	110	5E				

NOTES: @ converts accumulator content into packed BCD following add or subtract with packed BCD operands. IFF indicates the interrupt enable flip-flop. CY indicates the carry flip-flop. * indicates interrupts are not sampled at the end of EI or DI.

16-BIT ARITHMETIC GROUP

Mnemonic	Symbolic Operation	s	z		Fla H	igs	P/V	N	с		Dpcod 543		Hex	No. of Bytes	No. of M Cycles	No. of T States	Con	merits
ADD HL, ss	HL ← HL + ss	٠	•	х	х	х	٠	0	\$	00	ssi	001		1	3	11	ss	Reg.
																	00	ВĊ
ADC HL, ss	HL←																01	Dŧ
	HL+ss+CY	‡	\$	х	Х	х	۷	0	\$	11	101	101	ED	2	4	15	10	ΗĻ
										01	ss1	010					11	SP
SBC HL, ss	HL ←																	
)	HL-ss-CY	\$	+	Х	Х	х	۷	1	‡	11	101	101	ED	2	4	15		
										01	ss0	010						
ADD IX, pp	IX 🛨 IX + pp	٠	٠	х	Х	х	٠	0	ŧ	11	011	101	DD	2	4	15	pp_	Reg.
										01	pp1	001					00	В¢
																	01	DE
																	10	IX
																	11	SP
ADD IY, rr	IY 🛨 IY + rr	٠	٠	Х	Х	х	٠	0	‡	11	111	101	FD	2	4	15	<u>rr</u>	Reg.
										00	rr1	001					00	B¢
INC ss	ss 🕶 ss + 1	•	•		•	х	٠	٠	•	00	ss0	011		1	1	6	01	Dŧ
INC IX	IX ← IX + 1	•	•	х	•	х	٠	٠	٠	11	011	101	DD	2	2	10	10	IY
										00	100	011	23				11	SP
INC IY	IY ← IY + 1	٠	٠	х	٠	х	٠	٠	٠	11	111	101	FD	2	2	10		
										00	100	011	23			_		
DEC ss	ss ← ss – 1	٠	•		•	X	•	•	•	00	ss1	011		1	1	6		
DEC IX	IX ← IX – 1	٠	٠	х	٠	Х	٠	٠	•	11	011	101	DD	2	2	10		
										00	101	011	2B		_			
DEC IY	IY ← IY – 1	٠	٠	х	٠	х	٠	٠	•	11	111	101	FD	2	2	10		
										00	101	011	28					

.

ROTATE AND SHIFT GROUP

	Symbolic				Fla	lgs					Opcod	e		No. of	No. of M	No. of T	
Mnem	onic Operation	S	Z		Н		P/V	N	С	76	543	210	Hex	Bytes	Cycles	States	Comments
rlca		•	•	x	0	x	•	0	\$	00	000	111	07	1	1	4	Rotate left circular
RLA		•	٠	x	0	x	•	0	ŧ	00	010	111	17	1	1	4	accumulato Rotate lefi accumulato
RRCA		•	•	x	0	x	•	0	ŧ	00	001	111	0F	1	1	4	Rotate right circular accumulato
RRA		•	•	х	0	x	•	0	\$	00	011	111	1F	1	1	4	Rotate right accumulato

PS017801-0602

15

ROTATE AND SHIFT GROUP (Continued)

Mnemonic	Symbolic Operation	S	z		FI: H	ngs		/ N	c	76	Opcod 543	e 210	Hex	No. of Byt es	No. of M Cycles	No. of T States	Comment
RLC r		\$	\$	x	0	x	P	0	• ‡	11 00	001 000	011 r	СВ	2	2	8	Rotate left circular register r.
RLC (HL)		;	\$	x	0	X	Ρ	0	\$	11 00	001 000	011 110	СВ	2	4	15	<u>r Re</u> 000 B
RLC (IX + d)	r,(HL),(IX + d),(IY +	t d)	\$	X	0	х	P	0	+	11 11 00	011 001 ← d → 000		DD CB	4	6	23	001 C 010 D 011 E 001 H 101 L
RLC (IY + d)	ļ	‡	ŧ	x	0	x	Ρ	0	*	11 11	111 001	101 011	FD CB	4	6	23	111 A
1 C 111	[cy]+7●]+-] m = r,(HL,(IX + d),(i	‡ Y+0		x	0	x	P	0	ŧ	00	+-d-+ 000 010	110					Instruction format and states are as shown for
IRCm ⊊	<u>7+0</u> -€CY m = r,(HL),(IX + d),(I			x	0	x	Ρ	0	ŧ		001						RLCs. To for new opcode replace 000 or RLCs with
	7+e]€cy] m = r,(HL),(IX + d),(I	•		x	0	x	Ρ	0	ŧ		011						shown code
	cv][70]-+-0 m = r,(HL),(IX + d),(I			ĸ	0	x	Ρ	0	\$		100						
	<mark>7>●]</mark> >[cv] m = r,(HL),(IX + d),(I	•		<	0	x	Ρ	0	ŧ	- 1.	101						
	<u>7</u> €CY m = r,(HL),(IX + d),(I	‡ Y+c		(0	x	P	0	\$		[111]						
LD 7-4	30 7-4 30 4 7-4 30 4 7-4 30 (HL)	:	; >	¢	0	x	P	0	•	11 01		101 111	ED 6F	2	5		Rotate digit left and right betwee the accumu-
RD 74	30)	•	;)	[0	x	Ρ	0	•	11 01		101 111	ED 67	2	5	18	lator and location (HL) The content of the upper half of the accumulator is unaffected

.

