
E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	Z80
Number of Cores/Bus Width	1 Core, 8-Bit
Speed	10MHz
Co-Processors/DSP	-
RAM Controllers	-
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	5.0V
Operating Temperature	-40°C ~ 100°C (TA)
Security Features	-
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z84c0010fec

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

70	Λ.
20	U

	Register	Size (Bits)	Remarks
A, A'	Accumulator	8	Stores an operand or the results of an operation.
F, F'	Flags	8	See Instruction Set.
B, B′	General Purpose	8	Can be used separately or as a 16-bit register with C.
C, C′	General Purpose	8	Can be used separately or as a 16-bit register with C.
D, D'	General Purpose	8	Can be used separately or as a 16-bit register with E.
E, E′	General Purpose	8	Can be used separately or as a 16-bit register with E.
Н, Н′	General Purpose	8	Can be used separately or as a 16-bit register with L.
L, L'	General Purpose	8	Can be used separately or as a 16-bit register with L.
			Note: The (B,C), (D,E), and (H,L) sets are combined as follows: B - High byte C - Low byte D - High byte E - Low byte H - High byte L - Low byte
l	Interrupt Register	8	Stores upper eight bits of memory address for vectored interrupt processing.
R	Refresh Register	8	Provides user-transparent dynamic memory refresh. Automatically incremented and placed on the address bus during each instruction fetch cycle.
IX	Index Register	16	Used for indexed addressing.
IY .	Index Register	16	Used for indexed addressing
SP	Stack Pointer	16	Holds address of the top of the stack. See Push or Pop in instruction set.
PC	Program Counter	16	Holds address of next instruction.
IFF1-IFF2	Interrupt Enable	Flip-Flops	Set or reset to indicate interrupt status (see Figure 4).
IMFa-IMFb	Interrupt Mode	Flip-Flops	Reflect Interrupt mode (see Figure 4).

failure has been detected. After recognition of the NMI signal (providing BUSREQ is not active), the CPU jumps to restart location 0066H. Normally, software starting at this address contains the interrupt service routine.

Maskable Interrupt (INT). Regardless of the interrupt mode set by the user, the CPU response to a maskable interrupt input follows a common timing cycle. After the interrupt has been detected by the CPU (provided that interrupts are enabled and $\overline{\text{BUSREQ}}$ is not active) a special interrupt processing cycle begins. This is a special fetch (M1) cycle in which $\overline{\text{IORQ}}$ becomes active rather than $\overline{\text{MREQ}}$, as in a normal M1 cycle. In addition, this special M1 cycle is automatically extended by two WAIT states, to allow for the time required to acknowledge the interrupt request.

Mode 0 Interrupt Operation. This mode is similar to the 8080 microprocessor interrupt service procedures. The interrupting device places an instruction on the data bus. This is normally a Restart instruction, which will initiate a call

to the selected one of eight restart locations in page zero of memory. Unlike the 8080, the Z80 CPU responds to the Call instruction with only one interrupt acknowledge cycle followed by two memory read cycles.

Mode 1 Interrupt Operation. Mode 1 operation is very similar to that for the NMI. The principal difference is that the Mode 1 interrupt has only one restart location, 003/8H.

Mode 2 Interrupt Operation. This interrupt mode has been designed to most effectively utilize the capabilities of the Z80 microprocessor and its associated peripheral family. The interrupting peripheral device selects the starting address of the interrupt service routine. It does this by placing an 8bit vector on the data bus during the interrupt acknowledge cycle. The CPU forms a pointer using this byte as the lower 8 bits and the contents of the I register as the upper 8 bits. This points to an entry in a table of addresses for interrupt service routines. The CPU then jumps to the routine at that

8-BIT LOAD GROUP (Continued)

	Symbolic				Fia	aga	,				Opcod	le		No. of	No. of M	No of T	
Mnemonic	Operation	S	Z		н	•		/ N	С		543		Hex	Bytes	Cycles	States	Commente
LD (IY + d), n	(lY+d) ← n	٠	•	х	•	x	٠	•	٠	11	111	101	FD	4	5	19	
										00	110	110	36				
											← d →	•					
											+ n -	•					
LD A, (BC)	A 🛨 (BC)	٠	٠	Х	٠	Х	٠	٠	٠	00	001	010	0A	1	2	7	
LD A, (DE)	A 🗲 (DE)	•	٠	Х	٠	Х	•	٠	٠	00	011	010	1A	1	2	7	
LD A, (nn)	A 🛨 (nn)	٠	٠	х	٠	Х	٠	٠	٠	00	111	010	3A	3	4	13	
											+-n-+	•					
											← n →	•					
LD (BC), A	(BC) 🗕 A	٠	٠	х	٠	х	٠	٠	٠	00	000	010	02	1	2	7	
LD (DE), A	(DE) 🕂 A	٠	٠	х	٠	Х	٠	٠	٠	00	010	010	12	1	2	7	
LD (nn), A	(nn) 🗕 A	٠	٠	х	٠	х	٠	٠	٠	00	110	010	32	3	4	13	
											+- n →	•					
											+ n →	•					
LD A, I	A≁I	+	+	х	0	х	IFF	0	٠	11	101	101	ED	2	2	9	
										01	010	111	57				
LD A, R	A←R	\$	\$	х	0	Х	IFF	0	٠	11	101	101	ED	2	2	9	
										01	011	111	5F				
LD I, A	I←A	•	•	х	•	Х	٠	•	•	11	101	101	ED	2	2	9	
	- .									01	000	111	47				
_D R, A	R←A	•	•	х	٠	Х	•	•	•	11	101	101	ED	2	2	9	
										01	001	111	4F				

NOTE: IFF, the content of the interrupt enable flip-flop, (IFF2), is copied into the P/V flag.

16-BIT LOAD GROUP

Mnemonic	Symbolic Operation	S	z		Fla H	ngs	P/\	N	c		Opcod 543		Hex	No. of Byt es	No. of M Cycles	No. of T States	Con	nmenti
LD dd, nn	dd 🛨 nn	٠	•	х	٠	х	•	٠	٠	00				3	3	10	dd	Pair
											+n-+						00	BC
											+ n→						01	DE
LD IX, nn	IX 🕂 nn	•	•	Х	٠	х		٠	•	11	011	101	DD	4	4	14	10	HL
										00	100	001	21				11	SP
											+ n →							
											+n →							
LD IY, nn	IY 🕂 nn	•	•	Х	٠	х	٠	٠	٠	11	111	101	FD	4	4	14		
										00	100	001	21					
											+ n→							
											←n→							
LD HL, (nn)	H 🗲 (nn + 1)	٠	٠	х	٠	х	٠	٠	٠	00	101	010	2A	3	5	16		
	L 🗲 (nn)										←n→							
											←n→							
LD dd, (nn)	dd _H +- (nn + 1)	٠	٠	х	٠	х	٠	•	٠	11	101	101	ED	4	6	20		
	dd _L 🛨 (nn)									01	dd1	011						
											←n →							
											+ n→							

.

