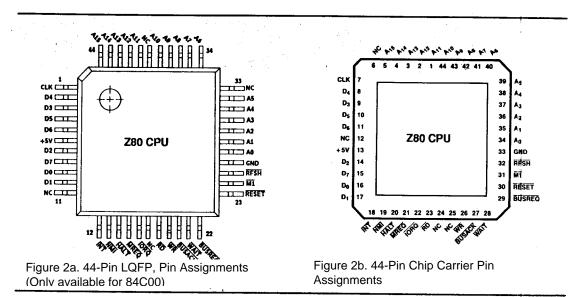

E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**


Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Details	
Product Status	Obsolete
Core Processor	Z80
Number of Cores/Bus Width	1 Core, 8-Bit
Speed	8MHz
Co-Processors/DSP	-
RAM Controllers	-
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	5.0V
Operating Temperature	-40°C ~ 100°C (TA)
Security Features	-
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z84c0008fec00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

GENERAL DESCRIPTION

The CPUs are fourth-generation enhanced microprocessors with exceptional computational power. They offer higher system throughput and more efficient memory utilization than comparable second- and third-generation microprocessors. The internal registers contain 208 bits of read/write memory that are accessible to the programmer. These registers include two sets of six general-purpose registers which may be used individually as either 8-bit registers or as 16-bit register pairs. In addition, there are two sets of accumulator and flag registers. A group of "Exchange" instructions makes either set of main or alternate registers accessible to the programmer. The alternate set allows operation in foreground-background mode or it may be reserved for very fast interrupt response. The CPU also contains a Stack Pointer, Program Counter, two index registers, a Refresh register (counter), and an Interrupt register. The CPU is easy to incorporate into a system since it requires only a single + 5V power source. All output signals are fully decoded and timed to control standard memory or peripheral circuits; the CPU is supported by an extensive family of peripheral controllers. The internal block diagram (Figure 3) shows the primary functions of the processors. Subsequent text provides more detail on the I/O controller family, registers, instruction set, interrupts and daisy chaining, and CPU timing.

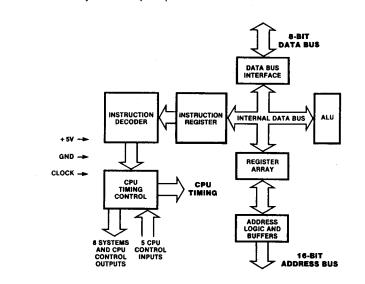


Figure 3. Z80C CPU Block Diagram

70	Λ.
20	U

	Register	Size (Bits)	Remarks
A, A'	Accumulator	8	Stores an operand or the results of an operation.
F, F'	Flags	8	See Instruction Set.
B, B′	General Purpose	8	Can be used separately or as a 16-bit register with C.
C, C′	General Purpose	8	Can be used separately or as a 16-bit register with C.
D, D'	General Purpose	8	Can be used separately or as a 16-bit register with E.
E, E′	General Purpose	8	Can be used separately or as a 16-bit register with E.
Н, Н′	General Purpose	8	Can be used separately or as a 16-bit register with L.
L, L'	General Purpose	8	Can be used separately or as a 16-bit register with L.
			Note: The (B,C), (D,E), and (H,L) sets are combined as follows: B - High byte C - Low byte D - High byte E - Low byte H - High byte L - Low byte
l	Interrupt Register	8	Stores upper eight bits of memory address for vectored interrupt processing.
R	Refresh Register	8	Provides user-transparent dynamic memory refresh. Automatically incremented and placed on the address bus during each instruction fetch cycle.
IX	Index Register	16	Used for indexed addressing.
IY .	Index Register	16	Used for indexed addressing
SP	Stack Pointer	16	Holds address of the top of the stack. See Push or Pop in instruction set.
PC	Program Counter	16	Holds address of next instruction.
IFF1-IFF2	Interrupt Enable	Flip-Flops	Set or reset to indicate interrupt status (see Figure 4).
IMFa-IMFb	Interrupt Mode	Flip-Flops	Reflect Interrupt mode (see Figure 4).

failure has been detected. After recognition of the NMI signal (providing BUSREQ is not active), the CPU jumps to restart location 0066H. Normally, software starting at this address contains the interrupt service routine.

Maskable Interrupt (INT). Regardless of the interrupt mode set by the user, the CPU response to a maskable interrupt input follows a common timing cycle. After the interrupt has been detected by the CPU (provided that interrupts are enabled and $\overline{\text{BUSREQ}}$ is not active) a special interrupt processing cycle begins. This is a special fetch (M1) cycle in which $\overline{\text{IORQ}}$ becomes active rather than $\overline{\text{MREQ}}$, as in a normal M1 cycle. In addition, this special M1 cycle is automatically extended by two WAIT states, to allow for the time required to acknowledge the interrupt request.

Mode 0 Interrupt Operation. This mode is similar to the 8080 microprocessor interrupt service procedures. The interrupting device places an instruction on the data bus. This is normally a Restart instruction, which will initiate a call

to the selected one of eight restart locations in page zero of memory. Unlike the 8080, the Z80 CPU responds to the Call instruction with only one interrupt acknowledge cycle followed by two memory read cycles.

Mode 1 Interrupt Operation. Mode 1 operation is very similar to that for the NMI. The principal difference is that the Mode 1 interrupt has only one restart location, 003/8H.

Mode 2 Interrupt Operation. This interrupt mode has been designed to most effectively utilize the capabilities of the Z80 microprocessor and its associated peripheral family. The interrupting peripheral device selects the starting address of the interrupt service routine. It does this by placing an 8bit vector on the data bus during the interrupt acknowledge cycle. The CPU forms a pointer using this byte as the lower 8 bits and the contents of the I register as the upper 8 bits. This points to an entry in a table of addresses for interrupt service routines. The CPU then jumps to the routine at that address. This flexibility in selecting the interrupt service routine address allows the peripheral device to use several different types of service routines. These routines may be located at any available location in memory. Since the interrupting device supplies the low-order byte of the 2-byte vector, bit 0 (A_n) must be a zero.

Interrupt Enable/Disable Operation. Two flip-flops, IFF₁ and IFF₂, referred to in the register description, are used to signal the CPU interrupt status. Operation of the two flip-flops is described in Table 2. For more details, refer to the Z80 CPU Technical Manual (03-0029-01) and Z80 Assembly Language Programming Manual (03-0002-01).