PS017801-0602

16

	Symbolic				Fk	lgs				(Opcod	e		No. of	No. of M	No. of T		
Mnemonic	Operation	8	Z		H	•	P/V	N	С	76	543	210	Hex	Bytes	Cycles	States	Соп	ments
BIT b, r	Z ← r _b	х	\$	x	1	х	х	0	•	11	001	011	СВ	2	2	8	r	Reg.
										01	ь	r					000	В
BIT b, (HL)	Z ← (HL) _b	х	\$	х	1	х	х	0	٠	11	001	011	СВ	2	3	12	001	С
										01	b	110					010	D
BIT b,(IX + d)b	Z + (IX + d) _b	х	\$	х	1	х	Х	0	٠	11	011	101	DD	4	5	20	011	Е
										11	001	011	СВ				100	н
											+d-	•					101	L
										01	b	110					111	Α
																	ь	Bit Tester
BIT b, (IY + d) _b	Z ← (IY + d) _b	х	\$	х	1	х	Х	0	٠	11	111	101	FD	4	5	20	000	0
_										11	001	011	CB				001	1
											+ d -						010	2
		•								01	b	110					011	3
SET b, r	r _b ← 1	٠	•	х	٠	х	٠	٠	.•	11	001	011	СВ	2	2	8	100	4
	-									[1]	b	r					101	5
SET b, (HL)	(HL) _b ← 1	٠	٠	х	٠	х	٠	٠	٠	11	001	011	CB	2	4	15	110	6
										11	b	110					111	7
SET b, (1X + d)	(IX+d) _b + 1	٠	•	х	٠	х	٠	٠	٠	11	011	101	DD	4	6	23		
										11	001	011	CB					
											+d-	•						
										11	ь	110						
SET b, (IY + d)	(IY+d) _b ← 1	٠	٠	Х	٠	х	•	٠	٠	11	111	101	FD	4	6	23		
										11	001	011	CB					
											+ d →	•						
										11	ь	110						
RES b, m	m _b ← 0	٠	٠	х	٠	х	•	٠	•	10							To fo	rm neiv
	m≡r, (HL),														•		opco	ode replac
	(1X + d), (1Y + d)																11	of SET b, s
	· · · ·																with	10 Flag
																	and	time
																	state	s for SET
																	instr	uction.

BIT SET, RESET AND TEST GROUP

NOTE: The notation mb indicates location m, bit b (0 to 7).

JUMP GROUP

Mnemonic	Symbolic Operation	s	z		Fi	aga		VN	с		Opcod 543		Hex	No. of Bytes	No. of M Cycles	No. of T States	•	iments
JP nn	PC ← nn	•	•	х	•	х	•	•	•	11	000	011	C3	3	3	10	œ	Condition
											← n →						000	NZ (non-zero)
											←n→						001	Z (zero)
JP cc, nn	If condition cc	٠	٠	Х	٠	Х	•	٠	٠	11	c c	010		3	3	10	010	NC (non-carry)
	is true PC+-nn,										+n→						011	C (carry)
	otherwise										+n→						100	PO (parity odd)
	continue																101	PE (parity even)
JRe	PC+PC+e	٠	٠	х	٠	Х	٠	٠	٠	00	011	000	18	2	3	12	110	P (sign positive)
										-	-e-2	~					111	M (sign neglative
JRC,e	₩C=0,	٠	٠	Х	٠	Х	٠	٠	٠	00	111	000	38	2	2	7	If cor	ndition not met.
	continue									•	-e-2							
	IfC=1,													2	3	12	If cor	ndition is met.
	PC ← PC + e																	
JR NC, e	IF C = 1,	٠	٠	х	٠	Х	٠	٠	٠	00	110	000	30	2	2	7	lf cor	ndition not met.
	continue									•	-e-2-	•						
	lf C = 0,													2	3	12	If cor	ndition is met.
	PC + PC + e																	
JP Z, e	lfZ=0	٠	٠	х	•	х	٠	٠	٠	00	101	000	28	2	2	7	lf cor	ndition not met.
	continue									•	-e-2·	•						
	lf Z = 1,													2	3	12	If cor	ndition is met.
	PC ← PC + e																	
JR NZ, e	lf Z = 1,	٠	٠	X	٠	х	٠	٠	٠	00	100	000	20	2	2	7	If cor	ndition not met.
	continue									•	-e-2·	•						
	lf Z = 0,													2	3	12	If cor	ndition is met.
	PC+PC+e																	
JP (HL)	PC + HL	٠	٠	х	٠	Х	٠	٠	٠	11	101	001	E9	1	1	4		
JP (IX)	PC + IX	٠	٠	х	٠	х	٠	٠	•	11	011	101	DD	2	2	8		
										11	101	001	E9					
JP (IY)	PC + IY	٠	٠	х	٠	Х	٠	٠	٠	11	111	101	FD	2	2	8		
										11	101	001	E9					
DJNZ, e	B ← B-1	•	٠	х	٠	х	٠	٠	•	00	010	000	10	2	2	8	If B =	0
	lf B = 0,									+	-e-2-	•						
	continue																	
	lf B≠0,													2	3	13	If B≠	0.
	PC+PC+e																	

NOTES: e represents the extension in the relative addressing mode. e is a signal two's complement number in the range < - 126, 129 >. e - 2 in the opcode provides an effective address of pc + e as PC is incremented by 2 prior to the addition of e.