NOTE: $(PAIR)_H$, $(PAIR)_L$ refer to high order and low order eight bits of the register pair respectively. e.g., $BC_L = C$, $AF_H = A$.

١

16-BIT LOAD GROUP (Continued)

Mnemonic	Symbolic Operation	s	z		Fla H	ngs	P/V	N	С	76	Opcod 543	e 210	Hex	No. of Bytes	No. of M Cycles	No. of T States	Comm	ente
	•										.				•			
LD IX, (nn)	IX _H ← (nn + 1)	•	•	X	•	X	•	•	•	11 00	011	101 010	DD 2A	4	6	20		
	i∧ <u>i</u> ← (riii)									00	+n→		24					
											+n→							
LD IY, (nn)	lY _H ← (nn + 1)	•	•	х	•	х	•	•	•	11	. 111		FD	4	6	20		
	IYL + (nn)									00	101		2A					
											← n →	•						
											← n→							
LD (nn), HL	(nn + 1) 🕶 H	٠	٠	х	٠	Х	•	•	٠	00	100	010	22	3	5	16		
	(∩n)+-L										← n→							
											≁ n→							:
LD (nn), dd	(nn + 1) ← dd _H	٠	٠	х	•	Х	•	•	•	11	101		ED	4	6	20		
	(nn) ← dd _L									01	dd0							
											+ n → + n →							
LD (nn), IX	(nn + 1) ← IX _H	•		x		х		•		11		101	DĐ	4	6	20		
20 (111), 01	(nn) ← IX ₁		-	~		[^]				00	100		22		U	20		
											+n→							
											+n→							
LD (nn), IY	(nn + 1) ← IY _H	٠	٠	х	٠	Х	•	٠	٠	11	111	101	FD	4	6	20		
	(nn) 🛨 IY _L									00	100	010	22					
											← n →							
											← n→							
LD SP, HL	SP - HL	٠	•		•	X	•	•	٠	11	111		F9	1	1	6		
LD SP, IX	4SP + IX	•	•	Х	٠	х	•	•	•	11	011	101	DD	2	2	10		
LD SP, IY	SP ← IY		•	x		x	•		•	11 11	111	001 101	F9 FD	2	2	10		
LD OF, II	3F - 11	•	•	^	•	^	•	•	•	11	111	001	F9	2	2	10	qq	Pair
PUSH qq	(SP - 2) ← qq	•	•	x		x	•	•	•	11	qq0	101		1	3	11		BC
भभ	(SP ~ 1) ← qq _H										797				-			DE
	SP→SP - 2																	HL
PUSHIX	(SP - 2) + IXL	٠	٠	х	٠	х	٠	•	•	11	011	101	DD	2	4	15	11	AF
	(SP - 1) + IX _H									11	100	101	E5					
	SP→SP -2																	
PUSHIY	(SP - 2) ← IY _L	٠	٠	х	٠	Х	•	•	•	11	111	101	FD	2	4	15		
	(SP – 1) ← IY _H									11	100	101	E5					
	SP→SP -2											004			0	10		
POP qq	qq _H ← (SP + 1)	•	•	X	٠	Х	•	•	•	11	qq0	001		1	3	10		
	qqL ← (SP) SP → SP + 2																	1
POP IX	$SP \rightarrow SP + 2$ $IX_H \leftarrow (SP + 1)$			y		¥				11	011	101	DD	2	4	14		
	IX _L ← (SP + 1)	-	-	^	•	^	-	-	2	11		001	E1	£	т			
	$SP \rightarrow SP + 2$									••								
POPIY	IY _H ← (SP + 1)	•	•	х	•	х	. •	•	•	11	111	101	FD	2	4	14		
	IYL + (SP)									11		001	E1					
	SP -+ SP +2																	

.

NOTE: (PAIR)_H, (PAIR)_L refer to high order and low order eight bits of the register pair respectively, e.g., BC_L = C, AF_H = A.

PS017801-0602

11

8-BIT ARITHMETIC AND LOGICAL GROUP (Continued)

	Symbolic		•		Fk	ngs				(Орсос	le		No. of	No. of M	No. of T	
Mnemonic	Operation	S	Z		H		P/V	N	С	76	543	210	Hex	Bytes	Cycles	States	Commente
INC r	r≁r+1	\$	\$	х	\$	Х	v	0	•	00	r	100		1	1	4	
INC (HL)	(HL) 🛨																
	(HL) + 1	\$	\$	х	\$	х	۷	0	٠	00	110	100		1	3	11	
INC (IX + d)	(IX + d) ←	‡	\$	Х	\$	х	۷	0		11	011	101	DD	3	6	23	
(ix + u)	(IX + d) + 1									00	110	100					
											+-d-						
INC (IY + d)	(IY + d) ←	\$	\$	х	\$	х	۷	0	•	11	111	101	FD	3	6	23	
	(IY+d)+1									00	110	100					
											+ d -						
DECm	m+m−1	+	ŧ	Х	\$	х	V	1	٠			101					