Table 2. State of Flip-Flops

Action	IFF ₁	IFF2	Comments
CPU Reset	0	0	Maskable interrupt
DI instruction execution	0	0	Maskable interrupt
El instruction execution	1	1	Maskable interrupt
LD A,I instruction execution	٠	٠	IFF ₂ → Parity flag
LD A,R instruction execution	•	•	$IFF_2 \rightarrow Parity flag$
Accept NMI	0	•	Maskable interrupt
RETN instruction execution	IFF ₂	•	IFF ₂ → IFF ₁ at completion of an MII service routine.

INSTRUCTION SET

The microprocessor has one of the most powerful and versatile instruction sets available in any 8-bit microprocessor. It includes such unique operations as a block move for fast, efficient data transfers within memory, or between memory and I/O. It also allows operations on any bit in any location in memory.

The following is a summary of the instruction set which shows the assembly language mnemonic, the operation, the flag status, and gives comments on each instruction. For an explanation of flag notations and symbols for mnemonic tables, see the Symbolic Notations section which follows these tables. The *Z80 CPU Technical Manual* (03-0029-01), the *Programmer's Reference Guide* (03-0012-03), and *Assembly Language Programming Manual* (03-0002-01) contain significantly more details for programming use.

The instructions are divided into the following categories:

- □ 8-bit loads
- □ 16-bit loads
- Exchanges, block transfers, and searches
- 8-bit arithmetic and logic operations
- General-purpose arithmetic and CPU control
- 16-bit arithmetic operations
- Rotates and shifts

- □ Bit set, reset, and test operations
- Jumps
- □ Calls, returns, and restarts
- Input and output operations

A variety of addressing modes are implemented to permit efficient and fast data transfer between various registers, memory locations, and input/output devices. These addressing modes include:

- □ Immediate
- Immediate extended
- Modified page zero
- □ Relative
- Extended
- Indexed
- Register
- Register indirect
- □ Implied
- 🗆 Bit

8-BIT LOAD GROUP

	Symbolic				Fk	lgs					Opcod	e		No. of	No. of M	No. of T		
Vnemonic	Operation	S	Z		H			N	С		543		Hex	Bytes	Cycles		Com	ments
LDr,r'	r ← r'	٠	٠	х	•	х	•	•	•	01	r	r'		1	1	4	r, r'	Reg
Dr, n	r+−n	٠	٠	х	•	х	٠	٠	٠	00	r	110		2	2	7	000	B
											+n-						001	С
_D r, (HL)	r 🛨 (HL)	٠	٠	Х	٠	Х	٠	٠	٠	01	r	110		1	2	7	010	D
_D r, (IX + d)	r ← (IX + d)	٠	٠	Х	٠	х	٠	٠	٠	11	011	101	DD	3	5	19	011	E
										01	r	110					100	н
							• •				+-d-+						101	L
Dr, (IY+d)	r ← (IY + d)	٠	٠	х	٠	х	٠	٠	٠	11	111	101	FD	3	5	19	111	Ā
										01	r	110						
											+- d →							
_D (HL), r	(HL) ← r	٠	٠	Х	٠	Х	٠	٠	٠	01	110	r		1	2	7		
D (IX + d), r	(lX+d) ← r	٠	٠	Х	٠	Х	٠	٠	٠	11	011	101	DD	3	5	19		
										01	110	r						
											+ d →							
.D (IY + d), r	(IY+d) + r	٠	٠	х	٠	х	•	٠	٠	11	111	101	FD	3	5	19		
		•								01	110	r						
											+ d →							
.D (HL), n	(HL) 🕂 n	•	٠	х	٠	х	٠	٠	٠	00	110	110	36	2	3	10		
											+n→							
.D (IX + d), n	(IX + d) 🕶 n	٠	•	х	٠	х	٠	٠	٠	11	011	101	DD	4	5	19		
										00	110	110	36					
											+-d →							
											← n→							

PS017801-0602

9

ł

16-BIT LOAD GROUP (Continued)

Mnemonic	Symbolic Operation	s	z		Fla H	ngs	P/V	N	С	76	Opcod 543	e 210	Hex	No. of Bytes	No. of M Cycles	No. of T States	Comm	ente
	•										.				•			
LD IX, (nn)	IX _H ← (nn + 1)	•	•	X	•	X	•	•	•	11 00	011	101 010	DD 2A	4	6	20		
	i∧ (riii)									00	+n→		24					
											+n→							
LD IY, (nn)	lY _H ← (nn + 1)	•	•	х	•	х	•	•	•	11	. 111		FD	4	6	20		
	IYL + (nn)									00	101		2A					
											← n →	•						
											← n→							
LD (nn), HL	(nn + 1) 🕶 H	٠	٠	х	٠	Х	•	•	٠	00	100	010	22	3	5	16		
	(nn)+-L										← n →							
											≁ n→							:
LD (nn), dd	(nn + 1) ← dd _H	٠	٠	х	•	Х	•	•	•	11	101		ED	4	6	20		
	(nn) ← dd _L									01	dd0							
											+ n → + n →							
LD (nn), IX	(nn + 1) ← IX _H	•	•	x		х		•		11		101	DÐ	4	6	20		
20 (111), 01	(nn) ← IX ₁		-	~		~				00	100		22		U	20		
											+n→							
											+n→							
LD (nn), IY	(nn + 1) ← IY _H	٠	٠	х	٠	Х	•	•	٠	11	111	101	FD	4	6	20		
	(nn) 🛨 IY _L									00	100	010	22					
											← n →							
											← n→							
LD SP, HL	SP - HL	٠	•		•	X	•	•	٠	11	111		F9	1	1	6		
LD SP, IX	4SP + IX	•	•	Х	٠	х	•	•	•	11	011	101	DD	2	2	10		
LD SP, IY	SP ← IY		•	x		x	•		•	11 11	111	001 101	F9 FD	2	2	10		
LD OF, II	3F - 11	•	•	^	•	^	•	•	•	11	111	001	F9	2	2	10	qq	Pair
PUSH qq	(SP - 2) ← qq	•	•	x		x	•	•	•	11	qq0	101		1	3	11		BC
भभ	(SP ~ 1) ← qq _H										797				-			DE
	SP→SP - 2																	HL
PUSHIX	(SP - 2) + IXL	٠	٠	х	•	х	٠	•	•	11	011	101	DD	2	4	15	11	AF
	(SP - 1) + IX _H									11	100	101	E5					
	SP→SP -2																	
PUSHIY	(SP - 2) ← IY _L	٠	٠	х	٠	Х	•	•	•	11	111	101	FD	2	4	15		
	(SP – 1) ← IY _H									11	100	101	E5					
	SP→SP -2											004			0	10		
POP qq	qq _H ← (SP + 1)	•	•	X	٠	Х	•	•	•	11	qq0	001		1	3	10		
	qqL ← (SP) SP → SP + 2																	1
POP IX	$SP \rightarrow SP + 2$ $IX_H \leftarrow (SP + 1)$			y		¥				11	011	101	DD	2	4	14		
	IX _L ← (SP + 1)	-	-	^	•	^	-	-	2	11		001	E1	£	т			
	$SP \rightarrow SP + 2$									••								
POPIY	IY _H ← (SP + 1)	•	•	х	•	х	. •	•	•	11	111	101	FD	2	4	14		
	IYL + (SP)									11		001	E1					
	SP -+ SP +2																	

.