CALL AND RETURN GROUP

	Symbolic				Fi	ags					Opcod	e		No. of	No. of M	No. of T		
Mnemonic	Operation	S	Z		Н		P/	/N	C	76	543	210	Hex	Bytes	Cycles	States	Com	ments
	(SP - 1) ← PC _H	•	•	X	•	X	•	•	•	11			CD	3	5	17		
	(SP-2)←PCL										+n→							
	PC - nn, If condition			v		v				11	+n→	100		3	3	10	lf.cc.i	is false.
•	cc is false	-	•	Ŷ	•	^	•	•	•		+n→			5	0	10	1001	13 MIOC.
	continue,										+-n-→			3	5	17	lf cc i	is true.
	otherwise same as																	
	CALL nn																	
RET	PC _L ← (SP)	٠	٠	x	٠	х	٠	٠	٠	11	0 01	001	C9	1	3	10		
	PC _H +-(SP+1)			.,												-	K	
	If condition cc is false	•	•	X	•	X	•	•	•	11	cc	000		1	1	5	IT CC	is false.
	continue,													/1	3	11	If cc i	is true.
	otherwise																	
	same as RET																00	Condition
																	000	· · ·
																	001	• •
				.,		.,								•			010	
	Return from	•	•	X	•	Х	•	•	•	11	101	101	ED	2	4	14	011	
	interrupt					~				01	001	101	4D	•				PO (parity odd)
RETN ¹	Return from	•	•	X	•	х	•	•	•	11	101	101	ED	2	4	14	101	
	non-maskable									01	000	101	45				110	
	interrupt (SP-1)←PCµ			~		~			•	44	t	111		1	3	11	t	·M (sign negative
•	(SP-2)←PC	•	•	^	•	^	•	•	•	14	ı	111		1	3			<u>р</u> 00Н
	(SF-2)-FCL PCH ← 0																001	
	PC _I ← p																	10H
	FCL - p																	18H
																		20H
																		20H 28H
																	110	
																	111	

NOTE: ¹RETN loads IFF₂ → IFF₁

INPUT AND OUTPUT GROUP

Maamanla	Symbolic	~				aga			~		Opcod			No. of		No. of T	•
mnemonic	Operation		Z		H		P /	VN	<u> </u>	76	543	210	Hex	Bytes	Cycles	States	Comments
N A, (n)	A 🛨 (n)	٠	` •	Х	٠	Х	٠	٠	٠	11	011	01	DB	2	3	11	n to A ₀ ~ A ₇
											←n→						Acc. to $A_8 \sim A_{15}$
N r, (C)	r ← (C)	\$	+	Х	\$	Х	Ρ	0	٠	11	101	101	ED	2	3	12	C to $A_0 \sim A_7$
	if r = 110 only									01	r	000					B to A ₈ ~ A ₁₅
	the flags will																
	be affected		_														
			C)													
41	(HL) 🛨 (C)	Х	\$	Х	х	х	х	1	х	11	101	101	ED	2	4	16	C to A ₀ ~ A ₇
	B←B-1		_							10	100	010	A2				B to Ag ~ A ₁₅
	HL←HL+1		0)													
١R	(HL) 🛨 (C)	X	1	Х	Х	Х	Х	1	Х	11	101	101	ED	2	5	21	C to A ₀ ~ A ₇
	B←B-1									10	110	010	B2		(If B≠0)		B to A ₈ ~ A ₁₅
	HL ← HL + 1													2	4	16	
	Repeat until								s						(If B = 0)		
	B=0		_												-		
			0)													
1D	(HL) + (C)	X	ŧ	Х	Х	Х	Х	1	х	11	101	101	ED	2	4	16	C to A ₀ ~ A ₇
	B ← B – 1									10	101	010	AA				B to A8 ~ A15
	HL+HL-1		0)													
IDR	(HL) ← (C)	Х	1	х	х	х	х	1	х	11	101	101	ED	2	5	21	C to A ₀ ~ A ₇
	B+B-1									10	111	010	BA		(lf B≠0)		B to A8 ~ A15
	HL ← HL – 1													2	4	16	
	Repeat until														(If B = 0)		
	B=0																
UT (n), A	(n) 🕂 A	•	٠	Х	٠	Х	٠	•.	٠	11	010	011	D3	2	3	11	n to A₀ ~ A ₇
-											+n→						Acc. to A8 ~ A15
UT (C), r	(C) ← r	٠	٠	Х	٠	х	٠	٠	٠	11	101	101	ED	2	3	12	C to A ₀ ~ A ₇
										01	r	001					B to A8 ~ A15
			1														
UTI	(C) 🛨 (HL)	X	ŧ	X	Х	х	Х	1	х	11	101	101	ED	2 '	4	16	C to A ₀ ~ A ₇
	B←B-1									10	100	011	A3				B to A8 ~ A15
	HL←HL+1		0														
Tir	(C) 🛨 (HL)	X	Ĩ	Х	Х	х	Х	1	х	11	101	101	ED	2	5	21	C to A ₀ ~ A ₇
	B←B-1									10	110	011	B 3		(If B≠0)		B to A8 ~ A15
	HL≁HL+1													2	4	16	•
	Repeat until														(If B = 0)		
	B=0																
			1														
UTD	(C) ← (HL)	Х	Ŧ	х	Х	Х	Х	1	x	11	101	101	ED	2	4	16	C to $A_0 \sim A_7$
	B←B-1									10	101	011	AB				B to A8 ~ A15
	HL ← HL – 1																
			2														
DR	(C) 🛨 (HL)	Х	1	х	х	Х	Х	1	х	11	101	101	ED	2	5	21	C to $A_0 \sim A_7$
	B←B-1									10	111	011			(lf B≠0)		B to A8 ~ A15
	HL←HL-1													2	4	16	•
	Repeat until														(If B = 0)		
	B=0																