GENERAL-PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

	Symbolic				Fk	ngs					Opcod	•		No. of	No. of M	No. of T	
Mnemonic	Operation	8	Z		Η	_	PΛ	/ N	C	76	543	210	Hex	Bytes	Cycles	States	Comments
DAA	@	\$	\$	х	\$	X	Ρ	•	\$	00	100	111	27	1	1	4	Decimal adjus accumulator
CPL	A←A	•	•	×	1	X	•	1	•	00	101	111	2F	1	1	4	Complement accumulator (one's complement).
NEG	A ← 0 – A	ŧ	\$	х	\$	х	۷	1	\$	11	101	101	ED	2	2	8	Negate acc.
										01	000	100	44				(two's
																	complement).
CCF	CY + CY	•	٠	х	х	X	٠	0	\$	00	111	111	ЗF	1	. 1	4	Complement carry flag.
SCF	CY + 1	٠	٠	Х	0	Х	٠	0	1	00	110	111	37	1	1	4	Set carry flag.
NOP	No operation	٠	٠	Х	•	Х	٠	٠	٠	00	000	000	00	1	1	4	- 1
HALT	CPU halted	٠	٠	Х	•	х	٠	٠	٠	01	110	110	76	1	1	4	
DI 🛨	IFF 🕶 0	٠	٠	Х	٠	Х	٠	٠	٠	11	110	011	F3	1	1	4	
El 🛨	IFF 🛨 1	٠	٠	х	٠	х	٠	٠	٠	11	111	011	FB	1	1	4	
IM 0	Set interrupt	٠	٠	Х	٠	х	٠	٠	٠	11	101	101	ED	2	2	8	
	mode 0									01	000	110	46				
IM 1	Set interrupt	٠	٠	х	٠	х	٠	٠	٠	11	101	101	ED	2	2	8	
	mode 1									01	010	110	56				
M 2	Set interrupt	٠	٠	х	٠	х	٠	٠	٠	11	101	101	ED	2	2	8	-
	mode 2									01	011	110	5E				

NOTES: @ converts accumulator content into packed BCD following add or subtract with packed BCD operands. IFF indicates the interrupt enable flip-flop. CY indicates the carry flip-flop. * indicates interrupts are not sampled at the end of EI or DI.

ROTATE AND SHIFT GROUP (Continued)

Mnemonic	Symbolic Operation	S	z		Fla H	ngs		/ N	c	76	Opcod 543	e 210	Hex	No. of Byt es	No. of M Cycles	No. of T States	Comment
RLC r		\$	\$	x	0	x	P	0	• ‡	11 00	001 000	011 r	СВ	2	2	8	Rotate left circular register r.
RLC (HL)		;	\$	x	0	X	Ρ	0	\$	11 00	001 000	011 110	СВ	2	4	15	<u>r Re</u> 000 B
RLC (IX + d)	r,(HL),(IX + d),(IY +	t d)	\$	X	0	х	P	0	+	11 11 00	011 001 ← d → 000		DD CB	4	6	23	001 C 010 D 011 E 001 H 101 L
RLC (IY + d)	ļ	‡	ŧ	x	0	x	Ρ	0	:	11 11	111 001	101 011	FD CB	4	6	23	111 A
1 6 171	[cy]+7●]+-] m = r,(HL,(IX + d),(i	‡ Y+0		x	0	x	P	0	ŧ	00	+-d-+ 000 010	110					Instruction format and states are as shown for
IRCm ⊊	<u>7+0</u> -€CY m = r,(HL),(IX + d),(I			x	0	x	Ρ	0	ŧ		001						RLCs. To for new opcode replace 000 or RLCs with
	7+e]€cy] m = r,(HL),(IX + d),(I	•		x	0	x	Ρ	0	ŧ		011						shown code
	cv][70]-+-0 m = r,(HL),(IX + d),(I			ĸ	0	x	Ρ	0	\$		100						
	<mark>7>●]</mark> >[cv] m = r,(HL),(IX + d),(I	•		<	0	x	Ρ	0	ŧ	- 1.	101						
	<u>7</u> €CY m = r,(HL),(IX + d),(I	‡ Y+c		(0	x	P	0	\$		[111]						
LD 7-4	30 7-4 30 4 7-4 30 4 7-4 30 (HL)	:	; >	¢	0	x	P	0	•	11 01		101 111	ED 6F	2	5		Rotate digit left and right betwee the accumu-
RD 74	30)	•	;)	[0	x	Ρ	0	•	11 01		101 111	ED 67	2	5	18	lator and location (HL) The content of the upper half of the accumulator is unaffected

.

PS017801-0602

16

	Symbolic				Fk	lgs				(Opcod	e		No. of	No. of M	No. of T		
Mnemonic	Operation	8	Z		H	•	P/V	N	С	76	543	210	Hex	Bytes	Cycles	States	Соп	ments
BIT b, r	Z ← r _b	х	\$	x	1	х	х	0	•	11	001	011	СВ	2	2	8	r	Reg.
										01	ь	r					000	В
BIT b, (HL)	Z ← (HL) _b	х	\$	х	1	х	х	0	٠	11	001	011	СВ	2	3	12	001	С
										01	b	110					010	D
BIT b,(IX + d)b	Z + (IX + d) _b	х	\$	х	1	х	Х	0	٠	11	011	101	DD	4	5	20	011	Е
										11	001	011	СВ				100	н
											+d-	•					101	L
										01	b	110					111	Α
																	ь	Bit Tester
BIT b, (IY + d) _b	Z ← (IY + d) _b	х	\$	х	1	х	Х	0	٠	11	111	101	FD	4	5	20	000	0
_										11	001	011	CB				001	1
											+ d -						010	2
		•								01	b	110					011	3
SET b, r	r _b ← 1	٠	•	х	٠	х	٠	٠	.•	11	001	011	СВ	2	2	8	100	4
	-									[1]	b	r					101	5
SET b, (HL)	(HL) _b ← 1	٠	٠	х	٠	х	٠	٠	٠	11	001	011	CB	2	4	15	110	6
										11	b	110					111	7
SET b, (1X + d)	(IX+d) _b + 1	٠	•	х	٠	х	٠	٠	٠	11	011	101	DD	4	6	23		
										11	001	011	CB					
											+d-	•						
										11	ь	110						
SET b, (IY + d)	(IY+d) _b ← 1	٠	٠	Х	٠	х	•	٠	٠	11	111	101	FD	4	6	23		
										11	001	011	CB					
											+ d →	•						
										11	ь	110						
RES b, m	m _b ← 0	٠	٠	х	٠	х	•	٠	•	10							To fo	rm neiv
	m≡r, (HL),														•		opco	ode replac
	(1X + d), (1Y + d)																11	of SET b, s
	· · · ·																with	10 Flag
																	and	time
																	state	s for SET
																	instr	uction.

BIT SET, RESET AND TEST GROUP

NOTE: The notation mb indicates location m, bit b (0 to 7).