NOTE: (PAIR)_H, (PAIR)_L refer to high order and low order eight bits of the register pair respectively, e.g., BC_L = C, AF_H = A.

PS017801-0602

11

	Symbolic				Fk	ngs				. (Орсос	ie		No. of	No. of M	No. of T	
Mnemonic	Operation	S	Z		Η	-	P/V	N	C	76	543	210	Hex	Bytes	Cycles	States	Comments
			3				1			•							
CPIR	A – (HL)	\$	ŧ		\$	х		1	•	11	101	101	ED	2	5	21	lf BC ≠ 0 an¦d A ≠ (HL)
•	HL ← HL + 1									10	110	0 01	B1	2	4	16	If BC = 0 or
	BC ← BC – 1																A = (HL)
	Repeat until																
	A = (HL) or																
	BC = 0																
			3				1										
CPD	A – (HL)	+	ŧ	х	\$	Х	\$	1	٠	11	101	101	ED	2	4	16	
	HL+HL-1									10	101	001	A9				
	BC + BC - 1		_														
			3				1										
CPDR	A – (HL)	\$	\$	х	\$	X	\$	1	•	11	101	101	ED	2	5	21	If BC \neq 0 and A \neq (HL)
	HL ← HL – 1									10	111	001	B9	2	4	16	If BC = 0 of
	BC + BC - 1																A = (HL)
	Repeat until																
	A = (HL) or																
	BC = 0																

EXCHANGE, BLOCK TRANSFER, BLOCK SEARCH GROUPS (Continued)

P/V flag is 0 only at completion of instruction.
Z flag is 1 if A = (HL), otherwise Z = 0.

8-BIT ARITHMETIC AND LOGICAL GROUP

Mnemonic	Symbolic Operation	s	z		Fla H	igs	₽/\	'N	с	76	Opcod 543		Hex	No. of Bytes	No. of M Cycies	No. of T States	Com	ments
ADD A, r	A+A+r	;	\$	х	\$	X	٧	0	\$	10	000	r		1	1	4	r	Reg.
ADD A, n	A ← A+n	\$	ŧ	х	ŧ	х	v	0	:	11	000	110		2	2	7	000	В
											←n→						001	C
																	010	D
ADD A, (HL)	A ← A+(HL)	\$;	х	\$	х	v	0	\$	10	000]	110		1	2	7	011	E
ADD A, (IX + d) A←A+(IX+d)	+	\$	х	ŧ	х	۷	0	\$	11	011	101	DD	3	5	19	100	H
										10	000	110					101	L
											+d→						111	A
ADD A, (IY + d) A←A + (IY + d)	\$	\$	х	ŧ	х	v	0	ŧ	11	111	101	FD	3	5	19		
-										10	000	110						
											+ d →							
ADC A, s	A ← A+s+CY	\$	\$	х	\$	х	۷	0	\$		001						s is ar	ny of r, n,
SUB s	A ← A – s	\$	\$	х	\$	х	۷	1	\$		010						(HL),	(IX+d),
SBC A, s	A ← A-s-CY	\$	\$	х	\$	х	۷	1	\$		011						(IY+0	1)as
AND s	A←A>s	\$	\$	х	1	х	Ρ	0	0		100						show	n for AD
OR s	A ← A > s	\$	\$	Х	0	х	P	0	0		110						instru	ction. Th
XOR s	A - Aes	\$	+	х	0	х	Ρ	0	0		101						indica	ated bits
CP s	A-s	ŧ	+	х	\$	х	۷	1	\$		111						replac	ce the
																	000	in thệ
																	ADD	set abby

PS017801-0602

13

÷

16-BIT ARITHMETIC GROUP

Mnemonic	Symbolic Operation	s	z		Fla H	igs	P/V	N	с		Dpcod 543		Hex	No. of Bytes	No. of M Cycles	No. of T States	Con	merits
ADD HL, ss	HL ← HL + ss	٠	•	х	х	х	٠	0	\$	00	ssi	001		1	3	11	ss	Reg.
																	00	ВĊ
ADC HL, ss	HL←																01	Dŧ
	HL+ss+CY	‡	\$	х	Х	х	۷	0	\$	11	101	101	ED	2	4	15	10	ΗĻ
										01	ss1	010					11	SP
SBC HL, ss	HL ←																	
)	HL-ss-CY	\$	+	Х	Х	х	۷	1	‡	11	101	101	ED	2	4	15		
										01	ss0	010						
ADD IX, pp	IX 🛨 IX + pp	٠	٠	х	Х	х	٠	0	ŧ	11	011	101	DD	2	4	15	pp_	Reg.
										01	pp1	001					00	В¢
																	01	DE
																	10	IX
																	11	SP
ADD IY, rr	IY 🛨 IY + rr	٠	٠	Х	Х	х	٠	0	‡	11	111	101	FD	2	4	15	<u>rr</u>	Reg.
										00	rr1	001					00	B¢
INC ss	ss 🕶 ss + 1	•	•		•	х	٠	٠	•	00	ss0	011		1	1	6	01	Dŧ
INC IX	IX ← IX + 1	•	•	х	•	х	٠	٠	٠	11	011	101	DD	2	2	10	10	IY
										00	100	011	23				11	SP
INC IY	IY ← IY + 1	٠	٠	х	٠	х	٠	٠	٠	11	111	101	FD	2	2	10		
										00	100	011	23			_		
DEC ss	ss ← ss – 1	٠	•		•	X	•	•	•	00	ss1	011		1	1	6		
DEC IX	IX ← IX – 1	٠	٠	х	٠	Х	٠	٠	•	11	011	101	DD	2	2	10		
										00	101	011	2B		_			
DEC IY	IY ← IY – 1	٠	٠	х	٠	х	٠	٠	•	11	111	101	FD	2	2	10		
										00	101	011	28					

.