.

NOTES: (1) If the result of B - 1 is zero, the Z flag is set; otherwise it is reset. (2) Z flag is set upon instruction completion only.

SUMMARY OF FLAG OPERATION

	D ₇				-			Do	}
Instructions	S	Ζ		Н		P/V	N	Ċ	Comments
ADD A, s; ADC A, s	\$	\$	X	+	Х	V	0	\$	8-bit add or add with carry.
SUB s; SBC A, s; CP s; NEG	\$ '	\$	х	\$	х	۷	1	+	8-bit subtract, subtract with carry, compare and negate accumulator.
AND s	\$	\$	Х	1	Х	Ρ	0	0	Logical operation.
OR s, XOR s	\$	\$	х	0	х	Ρ	0	0	Logical operation.
INCs	+	‡.	Х	\$	Х	V	0	•	8-bit increment.
DEC s	‡ -	‡	Х	*	Х	V	1	•	8-bit decrement.
ADD DD, ss	•	•	Х	X	Х	•	0	\$	16-bit add.
ADC HL, ss	\$	\$	Х	х	Х	V	0	‡	16-bit add with carry.
SBC HL. ss	+	\$	х	х	х	V	1	\$	16-bit subtract with carry.
RLA; RLCA; RRA; RRCA		•	х	0	Х	٠	0	‡	Rotate accumulator.
RL m; RLC m; RR m; RRC m; SLA m;	ŧ	\$	x	0	x	Ρ	0	\$	Rotate and shift locations.
SRA m; SRL m						_			.
RLD; RRD	+	+	X	0	X	P	0	•	Rotate digit left and right.
DAA	\$	ŧ	X	\$	X	Ρ	•	+	Decimal adjust accumulator.
CPL	٠	٠	Х	1	X	•	1	•	Complement accumulator.
SCF	٠	٠	X	0	X	•	0	1	Set carry.
CCF	•	•	х	х	Х	٠	0	ŧ	Complement carry.
IN r (C)	\$	ŧ	Х	0	х	Ρ	0	•	Input register indirect.
INI; IND; OUTI; OUTD	х	+	Х	х	Х	х	1	•	Block input and output. $Z = 1$ if $B \neq 0$, otherwise $Z = 0$.
INIR; INDR; OTIR; OTDR	х	1	Х	х	Х	х	1	٠	Block input and output. $Z = 1$ if $B \neq 0$, otherwise $Z = 0$.
LDI; LDD	х	х	Х	0	Х	\$	0	٠	Block transfer instructions. $PN = 1$ if BC $\neq 0$, otherwise $PN = 0$.
LDIR; LDDR	х	Х	х	0	Х	0	0	•	Block transfer instructions. $PN = 1$ if BC $\neq 0$, otherwise $PN \models 0$.
CPI; CPIR; CPD; CPDR	х	\$	X	x	х	ŧ	1	٠	Block search instructions. $Z = 1$ if $A = (HL)$, otherwise $Z = 0$. P/V = 1 if BC $\neq 0$, otherwise P/V = 0.
LD A; I, LD A, R	\$	\$	х	0	х	IFF	0	٠	IFF, the content of the interrupt enable flip-flop, (IFF ₂), is copied into the P/V flag.
BIT b, s	х	ŧ	х	1	х	х	0	•	The state of bit b of location s is copied into the Z flag.

SYMBOLIC NOTATION

Symbol Operation

- S Sign flag. S = 1 if the MSB of the result is 1.
- Z Zero flag. Z = 1 if the result of the operation is 0.
 P/V Parity or overflow flag. Parity (P) and overflow (V) share the same flag. Logical operations affect this flag with the parity of the result while arithmetic operations affect this flag with the overflow of the result. If P/V holds parity: P/V = 1 if the result of the operation is even; P/V = 0 if result is odd. If P/V holds overflow, P/V = 1 if the result of the operation produced an overflow. If P/V does not hold overflow, P/V = 0.
- H* Half-carry flag. H = 1 if the add or subtract operation produced a carry into, or borrow from, bit 4 of the accumulator.
- N* Add/Subtract flag. N = 1 if the previous operation was a subtract.
- C Carry/Link flag. C = 1 if the operation produced a carry from the MSB of the operand or result.