JUMP GROUP

Mnemonic	Symbolic Operation	s	z		Fi	aga		VN	с		Opcod 543		Hex	No. of Bytes	No. of M Cycles	No. of T States	•	iments
JP nn	PC ← nn	•	•	х	•	х	•	•	•	11	000	011	C3	3	3	10	œ	Condition
											← n →						000	NZ (non-zero)
											←n→						001	Z (zero)
JP cc, nn	If condition cc	٠	٠	Х	٠	Х	•	٠	٠	11	c c	010		3	3	10	010	NC (non-carry)
	is true PC+-nn,										+n→						011	C (carry)
	otherwise										+n→						100	PO (parity odd)
	continue																101	PE (parity even)
JRe	PC+PC+e	٠	٠	х	٠	Х	٠	٠	٠	00	011	000	18	2	3	12	110	P (sign positive)
										•	-e-2	~					111	M (sign neglative
JRC,e	₩C=0,	٠	٠	Х	٠	Х	٠	٠	٠	00	111	000	38	2	2	7	If cor	ndition not met.
	continue									•	-e-2							
	IfC=1,													2	3	12	If cor	ndition is met.
	PC ← PC + e																	
JR NC, e	IF C = 1,	٠	٠	х	٠	Х	٠	٠	٠	00	110	000	30	2	2	7	lf cor	ndition not met.
	continue									•	-e-2-	•						
	lf C = 0,													2	3	12	If cor	ndition is met.
	PC + PC + e																	
JP Z, e	lfZ=0	٠	٠	х	•	х	٠	٠	٠	00	101	000	28	2	2	7	lf cor	ndition not met.
	continue									•	-e-2·	•						
	lf Z = 1,													2	3	12	If cor	ndition is met.
	PC ← PC + e																	
JR NZ, e	lf Z = 1,	٠	٠	X	٠	х	٠	٠	٠	00	100	000	20	2	2	7	If cor	ndition not met.
	continue									•	-e-2·	•						
	lf Z = 0,													2	3	12	If cor	ndition is met.
	PC+PC+e																	
JP (HL)	PC + HL	٠	٠	х	٠	Х	٠	٠	٠	11	101	001	E9	1	1	4		
JP (IX)	PC + IX	٠	٠	х	٠	х	٠	٠	•	11	011	101	DD	2	2	8		
										11	101	001	E9					
JP (IY)	PC + IY	٠	٠	х	٠	Х	٠	٠	٠	11	111	101	FD	2	2	8		
										11	101	001	E9					
DJNZ, e	B ← B-1	٠	٠	х	٠	х	٠	٠	•	00	010	000	10	2	2	8	If B =	0
	lf B = 0,									+	-e-2-	•						
	continue																	
	lf B≠0,													2	3	13	If B≠	0.
	PC+PC+e																	

NOTES: e represents the extension in the relative addressing mode. e is a signal two's complement number in the range < - 126, 129 >. e - 2 in the opcode provides an effective address of pc + e as PC is incremented by 2 prior to the addition of e.

INPUT AND OUTPUT GROUP

Maamanla	Symbolic	~				aga			~		Opcod			No. of		No. of T	•
mnemonic	Operation		Z		H		P /	VN	<u> </u>	76	543	210	Hex	Bytes	Cycles	States	Comments
N A, (n)	A 🛨 (n)	٠	` •	Х	٠	Х	٠	٠	٠	11	011	01	DB	2	3	11	n to A ₀ ~ A ₇
											←n→						Acc. to $A_8 \sim A_{15}$
N r, (C)	r ← (C)	\$	+	Х	\$	Х	Ρ	0	٠	11	101	101	ED	2	3	12	C to $A_0 \sim A_7$
	if r = 110 only									01	r	000					B to A ₈ ~ A ₁₅
	the flags will																
	be affected		_														
			C)													
41	(HL) 🛨 (C)	Х	\$	Х	х	х	х	1	х	11	101	101	ED	2	4	16	C to A ₀ ~ A ₇
	B←B-1		_							10	100	010	A2				B to Ag ~ A ₁₅
	HL←HL+1		0)													
١R	(HL) 🛨 (C)	X	1	Х	Х	Х	Х	1	Х	11	101	101	ED	2	5	21	C to A ₀ ~ A ₇
	B←B-1									10	110	010	B2		(If B≠0)		B to A ₈ ~ A ₁₅
	HL ← HL + 1													2	4	16	
	Repeat until								s						(If B = 0)		
	B=0		_												-		
			0)													
1D	(HL) + (C)	X	ŧ	Х	Х	Х	Х	1	х	11	101	101	ED	2	4	16	C to A ₀ ~ A ₇
	B ← B – 1									10	101	010	AA				B to A8 ~ A15
	HL+HL-1		0)													
IDR	(HL) ← (C)	Х	1	х	х	х	х	1	х	11	101	101	ED	2	5	21	C to A ₀ ~ A ₇
	B+B-1									10	111	010	BA		(lf B≠0)		B to A8 ~ A15
	HL ← HL – 1													2	4	16	
	Repeat until														(If B = 0)		
	B=0																
UT (n), A	(n) 🕂 A	•	٠	Х	٠	Х	٠	•.	٠	11	010	011	D3	2	3	11	n to A₀ ~ A ₇
-											+n→						Acc. to A8 ~ A15
UT (C), r	(C) ← r	٠	٠	Х	٠	х	٠	٠	٠	11	101	101	ED	2	3	12	C to A ₀ ~ A ₇
										01	r	001					B to A8 ~ A15
			0														
UTI	(C) 🛨 (HL)	X	ŧ	Х	Х	х	Х	1	х	11	101	101	ED	2 '	4	16	C to A ₀ ~ A ₇
	B←B-1									10	100	011	A3				B to A8 ~ A15
	HL←HL+1		0														
Tir	(C) 🛨 (HL)	X	Ĩ	Х	Х	х	Х	1	х	11	101	101	ED	2	5	21	C to A ₀ ~ A ₇
	B←B-1									10	110	011	B 3		(If B≠0)		B to A8 ~ A15
	HL≁HL+1													2	4	16	•
	Repeat until														(If B = 0)		
	B=0																
			1														
UTD	(C) ← (HL)	Х	Ŧ	х	Х	Х	Х	1	х	11	101	101	ED	2	4	16	C to $A_0 \sim A_7$
	B←B-1									10	101	011	AB				B to A8 ~ A15
	HL ← HL – 1																
			2														
DR	(C) 🛨 (HL)	Х	1	х	х	Х	Х	1	х	11	101	101	ED	2	5	21	C to $A_0 \sim A_7$
	B←B-1									10	111	011			(lf B≠0)		B to A8 ~ A15
	HL←HL-1													2	4	16	•
	Repeat until														(If B = 0)		
	B=0																

.