ROTATE AND SHIFT GROUP

	Symbolic				Fla	lgs					Opcod	e		No. of	No. of M	No. of T	
Mnem	nemonic Operation		Z		H .		P/V	N	С	76	543	210	Hex	Bytes	Cycles	States	Comments
rlca		•	•	x	0	x	•	0	\$	00	000	111	07	1	1	4	Rotate left circular
RLA		•	٠	x	0	x	•	0	ŧ	00	010	111	17	1	1	4	accumulato Rotate lefi accumulato
RRCA		•	•	x	0	x	•	0	ŧ	00	001	111	0F	1	1	4	Rotate right circular accumulato
RRA		•	•	х	0	x	•	0	\$	00	011	111	1F	1	1	4	Rotate right accumulato

PS017801-0602

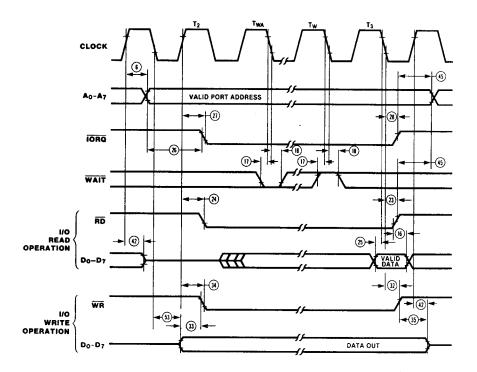
15

JUMP GROUP

Mnemonic	Symbolic Operation	s	z		Fi	aga		VN	с		Opcod 543		Hex	No. of Bytes	No. of M Cycles	No. of T States	•	iments
JP nn	PC ← nn	•	•	х	•	х	•	•	•	11	000	011	C3	3	3	10	œ	Condition
											← n →						000	NZ (non-zero)
											←n→						001	Z (zero)
JP cc, nn	If condition cc	٠	٠	Х	٠	Х	•	٠	٠	11	c c	010		3	3	10	010	NC (non-carry)
	is true PC+-nn,										+n→						011	C (carry)
	otherwise										+n→						100	PO (parity odd)
	continue																101	PE (parity even)
JRe	PC+PC+e	٠	٠	х	٠	Х	٠	٠	٠	00	011	000	18	2	3	12	110	P (sign positive)
										-	-e-2	~					111	M (sign neglative
JRC,e	₩C=0,	٠	٠	Х	٠	Х	٠	٠	٠	00	111	000	38	2	2	7	If cor	ndition not met.
	continue									•	-e-2							
	IfC=1,													2	3	12	If cor	ndition is met.
	PC ← PC + e																	
JR NC, e	IF C = 1,	٠	٠	х	٠	Х	٠	٠	٠	00	110	000	30	2	2	7	lf cor	ndition not met.
	continue									•	-e-2-	•						
	lf C = 0,													2	3	12	If cor	ndition is met.
	PC + PC + e																	
JP Z, e	lfZ=0	٠	٠	х	•	х	٠	٠	٠	00	101	000	28	2	2	7	lf cor	ndition not met.
	continue									•	-e-2·	•						
	lf Z = 1,													2	3	12	If cor	ndition is met.
	PC ← PC + e																	
JR NZ, e	lf Z = 1,	٠	٠	X	٠	х	٠	٠	٠	00	100	000	20	2	2	7	If cor	ndition not met.
	continue									•	-e-2·	•						
	lf Z = 0,													2	3	12	If cor	ndition is met.
	PC+PC+e																	
JP (HL)	PC + HL	٠	٠	х	٠	Х	٠	٠	٠	11	101	001	E9	1	1	4		
JP (IX)	PC + IX	٠	٠	х	٠	х	٠	٠	•	11	011	101	DD	2	2	8		
										11	101	001	E9					
JP (IY)	PC + IY	٠	٠	х	٠	Х	٠	٠	٠	11	111	101	FD	2	2	8		
										11	101	001	E9					
DJNZ, e	B ← B-1	•	٠	х	٠	х	٠	٠	•	00	010	000	10	2	2	8	If B =	0
	lf B = 0,									+	-e-2-	•						
	continue																	
	lf B≠0,													2	3	13	If B≠	0.
	PC+PC+e																	

NOTES: e represents the extension in the relative addressing mode. e is a signal two's complement number in the range < - 126, 129 >. e - 2 in the opcode provides an effective address of pc + e as PC is incremented by 2 prior to the addition of e.