Symbol Operation

\$	The flag is affected according to the result of the operation.
•	The flag is unchanged by the operation.
0	The flag is reset by the operation.
1	The flag is set by the operation.
Х	The flag is indeterminate.
V	P/V flag affected according to the overflow result of the operation.
Р	PN flag affected according to the parity result of the operation.
r	Any one o the CPU registers A, B, C, D, E, H, L
s	Any 8-bit location for all the addressing modes allowed for the particular instruction.
SS	Any 16-bit location for all the addressing modes allowed for that instruction.
ü	Any one of the two index registers IX or IY.
R	Refresh counter.
n	8-bit value in range < 0, 255 >.
nn	16-bit value in range < 0, 65535 >.

* H and N flags are used in conjunction with the decimal adjust instruction (DAA) to properly correct the result into packed BCD format following addition or subtraction usin ... perands with packed BCD format.

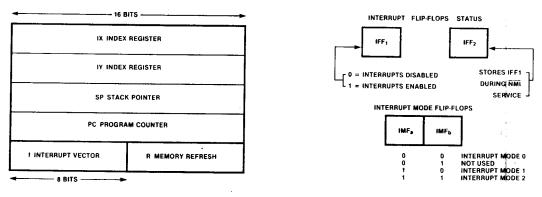

CPU REGISTERS

Figure 4 shows three groups of registers within the CPU. The first group consists of duplicate sets of 8-bit registers: a principal set and an alternate set [designated by ' (prime), e.g., A']. Both sets consist of the Accumulator register, the Flag register, and six general-purpose registers. Transfer of data between these duplicate sets of registers is accomplished by use of "Exchange" instructions. The result is faster response to interrupts and easy, efficient implementation of such versatile programming techniques

as background-foreground data processing. The second set of registers consists of six registers with assigned functions. These are the I (Interrupt register), the R (Refresh register), the IX and IY (Index registers), the SP (Stack Pointer), and the PC (Program Counter). The third group consists of two interrupt status flip-flops, plus an additional pair of flip-flops which assists in identifying the interrupt mode at any particular time. Table 1 provides further information on these registers.

GISTER SET	ALTERNATE	REGISTER SET
F FLAG REGISTER	A' ACCUMULATOR	F' FLAG REGISTER
C GENERAL PURPOSE	8' GENERAL PURPOSE	C' GENERAL PURPOSE
E GENERAL PURPOSE	D' GENERAL PURPOSE	E' GENERAL PURPOSE
L GENERAL PURPOSE	H' GENERAL PURPOSE	L' GENERAL PURPOSE
	C GENERAL PURPOSE	F FLAG REGISTER A' ACCUMULATOR C GENERAL PURPOSE B' GENERAL PURPOSE E GENERAL PURPOSE D' GENERAL PURPOSE

------ 8 BITS ------

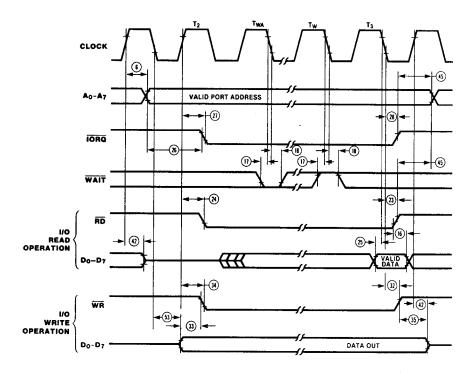
INTERRUPTS: GENERAL OPERATION

The CPU accepts two interrupt input signals: $\overline{\text{NMI}}$ and $\overline{\text{INT}}$. The $\overline{\text{NMI}}$ is a non-maskable interrupt and has the highest priority. $\overline{\text{INT}}$ is a lower priority interrupt and it requires that interrupts be enabled in software in order to operate. $\overline{\text{INT}}$ can be connected to multiple peripheral devices in a wired-OR configuration.

The Z80 has a single response mode for interrupt service on the non-maskable interrupt. The maskable interrupt, \overline{INT} , has three programmable response modes available. These are:

- Mode 0 similar to the 8080 microprocessor.
- Mode 1 Peripheral Interrupt service, for use with non-8080/Z80 systems.

Mode 2 - a vectored interrupt scheme, usually daisychained, for use with the Z80 Family and compatible peripheral devices.

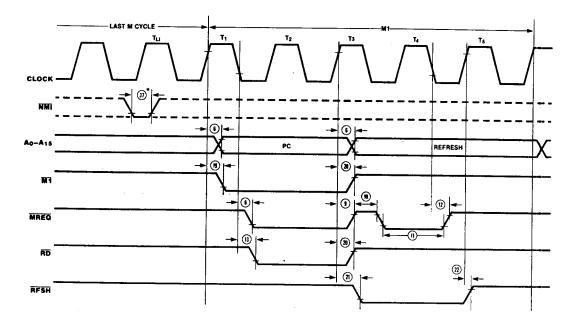

The CPU services interrupts by sampling the NMI and INT signals at the rising edge of the last clock of an instruction. Further interrupt service processing depends upon the type of interrupt that was detected. Details on interrupt responses are shown in the CPU Timing Section.

Non-Maskable Interrupt (NMI). The nonmaskable interrupt cannot be disabled by program control and therefore will be accepted at all times by the CPU. NMI is usually reserved for servicing only the highest priority type interrupts, such as that for orderly shutdown after power

PS017801-0602

Input or Output Cycles. Figure 7 shows the timing for an I/O read or I/O write operation. During I/O operations, the CPU automatically inserts a single Wait state (T_{WA}). This

extra Wait state allows sufficient time for an I/O port to decode the address from the port address lines.