NOTES: (1) If the result of B - 1 is zero, the Z flag is set; otherwise it is reset. (2) Z flag is set upon instruction completion only.

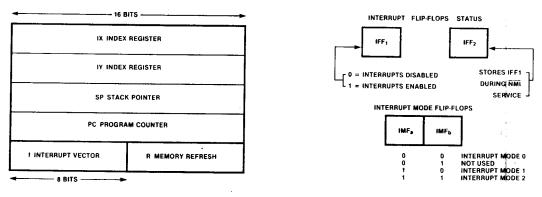

CPU REGISTERS

Figure 4 shows three groups of registers within the CPU. The first group consists of duplicate sets of 8-bit registers: a principal set and an alternate set [designated by ' (prime), e.g., A']. Both sets consist of the Accumulator register, the Flag register, and six general-purpose registers. Transfer of data between these duplicate sets of registers is accomplished by use of "Exchange" instructions. The result is faster response to interrupts and easy, efficient implementation of such versatile programming techniques

as background-foreground data processing. The second set of registers consists of six registers with assigned functions. These are the I (Interrupt register), the R (Refresh register), the IX and IY (Index registers), the SP (Stack Pointer), and the PC (Program Counter). The third group consists of two interrupt status flip-flops, plus an additional pair of flip-flops which assists in identifying the interrupt mode at any particular time. Table 1 provides further information on these registers.

GISTER SET	ALTERNATE REGISTER SET						
F FLAG REGISTER	A' ACCUMULATOR	F' FLAG REGISTER					
C GENERAL PURPOSE	8' GENERAL PURPOSE	C' GENERAL PURPOSE					
E GENERAL PURPOSE	D' GENERAL PURPOSE	E' GENERAL PURPOSE					
L GENERAL PURPOSE	H' GENERAL PURPOSE	L' GENERAL PURPOSE					
	C GENERAL PURPOSE	F FLAG REGISTER A' ACCUMULATOR C GENERAL PURPOSE B' GENERAL PURPOSE E GENERAL PURPOSE D' GENERAL PURPOSE					

8 BITS ------

INTERRUPTS: GENERAL OPERATION

The CPU accepts two interrupt input signals: $\overline{\text{NMI}}$ and $\overline{\text{INT}}$. The $\overline{\text{NMI}}$ is a non-maskable interrupt and has the highest priority. $\overline{\text{INT}}$ is a lower priority interrupt and it requires that interrupts be enabled in software in order to operate. $\overline{\text{INT}}$ can be connected to multiple peripheral devices in a wired-OR configuration.

The Z80 has a single response mode for interrupt service on the non-maskable interrupt. The maskable interrupt, \overline{INT} , has three programmable response modes available. These are:

- Mode 0 similar to the 8080 microprocessor.
- Mode 1 Peripheral Interrupt service, for use with non-8080/Z80 systems.

Mode 2 - a vectored interrupt scheme, usually daisychained, for use with the Z80 Family and compatible peripheral devices.

The CPU services interrupts by sampling the NMI and INT signals at the rising edge of the last clock of an instruction. Further interrupt service processing depends upon the type of interrupt that was detected. Details on interrupt responses are shown in the CPU Timing Section.

Non-Maskable Interrupt (NMI). The nonmaskable interrupt cannot be disabled by program control and therefore will be accepted at all times by the CPU. NMI is usually reserved for servicing only the highest priority type interrupts, such as that for orderly shutdown after power

PS017801-0602

Memory Read or Write Cycles. Figure 6 shows the timing of memory read or write cycles other than an opcode fetch (M1) cycle. The MREQ and RD signals function exactly as in the fetch cycle. In a memory write cycle, MREQ also

becomes active when the address bus is stable. The \overline{WR} line is active when the data bus is stable, so that it can be used directly as an R/\overline{W} pulse to most semiconductor memories.

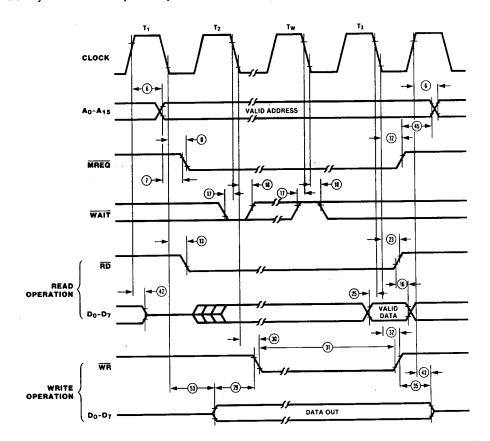
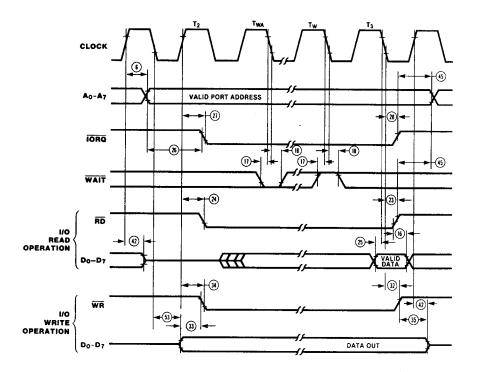
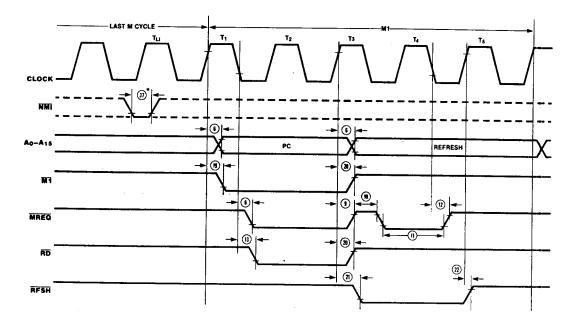



Figure 6. Memory Read or Write Cycles

.

Input or Output Cycles. Figure 7 shows the timing for an I/O read or I/O write operation. During I/O operations, the CPU automatically inserts a single Wait state (T_{WA}). This

extra Wait state allows sufficient time for an I/O port to decode the address from the port address lines.