INPUT AND OUTPUT GROUP

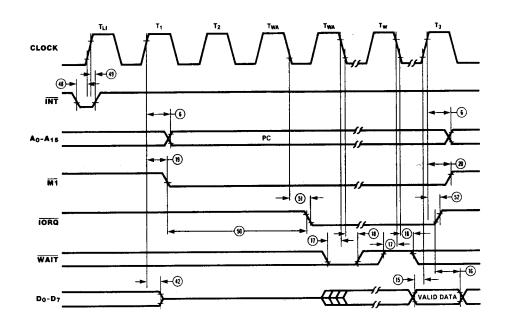

Maamanla	Symbolic	~				aga			~		Opcod			No. of		No. of T	•
mnemonic	Operation		Z		H		P /	VN	<u> </u>	76	543	210	Hex	Bytes	Cycles	States	Comments
N A, (n)	A 🛨 (n)	٠	` •	Х	٠	Х	٠	٠	٠	11	011	01	DB	2	3	11	n to A ₀ ~ A ₇
											←n→						Acc. to $A_8 \sim A_{15}$
N r, (C)	r ← (C)	\$	+	Х	\$	Х	Ρ	0	٠	11	101	101	ED	2	3	12	C to $A_0 \sim A_7$
	if r = 110 only									01	r	000					B to $A_8 \sim A_{15}$
	the flags will																
	be affected		_														
			C)													
41	(HL) 🛨 (C)	Х	\$	Х	х	х	х	1	х	11	101	101	ED	2	4	16	C to A ₀ ~ A ₇
	B←B-1		_							10	100	010	A2				B to Ag ~ A ₁₅
	HL←HL+1		0)													
١R	(HL) 🛨 (C)	X	1	Х	Х	Х	Х	1	Х	11	101	101	ED	2	5	21	C to A ₀ ~ A ₇
	B←B-1									10	110	010	B2		(If B≠0)		B to A ₈ ~ A ₁₅
	HL ← HL + 1													2	4	16	
	Repeat until								s						(If B = 0)		
	B=0		_												-		
			0)													
1D	(HL) + (C)	X	ŧ	Х	Х	Х	Х	1	х	11	101	101	ED	2	4	16	C to A ₀ ~ A ₇
	B ← B – 1									10	101	010	AA				B to A8 ~ A15
	HL+HL-1		0)													
IDR	(HL) ← (C)	Х	1	х	х	х	х	1	х	11	101	101	ED	2	5	21	C to A ₀ ~ A ₇
	B+B-1									10	111	010	BA		(lf B≠0)		B to A8 ~ A15
	HL ← HL – 1													2	4	16	
	Repeat until														(If B = 0)		
	B=0																
UT (n), A	(n) 🕂 A	•	٠	Х	٠	Х	٠	•.	٠	11	010	011	D3	2	3	11	n to A₀ ~ A ₇
-											+n→						Acc. to A8 ~ A15
UT (C), r	(C) ← r	٠	٠	Х	٠	х	٠	٠	٠	11	101	101	ED	2	3	12	C to A ₀ ~ A ₇
										01	r	001					B to A8 ~ A15
			1														
UTI	(C) 🛨 (HL)	X	ŧ	Х	Х	х	Х	1	х	11	101	101	ED	2 '	4	16	C to A ₀ ~ A ₇
	B←B-1									10	100	011	A3				B to A8 ~ A15
	HL←HL+1		0														
Tir	(C) 🛨 (HL)	X	Ĩ	Х	Х	х	Х	1	х	11	101	101	ED	2	5	21	C to A ₀ ~ A ₇
	B←B-1									10	110	011	B 3		(If B≠0)		B to A8 ~ A15
	HL≁HL+1													2	4	16	•
	Repeat until														(If B = 0)		
	B=0																
			1														
UTD	(C) ← (HL)	Х	Ŧ	х	Х	Х	Х	1	х	11	101	101	ED	2	4	16	C to $A_0 \sim A_7$
	B←B-1									10	101	011	AB				B to A8 ~ A15
	HL ← HL – 1																
			2														
DR	(C) 🛨 (HL)	Х	1	х	х	Х	Х	1	х	11	101	101	ED	2	5	21	C to $A_0 \sim A_7$
	B←B-1									10	111	011			(lf B≠0)		B to A8 ~ A15
	HL←HL-1													2	4	16	•
	Repeat until														(If B = 0)		
	B=0																

.

NOTES: (1) If the result of B - 1 is zero, the Z flag is set; otherwise it is reset. (2) Z flag is set upon instruction completion only.

Input or Output Cycles. Figure 7 shows the timing for an I/O read or I/O write operation. During I/O operations, the CPU automatically inserts a single Wait state (T_{WA}). This

extra Wait state allows sufficient time for an I/O port to decode the address from the port address lines.


 $T_{WA} = One$ wait cycle automatically inserted by CPU.

.

Figure 7. Input or Output Cycles

Interrupt Request/Acknowledge Cycle. The CPU samples the interrupt signal with the rising edge of the last clock cycle at the end of any instruction (Figure 8). When an interrupt is accepted, a special $\overline{M1}$ cycle is generated.

During this $\overline{M1}$ cycle, \overline{IORQ} becomes active (instead of \overline{MREQ}) to indicate that the interrupting device can place an 8-bit vector on the data bus. The CPU automatically adds two Wait states to this cycle.

Power-Down mode of operation (Only applies to CMOS Z80 CPU).

Z80 CPU). supply current for the CPU goes down as low as 10 uA CMOS Z80 CPU supports Power-Down mode of operation. (Where specified as lcc_2).

Power-Down Acknowledge Cycle. When the clock input to the CPU is stopped at either a High or Low level, the CPU stops its operation and maintains all registers and control signals. However, I_{cc2} (standby supply current) is guaranteed only when the system clock is stopped at a Low

level during T_4 of the machine cycle following the execution of the HALT instruction. The timing diagram for the power-down function, when implemented with the HALT **instruction, is shown in Figure 13.**

This mode is also referred to as the "standby mode", and

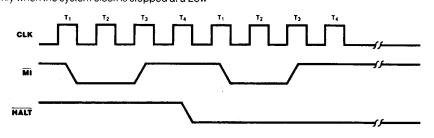
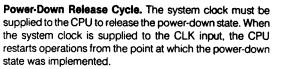
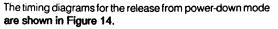




Figure 13. Power-Down Acknowledge

NOTES:

- When the external oscillator has been stopped to enter the power-down state, some warm-up time may be required to obtain a stable clock for the release.
- 2) When the HALT instruction is executed to enter the power-down state, the CPU will also enter the Halt state. An interrupt signal (either NMI or INT) or a RESET signal must be applied to the CPU after the system clock is supplied in order to release the power-down state.

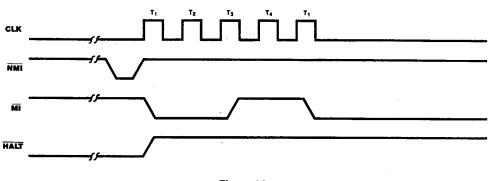


Figure 14a.

Figure 14b.

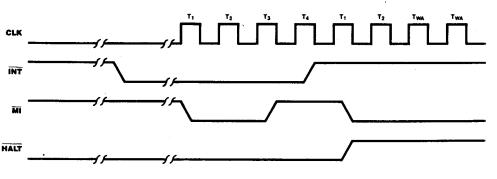


Figure 14c.