T_{WA} = One wait cycle automatically inserted by CPU.

.

Figure 7. Input or Output Cycles

Non-Maskable Interrupt Request Cycle. NMI is sampled at the same time as the maskable interrupt input INT but has higher priority and cannot be disabled under software control. The subsequent timing is similar to that of a normal memory read operation except that data put on the bus by the memory is ignored. The CPU instead executes a restart (RST) operation and jumps to the $\overline{\text{NMI}}$ service routine located at address 0066H (Figure 9).

*Although NMI is an asynchronous input, to guarantee its being recognized on the following machine cycle, NMI's falling edge must occur no later than the rising edge of the clock cycle preceding the last state of any instruction cycle (TLI).

Figure 9. Non-Maskable Interrupt Request Operation

Power-Down mode of operation (Only applies to CMOS Z80 CPU).

Z80 CPU). supply current for the CPU goes down as low as 10 uA CMOS Z80 CPU supports Power-Down mode of operation. (Where specified as lcc_2).

Power-Down Acknowledge Cycle. When the clock input to the CPU is stopped at either a High or Low level, the CPU stops its operation and maintains all registers and control signals. However, I_{cc2} (standby supply current) is guaranteed only when the system clock is stopped at a Low

level during T_4 of the machine cycle following the execution of the HALT instruction. The timing diagram for the power-down function, when implemented with the HALT **instruction, is shown in Figure 13.**

This mode is also referred to as the "standby mode", and

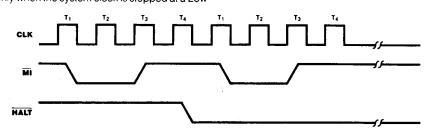
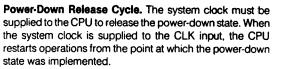
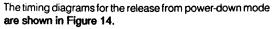




Figure 13. Power-Down Acknowledge

NOTES:

- When the external oscillator has been stopped to enter the power-down state, some warm-up time may be required to obtain a stable clock for the release.
- 2) When the HALT instruction is executed to enter the power-down state, the CPU will also enter the Halt state. An interrupt signal (either NMI or INT) or a RESET signal must be applied to the CPU after the system clock is supplied in order to release the power-down state.

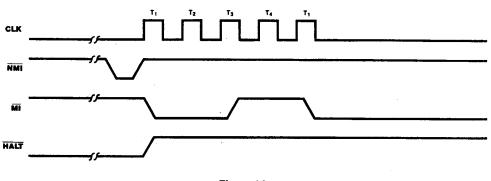


Figure 14a.

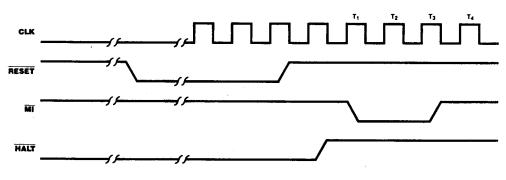


Figure 14b.

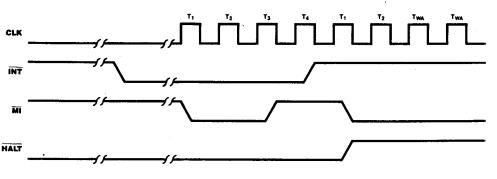


Figure 14c.

Figure 13. Power-Down Release

AC CHARACTERISTICS[†] (Z84C00/CMOS Z80 CPU)