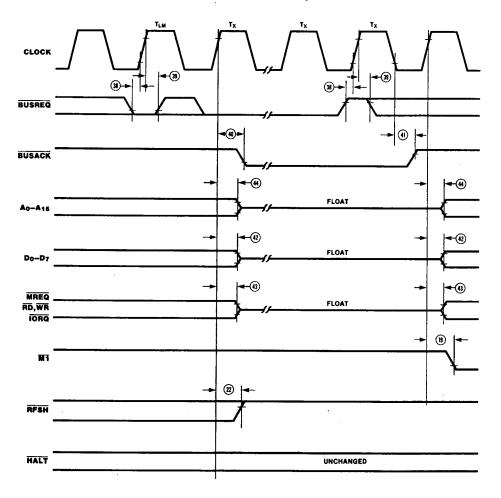


 $T_{WA} = One$ wait cycle automatically inserted by CPU.

.

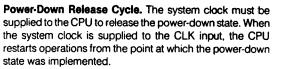
Figure 7. Input or Output Cycles

Non-Maskable Interrupt Request Cycle. NMI is sampled at the same time as the maskable interrupt input INT but has higher priority and cannot be disabled under software control. The subsequent timing is similar to that of a normal memory read operation except that data put on the bus by the memory is ignored. The CPU instead executes a restart (RST) operation and jumps to the $\overline{\text{NMI}}$ service routine located at address 0066H (Figure 9).



*Although NMI is an asynchronous input, to guarantee its being recognized on the following machine cycle, NMI's falling edge must occur no later than the rising edge of the clock cycle preceding the last state of any instruction cycle (TLI).

Figure 9. Non-Maskable Interrupt Request Operation


Bus Request/Acknowledge Cycle. The CPU samples BUSREQ with the rising edge of the last clock period of any machine cycle (Figure 10). If BUSREQ is active, the CPU sets its address, data, and MREQ, IORQ, RD, and WR lines

to a high-impedance state with the rising edge of the next clock pulse. At that time, any external device can take control of these lines, usually to transfer data between memory and I/O devices.

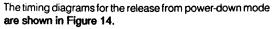

NOTES: 1) T_{LM} = Last state of any M cycle. 2) T_X = An arbitrary clock cycle used by requesting device.

Figure 10. BUS Request/Acknowledge Cycle

NOTES:

- When the external oscillator has been stopped to enter the power-down state, some warm-up time may be required to obtain a stable clock for the release.
- 2) When the HALT instruction is executed to enter the power-down state, the CPU will also enter the Halt state. An interrupt signal (either NMI or INT) or a RESET signal must be applied to the CPU after the system clock is supplied in order to release the power-down state.

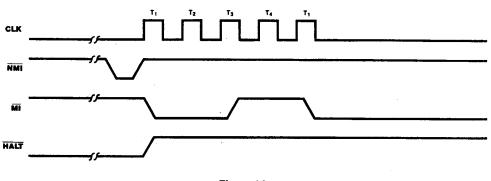


Figure 14a.

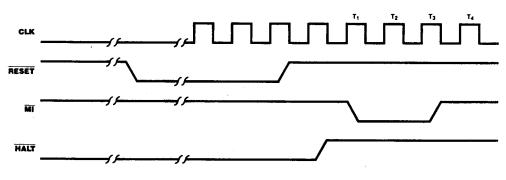


Figure 14b.

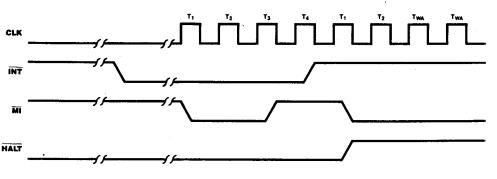


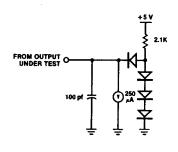
Figure 14c.

Figure 13. Power-Down Release

ABSOLUTE MAXIMUM RATINGS

Voltage on V _{CC} with respect to V_{SS} 0.3V to +7V
Voltages on all inputs with respect
to V_{SS}
Operating Ambient
Temperature
Storage Temperature 65°C to + 150°C

STANDARD TEST CONDITIONS


The DC Characteristics and capacitance sections below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND (0V). Positive current flows into the referenced pin.

Available operating temperature ranges are:

S = 0°C to +70°C Voltage Supply Range: NMOS: +4.75V ≤ VCC ≤ +5.25V CMOS: +4.50V ≤ VCC ≤ +5.50V E = -40°C to 100°C, +4.50V ≤ VCC ≤ +5.50V

All ac parameters assume a load capacitance of 100 pf. Add 10 ns delay for each 50 pf increase in load up to a maximum of 200 pf for the data bus and 100 pf for address and control lines. AC timing measurements are referenced to 1.5 volts (except for clock, which is referenced to the 10% and 90% points). Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

The Ordering Information section lists temperature ranges and product numbers. Package drawings are in the Package Information section. Refer to the Literature List for additional documentation.

DC CHARACTERISTICS (Z84C00/CMOS Z80 CPU)

Symbol	Parameter	Min	Max	Unit	Condition
VILC	Clock Input Low Voltage	~0.3	0.45	v	
VIHC	Clock Input High Voltage	V _{CC} – .6	V _{CC} +.3	v	
V _{IL}	Input Low Voltage	- 0.3	0.8	v	
VIH	Input High Voltage	2.2	Vcc	v	
V _{OL}	Output Low Voltage		0.4	v	l _{OL} = 2.0 mA
V _{OH1}	Output High Voltage	2.4		v	l _{OH} = −1.6 mA
V _{OH2}	Output High Voltage	V _{CC} -0.8		v	$I_{OH} = -250 \mu A$
ICC1	Power Supply Current 4 MHz 6 MHz 8 MHz 10 MHz 20 MHz		20 30 40 50 100	mA mA mA mA	$V_{CC} = 5V$ $V_{IH} = V_{CC} - 0.2V$ $V_{IL} = 0.2V$ $V_{IL} = 5V$
ICC2	Standby Supply Current		10	μA	$V_{oc} = 5V$ $V_{CC} = 5V$
					CLK = (0) $V_{IH} = V_{CC} - 0.2V$ $V_{IL} = 0.2V$
ILI	Input Leakage Current	-10	10	μA	$V_{IN} = 0.4$ to V_{CC}
lo	3-State Output Leakage Current in Float	- 10	10 ²	μA	$V_{OUT} = 0.4$ to V_{CC}

Measurements made with outputs floating.
A₁₅-A₀, D₇-D₀, MREQ, IORQ, RD, and WR.
I_{CC2} standby supply current is guaranteed only when the supplied clock is stopped at a low level during T₄ of the machine cycle immediately following the execution of a HALT instruction.