Figure 13. Power-Down Release

DC CHARACTERISTICS (Z84C00/CMOS Z80 CPU)

Symbol	Parameter	Min	Max	Unit	Condition
VILC	Clock Input Low Voltage	~0.3	0.45	v	
VIHC	Clock Input High Voltage	V _{CC} – .6	V _{CC} +.3	v	
V _{IL}	Input Low Voltage	- 0.3	0.8	v	
VIH	Input High Voltage	2.2	Vcc	v	
V _{OL}	Output Low Voltage		0.4	v	l _{OL} = 2.0 mA
V _{OH1}	Output High Voltage	2.4		v	l _{OH} = −1.6 mA
V _{OH2}	Output High Voltage	V _{CC} -0.8		v	$I_{OH} = -250 \mu A$
ICC1	Power Supply Current 4 MHz 6 MHz 8 MHz 10 MHz 20 MHz		20 30 40 50 100	mA mA mA mA	$V_{CC} = 5V$ $V_{IH} = V_{CC} - 0.2V$ $V_{IL} = 0.2V$ $V_{IL} = 5V$
ICC2	Standby Supply Current		10	μA	$V_{oc} = 5V$ $V_{CC} = 5V$
					CLK = (0) $V_{IH} = V_{CC} - 0.2V$ $V_{IL} = 0.2V$
ILI	Input Leakage Current	-10	10	μA	$V_{IN} = 0.4$ to V_{CC}
lo	3-State Output Leakage Current in Float	- 10	10 ²	μA	$V_{OUT} = 0.4$ to V_{CC}

Measurements made with outputs floating.
A₁₅-A₀, D₇-D₀, MREQ, IORQ, RD, and WR.
I_{CC2} standby supply current is guaranteed only when the supplied clock is stopped at a low level during T₄ of the machine cycle immediately following the execution of a HALT instruction.

CAPACITANCE

Symbol	Parameter	Min	Max	Unit
CCLOCK	Clock Capacitance		10	pf
C _{IN}	Input Capacitance		5	pf
COUT	Output Capacitance		15	pif

 $T_A = 25$ °C, f = 1 MHz. Unmeasured pins returned to ground.

AC CHARACTERISTICS[†] (Z84C00/CMOS Z80 CPU)

 V_{cc} =5.0V ± 10%, unless otherwise specified

No	Symbol	Parameter		C0004 Max		C0000 Max		C0008 Max		C0010 Max		C0020[1] Max	Unit	Note
1	TcC	Clock Cycle time	250*	DC	162	DC	125	• DC	100*	DC	50*	DC	nS	
2	TwCh	Clock Pulse width (high)			65	DC	55	DC	40	DC	20	DC	nS	
3	TwCl	Clock Pulse width (low)	110		65	DC	55	DC	40	DC	20		nS	
4	TfC	Clock Fall time		30		20	00	10	10	10	20	10	nS	
5	TrC	Clock Rise time		30		20		10		10		10	nS	
6	TdCr(A)	Address vaild from Clock Rise	1	110		90		80		65		57	nS	[2]
7	TdA(MREQf)	Address valid to /MREQ Fall	65*		35*		20*		5*		-15*		nS	• •
8	TdCf(MREQf)	,		85		70		60		55		40	nS	
9	TdCr(MREQr)	Clock Rise to /MREQ Rise delay		8 5		70		60		55		40	nS	
10	TwMREQh	/MREQ pulse width (High)	110*		65*		45**		30*		10*		nS	[3]
11	TwMREQ	/MREQ pulse width (low)	220*		132*		100'		75*		25*		nS	[3]
	TdCf(MERQr)			85		70		60		55		40	nS	
13	TdCf(RDf)	Clock Fall to /RD Fall delay		95		80		70		6 5		40	nS	
	TdCr(RDr)	Clock Rise to /RD Rise delay		85		70		60		55		40	nS	
15	TsD(Cr)	Data setup time to Clock Rise	35		30		30		25		12		nS	
	ThD(RDr)	Data hold time after /RD Rise	0		0		0		0		0		nS	
	TsWAIT(Cf)	WAIT setup time to Clock Fall	70		60		50		20		7.5		nS	
	ThWAIT(Cf)	WAIT hold time after Clock Fall	10		10		10		10		10		nS	
19	TdCr(M1f)	Clock Rise to /M1 Fall delay		100		80	•	70		65		45	nS	
20	TdCr(M1r)	Clock Rise to /M1 Rise delay		100		80		70		65		45	nS	
	TdCr(RFSHf)	Clock Rise to /RFSH Fall delay		130		110		95		80		60	nS	
	TdCr(RFSHr)	Clock Rise to /RFSH Rise delay		120		100		85		80		60	nS	
	TdCf(RDr)	Clock Fall to /RD Rise delay		85		70		60		55		40	nS	
	TdCr(RDf)	Clock Rise to /RD Fall delay		85		70		60		55		40	nS	
25	TsD(Cf)	Data setup to Clock Fall during												
		M2, M3, M4 or M5 cycles	50		40		30		25		12		nS '	
26	TdA(IORQf)	Address stable prior to /IORQ Fall	180*		107*		75*		50*		0*		nS	
27	TdCr(IORQf)	Clock Rise to /IORQ Fall delay		75		65		55		50		40	nS	
28	TdCf(IORQr)	Clock Fall to /IORQ Rise delay		85		70		60		55		40 '	nS	
29	TdD(WRf)Mw	Data stable prior to /WR Fall	80*		22*		5*		40*		-10*		nS	
	TdCf(WRf)	Clock Fall to /WR Fall delay		80		70		60		55		40	nS	
		/WR pulse width	220*		132*		100*		75*		25*		nS	
		Clock Fall to /WR Rise delay		80		70		60		55		40	nS	
		Data stable prior to /WR Fall	-10*		-55*		-55*		-10*		-30*		nS	
34	TdCr(WRf)	Clock Rise to /WR Fall delay		65		60		60		50		40	nS	
	• •	Data stable from /WR Rise	60*		30*		15*		10*		0*		nS	
	• •	Clock Fall to /HALT 'L' or 'H'		300		260		225		90		70	nS	
		/NMI pulse width	80		60		60		60		60		nS	
		/BUSREQ setup time	50		50		40		30		15		nS	
1	(Cr)	to Clock Rise												

*For clock periods other than the minimums shown, calculate parameters using the table on the following page. Calculated values above assumed TrC = TfC = 20 ns.