 V_{cc} =5.0V ± 10%, unless otherwise specified

No	Symbol	Parameter		C0004 Max		C0000 Max		C0008 Max		C0010 Max		C0020[1] Max	Unit	Note
1	TcC	Clock Cycle time	250*	DC	162	DC	125	• DC	100*	DC	50*	DC	nS	
2	TwCh	Clock Pulse width (high)			65	DC	55	DC	40	DC	20	DC	nS	
3	TwCl	Clock Pulse width (low)	110		65	DC	55	DC	40	DC	20		nS	
4	TfC	Clock Fall time		30		20	00	10	10	10	20	10	nS	
5	TrC	Clock Rise time		30		20		10		10		10	nS	
6	TdCr(A)	Address vaild from Clock Rise	1	110		90		80		65		57	nS	[2]
7	TdA(MREQf)	Address valid to /MREQ Fall	65*		35*		20*		5*		-15*		nS	• •
8	TdCf(MREQf)	,		85		70		60		55		40	nS	
9	TdCr(MREQr)	Clock Rise to /MREQ Rise delay		8 5		70		60		55		40	nS	
10	TwMREQh	/MREQ pulse width (High)	110*		65*		45**		30*		10*		nS	[3]
11	TwMREQ	/MREQ pulse width (low)	220*		132*		100'	,	75*		25*		nS	[3]
	TdCf(MERQr)			85		70		60		55		40	nS	
13	TdCf(RDf)	Clock Fall to /RD Fall delay		95		80		70		6 5		40	nS	
	TdCr(RDr)	Clock Rise to /RD Rise delay		85		70		60		55		40	nS	
15	TsD(Cr)	Data setup time to Clock Rise	35		30		30		25		12		nS	
	ThD(RDr)	Data hold time after /RD Rise	0		0		0		0		0		nS	
	TsWAIT(Cf)	WAIT setup time to Clock Fall	70		60		50		20		7.5		nS	
	ThWAIT(Cf)	WAIT hold time after Clock Fall	10		10		10		10		10		nS	
19	TdCr(M1f)	Clock Rise to /M1 Fall delay		100		80	•	70		65		45	nS	
20	TdCr(M1r)	Clock Rise to /M1 Rise delay		100		80		70		65		45	nS	
	TdCr(RFSHf)	Clock Rise to /RFSH Fall delay		130		110		95		80		60	nS	
	TdCr(RFSHr)	Clock Rise to /RFSH Rise delay		120		100		85		80		60	nS	
	TdCf(RDr)	Clock Fall to /RD Rise delay		85		70		60		55		40	nS	
	TdCr(RDf)	Clock Rise to /RD Fall delay		85		70		60		55		40	nS	
25	TsD(Cf)	Data setup to Clock Fall during												
		M2, M3, M4 or M5 cycles	50		40		30		25		12		nS '	
26	TdA(IORQf)	Address stable prior to /IORQ Fall	180*		107*		75*		50*		0*		nS	
27	TdCr(IORQf)	Clock Rise to /IORQ Fall delay		75		65		55		50		40	nS	
28	TdCf(IORQr)	Clock Fall to /IORQ Rise delay		85		70		60		55		40 '	nS	
29	TdD(WRf)Mw	Data stable prior to /WR Fall	80*		22*		5*		40*		-10*		nS	
	TdCf(WRf)	Clock Fall to /WR Fall delay		80		70		60		55		40	nS	
		/WR pulse width	220*		132*		100*		75*		25*		nS	
		Clock Fall to /WR Rise delay		80		70		60		55		40	nS	
		Data stable prior to /WR Fall	-10*		-55*		-55*		-10*		-30*		nS	
34	TdCr(WRf)	Clock Rise to /WR Fall delay		65		60		60		50		40	nS	
	• •	Data stable from /WR Rise	60*		30*		15*		10*		0*		nS	
	• •	Clock Fall to /HALT 'L' or 'H'		300		260		225		90		70	nS	
		/NMI pulse width	80		60		60		60		60		nS	
		/BUSREQ setup time	50		50		40		30		15		nS	
1	(Cr)	to Clock Rise												

*For clock periods other than the minimums shown, calculate parameters using the table on the following page. Calculated values above assumed TrC = TfC = 20 ns.

The second seco

**4 MHz CMOS Z80 is obsoleted and replaced by 6 MHz

PS017801-0602

¢

AC CHARACTERISTICS[†] (Z84C00/CMOS Z80 CPU; Continued) V_{cc} =5.0V ± 10%, unless otherwise specified

			Z84(C0004	Z840	20006	Z840	0008	Z84(C0010	Z840	20020[1]	Unit	Note
No	Symbol	Parameter	Min	Мах	Min	Мах	Min	Max	Min	Max	Min	Max		
39	ThBUSREQ	/BUSREQ hold time	10		10		10		10	• • • •	10		nS	
	(Cr)	after Clock Rise												
40	TdCr	Clock Rise to /BASACK		100		90		80		75		40	nS	
	(BUSACKf)	Fall delay												
41	TdCf	Clock Fall to /BASACK		100		90		80		75		40	nS	
	(BUSACKr)	Rise delay												
42	TdCr(Dz)	Clock Rise to Data float delay		90		80		70		6 5		40	nS	
43	TdCr(CTz)	Clock Rise to Control Outputs												
		Float Delay (/MREQ, /IORQ,												
		/RD and /WR)		80		70		60		65		40	nS	
44	TdCr(Az)	Clock Rise to Address		90		80		70		75		40	nS	
		float delay												
45	TdCTr(A)	Address Hold time from /MREQ,	80*		35*		20*		20*		0*		nS	
		/IORQ, /RD or /WR												
46	TsRESET(Cr)	/RESET to Clock Rise setup time	60		60		45		40		15		nS	
47	ThRESET(Cr)	/RESET to Clock Rise Hold time	10		10		10		10		10		nS	
48	TsINTf(Cr)	/INT Fall to Clock Rise	80		70		55		50		15		nS	
		Setup Time												
49	ThINTr(Cr)	/INT Rise to Clock Rise	10		10		10		10		10		nS	
		Hold Time												
50	TdM1f	/M1 Fall to /IORQ Fall delay	565'	,	359*		270'	*	220'	•	100*	r	nS	
	(IORQf)													
51	TdCf(IORQf)	/Clock Fall to /IORQ Fall delay		8 5		70		60		55		45	nS	
52	TdCf(IORQr)	Clock Rise to /IORQ Rise delay		85		70		60		55		45	nS	
53	TdCf(D)	Clock Fall to Data Valid delay		150		130		115		110		75	nS	

Notes: * For Clock periods other than the minimum shown, calculate parameters using the following table.

Calculated values above assumed TrC = TfC = maximum. ** 4 MHz CMOS Z80 is obsoleted and replaced by 6 MHz

Z84C0020 parameters are guuaranteed with 50pF load Capacitance.
 If Capacitive Load is other than 50pF, please use Figure 1. to calculate the value.
 Increasing delay by 10nS for each 50pF increase in loading, 200pF max for data lines, and 100pF for control lines.