CAPACITANCE

Symbol	Parameter	Min	Max	Unit
CCLOCK	Clock Capacitance		10	pf
C _{IN}	Input Capacitance		5	pf
COUT	Output Capacitance		15	pif

 $T_A = 25$ °C, f = 1 MHz. Unmeasured pins returned to ground.

AC CHARACTERISTICS[†] (Z84C00/CMOS Z80 CPU)

 V_{cc} =5.0V ± 10%, unless otherwise specified

No	Symbol	Parameter		C0004 Max		C0000 Max		C0008 Max		C0010 Max		C0020[1] Max	Unit	Note
1	TcC	Clock Cycle time	250*	DC	162	DC	125	• DC	100*	DC	50*	DC	nS	
2	TwCh	Clock Pulse width (high)			65	DC	55	DC	40	DC	20	DC	nS	
3	TwCl	Clock Pulse width (low)	110		65	DC	55	DC	40	DC	20		nS	
4	TfC	Clock Fall time		30		20	00	10	10	10	20	10	nS	
5	TrC	Clock Rise time		30		20		10		10		10	nS	
6	TdCr(A)	Address vaild from Clock Rise	1	110		90		80		65		57	nS	[2]
7	TdA(MREQf)	Address valid to /MREQ Fall	65*		35*		20*		5*		-15*		nS	• •
8	TdCf(MREQf)	,		85		70		60		55		40	nS	
9	TdCr(MREQr)	Clock Rise to /MREQ Rise delay		8 5		70		60		55		40	nS	
10	TwMREQh	/MREQ pulse width (High)	110*		65*		45**		30*		10*		nS	[3]
11	TwMREQ	/MREQ pulse width (low)	220*		132*		100'		75*		25*		nS	[3]
	TdCf(MERQr)			85		70		60		55		40	nS	
13	TdCf(RDf)	Clock Fall to /RD Fall delay		95		80		70		6 5		40	nS	
	TdCr(RDr)	Clock Rise to /RD Rise delay		85		70		60		55		40	nS	
15	TsD(Cr)	Data setup time to Clock Rise	35		30		30		25		12		nS	
	ThD(RDr)	Data hold time after /RD Rise	0		0		0		0		0		nS	
	TsWAIT(Cf)	WAIT setup time to Clock Fall	70		60		50		20		7.5		nS	
	ThWAIT(Cf)	WAIT hold time after Clock Fall	10		10		10		10		10		nS	
19	TdCr(M1f)	Clock Rise to /M1 Fall delay		100		80	•	70		65		45	nS	
20	TdCr(M1r)	Clock Rise to /M1 Rise delay		100		80		70		65		45	nS	
	TdCr(RFSHf)	Clock Rise to /RFSH Fall delay		130		110		95		80		60	nS	
	TdCr(RFSHr)	Clock Rise to /RFSH Rise delay		120		100		85		80		60	nS	
	TdCf(RDr)	Clock Fall to /RD Rise delay		85		70		60		55		40	nS	
	TdCr(RDf)	Clock Rise to /RD Fall delay		85		70		60		55		40	nS	
25	TsD(Cf)	Data setup to Clock Fall during												
		M2, M3, M4 or M5 cycles	50		40		30		25		12		nS '	
26	TdA(IORQf)	Address stable prior to /IORQ Fall	180*		107*		75*		50*		0*		nS	
27	TdCr(IORQf)	Clock Rise to /IORQ Fall delay		75		65		55		50		40	nS	
28	TdCf(IORQr)	Clock Fall to /IORQ Rise delay		85		70		60		55		40 '	nS	
29	TdD(WRf)Mw	Data stable prior to /WR Fall	80*		22*		5*		40*		-10*		nS	
	TdCf(WRf)	Clock Fall to /WR Fall delay		80		70		60		55		40	nS	
		/WR pulse width	220*		132*		100*		75*		25*		nS	
		Clock Fall to /WR Rise delay		80		70		60		55		40	nS	
		Data stable prior to /WR Fall	-10*		-55*		-55*		-10*		-30*		nS	
34	TdCr(WRf)	Clock Rise to /WR Fall delay		65		60		60		50		40	nS	
	•••	Data stable from /WR Rise	60*		30*		15*		10*		0*		nS	
	• •	Clock Fall to /HALT 'L' or 'H'		300		260		225		90		70	nS	
		/NMI pulse width	80		60		60		60		60		nS	
		/BUSREQ setup time	50		50		40		30		15		nS	
1	(Cr)	to Clock Rise												

*For clock periods other than the minimums shown, calculate parameters using the table on the following page. Calculated values above assumed TrC = TfC = 20 ns.

The second seco

**4 MHz CMOS Z80 is obsoleted and replaced by 6 MHz

PS017801-0602

¢

AC CHARACTERISTICS[†] (Z84C00/CMOS Z80 CPU; Continued) V_{cc} =5.0V ± 10%, unless otherwise specified

				Z84C0004		Z84C0006		Z84C0008		Z84C0010		Z84C0020[1]		Note
No	Symbol	Parameter	Min	Мах	Min	Мах	Min	Max	Min	Max	Min	Max		
39	ThBUSREQ	/BUSREQ hold time	10		10		10		10	•••••	10		nS	
	(Cr)	after Clock Rise												
40	TdCr	Clock Rise to /BASACK		100		90		80		75		40	nS	
	(BUSACKf)	Fall delay												
41	TdCf	Clock Fall to /BASACK		100		90		80		75		40	nS	
	(BUSACKr)	Rise delay												
42	TdCr(Dz)	Clock Rise to Data float delay		90		80		70		6 5		40	nS	
43	TdCr(CTz)	Clock Rise to Control Outputs												
		Float Delay (/MREQ, /IORQ,												
		/RD and /WR)		80		70		60		65		40	nS	
44	TdCr(Az)	Clock Rise to Address		90		80		70		75		40	nS	
		float delay												
45	TdCTr(A)	Address Hold time from /MREQ,	80*		35*		20*		20*		0*		nS	
		/IORQ, /RD or /WR												
46	TsRESET(Cr)	/RESET to Clock Rise setup time	60		60		45		40		15		nS	
47	ThRESET(Cr)	/RESET to Clock Rise Hold time	10		10		10		10		10		nS	
48	TsINTf(Cr)	/INT Fall to Clock Rise	80		70		55		50		15		nS	
		Setup Time												
49	ThINTr(Cr)	/INT Rise to Clock Rise	10		10		10		10		10		nS	
		Hold Time												
50	TdM1f	/M1 Fall to /IORQ Fall delay	565'	,	359*		270'	*	220'	•	100*	r	nS	
	(IORQf)													
51	TdCf(IORQf)	/Clock Fall to /IORQ Fall delay		8 5		70		60		55		45	nS	
52	TdCf(IORQr)	Clock Rise to /IORQ Rise delay		85		70		60		55		45	nS	
53	TdCf(D)	Clock Fall to Data Valid delay		150		130		115		110		75	nS	

Notes: * For Clock periods other than the minimum shown, calculate parameters using the following table.