The second seco

**4 MHz CMOS Z80 is obsoleted and replaced by 6 MHz

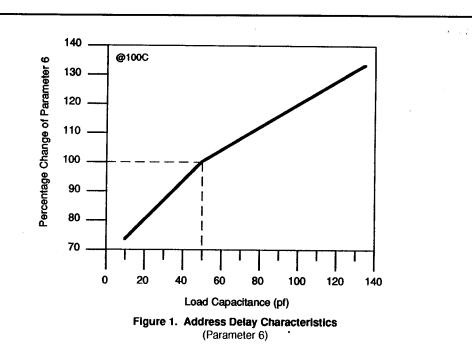
PS017801-0602

¢

AC CHARACTERISTICS[†] (Z84C00/CMOS Z80 CPU; Continued) V_{cc} =5.0V ± 10%, unless otherwise specified

				C0004	Z840	20006	Z840	0008	Z84(C0010	Z840	20020[1]	Unit	Note
No	Symbol	Parameter	Min	Мах	Min	Мах	Min	Max	Min	Max	Min	Max		
39	ThBUSREQ	/BUSREQ hold time	10		10		10		10	•••••	10		nS	
	(Cr)	after Clock Rise												
40	TdCr	Clock Rise to /BASACK		100		90		80		75		40	nS	
	(BUSACKf)	Fall delay												
41	TdCf	Clock Fall to /BASACK		100		90		80		75		40	nS	
	(BUSACKr)	Rise delay												
42	TdCr(Dz)	Clock Rise to Data float delay		90		80		70		6 5		40	nS	
43	TdCr(CTz)	Clock Rise to Control Outputs												
		Float Delay (/MREQ, /IORQ,												
		/RD and /WR)		80		70		60		65		40	nS	
44	TdCr(Az)	Clock Rise to Address		90		80		70		75		40	nS	
		float delay												
45	TdCTr(A)	Address Hold time from /MREQ,	80*		35*		20*		20*		0*		nS	
		/IORQ, /RD or /WR												
46	TsRESET(Cr)	/RESET to Clock Rise setup time	60		60		45		40		15		nS	
47	ThRESET(Cr)	/RESET to Clock Rise Hold time	10		10		10		10		10		nS	
48	TsINTf(Cr)	/INT Fall to Clock Rise	80		70		55		50		15		nS	
		Setup Time												
49	ThINTr(Cr)	/INT Rise to Clock Rise	10		10		10		10		10		nS	
		Hold Time												
50	TdM1f	/M1 Fall to /IORQ Fall delay	565'	,	359*		270'	*	220'	•	100*	r	nS	
	(IORQf)													
51	TdCf(IORQf)	/Clock Fall to /IORQ Fall delay		8 5		70		60		55		45	nS	
52	TdCf(IORQr)	Clock Rise to /IORQ Rise delay		85		70		60		55		45	nS	
53	TdCf(D)	Clock Fall to Data Valid delay		150		130		115		110		75	nS	

Notes: * For Clock periods other than the minimum shown, calculate parameters using the following table.


Calculated values above assumed TrC = TfC = maximum. ** 4 MHz CMOS Z80 is obsoleted and replaced by 6 MHz

Z84C0020 parameters are guuaranteed with 50pF load Capacitance.
If Capacitive Load is other than 50pF, please use Figure 1. to calculate the value.
Increasing delay by 10nS for each 50pF increase in loading, 200pF max for data lines, and 100pF for control lines.

FOOTNOTES TO AC CHARACTERISTICS

No	Symbol	Parameter	Z84C0004	[*] Z84C0006	Z84C0008	Z84C0010	Z84C0020
1	TcC	TwCh + TwCl + TrC + TfC					
7	TdA(MREQf)	TwCh + TfC	-65	-50	-45	-45	-45
10	TwMREQh	TwCh + TfC	-20	-20	-20	-20	-20
11	TwMREQI	TcC	-30	-30	-25	-25	-25
26	TdA(IORQf)	TcC	-70	-55	-50	-50	-50
29	TdD(WRf)	TcC	-170	-140	-120	-60	-60
31	TwWR	TcC /	-30	-30	-25	-25	-25
33	TdD(WRf)	TwCI + TrC	-140	-140	-120	-60	-60
35	TdWRr(D)	TwCl + TrC	-70	-55	-50	-40	-25
45	TdCTr(A)	TwCI + TrC	-50	-50	-45	-30	-30
50	TdM1f(IORQf)	2TcC + TwCh + TfC	-65	-50	-45	-30	-30
AC Test	Conditions: $V_{IH} = 2.0$ $V_{IL} = 0.8$		V _{IHC} = V _{ILC} =	V _{CC} -0.6 V 0.45 V	Float = 1	E0.5 V	

PS017801-0602

DC CHARACTERISTICS (Z8400/NMOS Z80 CPU)

All parameters are tested unless otherwise noted.

Symbol	Parameter	Min	Max	Unit	Test Condition
V _{ILC}	Clock Input Low Voltage	-0.3	0.45	v	
VIHC	Clock Input High Voltage	V _{CC} – .6	V _{CC} +.3	v	
VIL	Input Low Voltage	- 0.3	0.8	v	
VIH	Input High Voltage	2.0 ¹	V _{CC}	v	
VOL	Output Low Voltage		0.4	v	l _{Oi} = 2.0 mA
V _{OH}	Output High Voltage	2.4 ¹		v .	l _{OH} = -250 μA
ICC.	Power Supply Current		200	mA	Note 3
lLi	Input Leakage Current		10	μA	$V_{IN} = 0$ to V_{CC}
ILO	3-State Output Leakage Current in Float	- 10	10 ²	μΑ	$V_{OUT} = 0.4$ to V_{CC}

For military grade parts, refer to the Z80 Military Electrical Specification.
A₁₅-A₀, D₇-D₀, MREO, IORO, RD, and WR.
Measurements made with outputs floating.

CAPACITANCE

Guaranteed by design and characterization.

Symbol	Parameter	Min	Max	Unit
C _{CLOCK}	Clock Capacitance		35	pf
C _{IN}	Input Capacitance		5	pf
COUT	Output Capacitance		15	pf

NOTES:

 $T_A = 25$ °C, f = 1 MHz. Unmeasured pins returned to ground.