FOOTNOTES TO AC CHARACTERISTICS

No	Symbol	Parameter	Z84C0004	[*] Z84C0006	Z84C0008	Z84C0010	Z84C0020
1	TcC	TwCh + TwCl + TrC + TfC					
7	TdA(MREQf)	TwCh + TfC	-65	-50	-45	-45	-45
10	TwMREQh	TwCh + TfC	-20	-20	-20	-20	-20
11	TwMREQI	TcC	-30	-30	-25	-25	-25
26	TdA(IORQf)	TcC	-70	-55	-50	-50	-50
29	TdD(WRf)	TcC	-170	-140	-120	-60	-60
31	TwWR	TcC /	-30	-30	-25	-25	-25
33	TdD(WRf)	TwCI + TrC	-140	-140	-120	-60	-60
35	TdWRr(D)	TwCl + TrC	-70	-55	-50	-40	-25
45	TdCTr(A)	TwCI + TrC	-50	-50	-45	-30	-30
50	TdM1f(IORQf)	2TcC + TwCh + TfC	-65	-50	-45	-30	-30
AC Test	Conditions: $V_{IH} = 2.0$ $V_{IL} = 0.8$		V _{IHC} = V _{ILC} =	V _{CC} -0.6 V 0.45 V	Float = 1	E0.5 V	

PS017801-0602

			Z084	0004	Z08 4	0006	Z084	8000
Number	Symbol	Parameter	Min	Max	Min	Max	Min	Max
1	TcC	Clock Cycle Time	250*		162*		125*	
2	TwCh	Clock Pulse Width (High)	110	2000	65	2000	55	2000
3	TwCl	Clock Pulse Width (Low)	110	2000	65	2000	55	2000
4	TfC	Clock Fall Time		30		20		10
5	TrC	Clock Rise Time		30		20		10
6	TdCr(A)	Clock t to Address Valid Delay		110		90		80
7	TdA(MREQf)	Address Valid to MREQ ↓ Delay	65*		35*		20*	
8	TdCf(MREQf)	Clock ↓ to MREQ ↓ Delay		85		70		60
9	TdCr(MREQr)	Clock t to MREQ t Delay		85		70		60
10	TwMREQh	MREQ Pulse Width (High)	110**	Ħ	65*	Ħ	45*1	H t
11	TwMREQI	MREQ Pulse Width (Low)	220*	Ħ	135**	İ.	100*1	HT .
12	TdCf(MREQr)	Clock I to MREQ t Delay		85		70		60
13	TdCf(RDf)	Clock ↓ to RD ↓ Delay		95		80		70
14	TdCr(RDr)	Clock t to RD t Delay		85		70		60
15	TsD(Cr)	Data Setup Time to Clock †	35		30		30	
16	ThD(RDr)	Data Hold Time to \overline{RD} t		0		0		C
17	TsWAIT(Cf)	WAIT Setup Time to Clock I	70		60		50	
18	ThWAIT(Cf)	WAIT Hold Time after Clock +		0		0		0
19	TdCr(M1f)	Clock ↑ to M1 ↓ Delay		100		80		70
20	TdCr(M1r)	Clock t to M1 t Delay		. 100		80		70
21	TdCr(RFSHf)	Clock ↑ to RFSH ↓ Delay		130		110		95
22	TdCr(RFSHr)	Clock t to RFSH t Delay		120		100		85
23	TdCf(RDr)	Clock ↓ to RD ↑ Delay		85		70		60
24	TdCr(RDf)	Clock † to RD ↓ Delay		85		70		60
25	TsD(Cf)	Data Setup to Clock I during M ₂ , M ₃ , M ₄ , or M ₅ Cycles	50		40		30	
26	TdA(IORQf)	Address Stable prior to IORQ +	180*		110*		75*	
27	TdCr(IORQf)	Clock † to IORQ ↓ Delay		75		65		55
28	TdCf(IORQr)	Clock ↓ to IORQ ↑ Delay		85		70		·60
29	TdD(WRf)	Data Stable prior to WR	80*		25*		5*	
30	TdCf(WRf)	Clock ↓ to WR ↓ Delay		80		70		60
31	TwWR	WR Pulse Width	220*		135*		100*	
32	TdCf(WRr)	Clock↓to WR↑Delay		80		70		60
· 33	TdD(WRf)	Data Stable prior to WR +	-10*		-55*		55*	
34	TdCr(WRf)	Clock ↑ to WR ↓ Delay		65		60		55
35	TdWRr(D)	Data Stable from WR 1	60*		30*		15*	
36	TdCf(HALT)	Clock ↓ to HALT ↑ or ↓		300		260		225
37	TwNMI	NMI Pulse Width	80		70		60*	
38	TsBUSREQ(Cr)	BUSREQ Setup Time to Clock t	50		50		40	

AC CHARACTERISTICS[†] (Z8400/NMOS Z80 CPU)

*For clock periods other than the minimums shown, calculate parameters using the table on the following page. Calculated values above assumed TrC = TIC = 20 ns. †Units in nanoseconds (ns).

For loading \geq 50 pf., Decrease width by 10 ns for each additional 50 pf.

PS017801-0602

.

Customer Support

For answers to technical questions about the product, documentation, or any other issues with Zilog's offerings, please visit Zilog's Knowledge Base at http://www.zilog.com/kb.

For any comments, detail technical questions, or reporting problems, please visit Zilog's Technical Support at <u>http://support.zilog.com</u>.