•

PS017801-0602

			Z084	0004	Z08 4	0006	Z084	8000
Number	Symbol	Parameter	Min	Max	Min	Max	Min	Max
1	TcC	Clock Cycle Time	250*		162*		125*	
2	TwCh	Clock Pulse Width (High)	110	2000	65	2000	55	2000
3	TwCl	Clock Pulse Width (Low)	110	2000	65	2000	55	2000
4	TfC	Clock Fall Time		30		20		10
5	TrC	Clock Rise Time		30		20		10
6	TdCr(A)	Clock t to Address Valid Delay		110		90		80
7	TdA(MREQf)	Address Valid to MREQ ↓ Delay	65*		35*		20*	
8	TdCf(MREQf)	Clock ↓ to MREQ ↓ Delay		85		70		60
9	TdCr(MREQr)	Clock t to MREQ t Delay		85		70		60
10	TwMREQh	MREQ Pulse Width (High)	110**	Ħ	65*	Ħ	45*1	H t
11	TwMREQI	MREQ Pulse Width (Low)	220*	Ħ	135**	İ.	100*1	HT .
12	TdCf(MREQr)	Clock I to MREQ t Delay		85		70		60
13	TdCf(RDf)	Clock ↓ to RD ↓ Delay		95		80		70
14	TdCr(RDr)	Clock t to RD t Delay		85		70		60
15	TsD(Cr)	Data Setup Time to Clock †	35		30		30	
16	ThD(RDr)	Data Hold Time to \overline{RD} t		0		0		C
17	TsWAIT(Cf)	WAIT Setup Time to Clock I	70		60		50	
18	ThWAIT(Cf)	WAIT Hold Time after Clock +		0		0		0
19	TdCr(M1f)	Clock ↑ to M1 ↓ Delay		100		80		70
20	TdCr(M1r)	Clock t to M1 t Delay		. 100		80		70
21	TdCr(RFSHf)	Clock ↑ to RFSH ↓ Delay		130		110		95
22	TdCr(RFSHr)	Clock t to RFSH t Delay		120		100		85
23	TdCf(RDr)	Clock ↓ to RD ↑ Delay		85		70		60
24	TdCr(RDf)	Clock † to RD ↓ Delay		85		70		60
25	TsD(Cf)	Data Setup to Clock I during M ₂ , M ₃ , M ₄ , or M ₅ Cycles	50		40		30	
26	TdA(IORQf)	Address Stable prior to IORQ +	180*		110*		75*	
27	TdCr(IORQf)	Clock † to IORQ ↓ Delay		75		65		55
28	TdCf(IORQr)	Clock ↓ to IORQ ↑ Delay		85		70		·60
29	TdD(WRf)	Data Stable prior to WR	80*		25*		5*	
30	TdCf(WRf)	Clock ↓ to WR ↓ Delay		80		70		60
31	TwWR	WR Pulse Width	220*		135*		100*	
32	TdCf(WRr)	Clock↓to WR↑Delay		80		70		60
· 33	TdD(WRf)	Data Stable prior to WR +	-10*		-55*		55*	
34	TdCr(WRf)	Clock ↑ to WR ↓ Delay		65		60		55
35	TdWRr(D)	Data Stable from WR 1	60*		30*		15*	
36	TdCf(HALT)	Clock ↓ to HALT ↑ or ↓		300		260		225
37	TwNMI	NMI Pulse Width	80		70		60*	
38	TsBUSREQ(Cr)	BUSREQ Setup Time to Clock t	50		50		40	

AC CHARACTERISTICS[†] (Z8400/NMOS Z80 CPU)

*For clock periods other than the minimums shown, calculate parameters using the table on the following page. Calculated values above assumed TrC = TIC = 20 ns. †Units in nanoseconds (ns).

For loading \geq 50 pf., Decrease width by 10 ns for each additional 50 pf.

PS017801-0602

.

AC CHARACTERISTICS[†] (Z8400/NMOS Z80 CPU; Continued)

			Z08 4	10004	Z08 4	0006	Z08 4	8000
Number	Symbol	Parameter	Min	Max	Min	Max	Min	Max
39	ThBUSREQ(Cr)	BUSREQ Hold Time after Clock t	0		0	-	0	•
40	TdCr(BUSACKf)	Clock t to BUSACK I Delay		100		90		80
41	TdCf(BUSACKr)	Clock ↓ to BUSACK ↑ Delay		100		90		80
42	TdCr(Dz)	Clock t to Data Float Delay		90		80		70
43	TdCr(CTz)	Clock t to Control Outputs Float Delay (MREQ, IORQ, RD, and WR)		80		70		60
44	TdCr(Az)	Clock t to Address Float Delay		90		80		70
45	TdCTr(A)	MREQ t, IORQ t, RD t, and WR t to Address Hold Time	. 80*		35*		20*	
46	TsRESET(Cr)	RESET to Clock † Setup Time	60		60		45	
47	ThRESET(Cr)	RESET to Clock t Hold Time		0		0		0
48	TsINTf(Cr)	INT to Clock † Setup Time	80		70		55	
49	ThINTr(Cr)	INT to Clock t Hold Time		0		0		0
50	TdM1f(IORQf)	M1 ↓ to IORQ ↓ Delay	565*		365*		270*	
51	TdCf(IORQf)	Clock ↓ to IORQ ↓ Delay		85		70		60
52	TdCf(IORQr)	Clock † IORQ † Delay		85		70		60
53	TdCf(D)	Clock I to Data Valid Delay		150		130		115

*For clock periods other than the minimums shown, calculate parameters using the following table. Calculated values above assumed TrC = TfC = 20 ns. †Units in nanoseconds (ns).

FOOTNOTES TO AC CHARACTERISTICS

Number	Symbol	General Parameter	Z0840004	Z0840006	Z0840008
1	TcC	TwCh + TwCl + TrC + TfC			
7	TdA(MREQf)	TwCh + TfC	- 65	- 50	- 45
10	TwMREQh	TwCh + TfC	- 20	- 20	- 20
11	TwMREQI	TcC	- 30	- 30	- 25
26	TdA(IORQf)	TcC	- 70	55	- 50
29	TdD(WRf)	TcC	- 170	- 140	- 120
31	TwWR	TcC	- 30	- 30	- 25
33	TdD(WRf)	TwCI + TrC	- 140	- 140	- 120
35	TdWRr(D)	TwCl + TrC	- 70	- 55	50
45	TdCTr(A)	TwCI + TrC	- 50	- 50	45
50	TdM1f(IORQf)	2TcC + TwCh + TfC	- 65	- 50	45

- AC Test Conditions: $V_{IH} = 2.0 V$ $V_{IL} = 0.8 V$ $V_{\rm IHC} = V_{\rm CC} - 0.6 V$ $V_{\rm ILC} = 0.45 V$

V_{OH} = 1.5 V V_{OL} = 1.5 V FLOAT = ±0.5 V

~

Customer Support

For answers to technical questions about the product, documentation, or any other issues with Zilog's offerings, please visit Zilog's Knowledge Base at http://www.zilog.com/kb.

For any comments, detail technical questions, or reporting problems, please visit Zilog's Technical Support at <u>http://support.zilog.com</u>.