Calculated values above assumed TrC = TfC = maximum. ** 4 MHz CMOS Z80 is obsoleted and replaced by 6 MHz

Z84C0020 parameters are guuaranteed with 50pF load Capacitance.
If Capacitive Load is other than 50pF, please use Figure 1. to calculate the value.
Increasing delay by 10nS for each 50pF increase in loading, 200pF max for data lines, and 100pF for control lines.

FOOTNOTES TO AC CHARACTERISTICS

No	Symbol	Parameter	Z84C0004	[*] Z84C0006	Z84C0008	Z84C0010	Z84C0020
1	TcC	TwCh + TwCl + TrC + TfC					
7	TdA(MREQf)	TwCh + TfC	-65	-50	-45	-45	-45
10	TwMREQh	TwCh + TfC	-20	-20	-20	-20	-20
11	TwMREQI	TcC	-30	-30	-25	-25	-25
26	TdA(IORQf)	TcC	-70	-55	-50	-50	-50
29	TdD(WRf)	TcC	-170	-140	-120	-60	-60
31	TwWR	TcC /	-30	-30	-25	-25	-25
33	TdD(WRf)	TwCI + TrC	-140	-140	-120	-60	-60
35	TdWRr(D)	TwCl + TrC	-70	-55	-50	-40	-25
45	TdCTr(A)	TwCI + TrC	-50	-50	-45	-30	-30
50	TdM1f(IORQf)	2TcC + TwCh + TfC	-65	-50	-45	-30	-30
AC Test	Conditions: $V_{IH} = 2.0$ $V_{IL} = 0.8$		V _{IHC} = V _{ILC} =	V _{CC} -0.6 V 0.45 V	Float = 1	E0.5 V	

PS017801-0602

			Z084	0004	Z08 4	0006	Z084	8000
Number	Symbol	Parameter	Min	Max	Min	Max	Min	Max
1	TcC	Clock Cycle Time	250*		162*		125*	
2	TwCh	Clock Pulse Width (High)	110	2000	65	2000	55	2000
3	TwCl	Clock Pulse Width (Low)	110	2000	65	2000	55	2000
4	TfC	Clock Fall Time		30		20		10
5	TrC	Clock Rise Time		30		20		10
6	TdCr(A)	Clock t to Address Valid Delay		110		90		80
7	TdA(MREQf)	Address Valid to MREQ ↓ Delay	65*		35*		20*	
8	TdCf(MREQf)	Clock ↓ to MREQ ↓ Delay		85		70		60
9	TdCr(MREQr)	Clock t to MREQ t Delay		85		70		60
10	TwMREQh	MREQ Pulse Width (High)	110**	Ħ	65*	Ħ	45*1	H t
11	TwMREQI	MREQ Pulse Width (Low)	220*	Ħ	135**	İ.	100*1	HT .
12	TdCf(MREQr)	Clock I to MREQ t Delay		85		70		60
13	TdCf(RDf)	Clock ↓ to RD ↓ Delay		95		80		70
14	TdCr(RDr)	Clock t to RD t Delay		85		70		60
15	TsD(Cr)	Data Setup Time to Clock †	35		30		30	
16	ThD(RDr)	Data Hold Time to \overline{RD} t		0		0		C
17	TsWAIT(Cf)	WAIT Setup Time to Clock I	70		60		50	
18	ThWAIT(Cf)	WAIT Hold Time after Clock I		0		0		0
19	TdCr(M1f)	Clock ↑ to M1 ↓ Delay		100		80		70
20	TdCr(M1r)	Clock t to M1 t Delay		. 100		80		70
21	TdCr(RFSHf)	Clock ↑ to RFSH ↓ Delay		130		110		95
22	TdCr(RFSHr)	Clock t to RFSH t Delay		120		100		85
23	TdCf(RDr)	Clock ↓ to RD ↑ Delay		85		70		60
24	TdCr(RDf)	Clock † to RD ↓ Delay		85		70		60
25	TsD(Cf)	Data Setup to Clock I during M ₂ , M ₃ , M ₄ , or M ₅ Cycles	50		40		30	
26	TdA(IORQf)	Address Stable prior to IORQ +	180*		110*		75*	
27	TdCr(IORQf)	Clock † to IORQ ↓ Delay		75		65		55
28	TdCf(IORQr)	Clock ↓ to IORQ ↑ Delay		85		70		·60
29	TdD(WRf)	Data Stable prior to WR	80*		25*		5*	
30	TdCf(WRf)	Clock ↓ to WR ↓ Delay		80		70		60
31	TwWR	WR Pulse Width	220*		135*		100*	
32	TdCf(WRr)	Clock↓to WR↑Delay		80		70		60
· 33	TdD(WRf)	Data Stable prior to WR +	-10*		-55*		55*	
34	TdCr(WRf)	Clock ↑ to WR ↓ Delay		65		60		55
35	TdWRr(D)	Data Stable from WR 1	60*		30*		15*	
36	TdCf(HALT)	Clock ↓ to HALT ↑ or ↓		300		260		225
37	TwNMI	NMI Pulse Width	80		70		60*	
38	TsBUSREQ(Cr)	BUSREQ Setup Time to Clock t	50		50		40	

AC CHARACTERISTICS[†] (Z8400/NMOS Z80 CPU)

*For clock periods other than the minimums shown, calculate parameters using the table on the following page. Calculated values above assumed TrC = TIC = 20 ns. †Units in nanoseconds (ns).

For loading \geq 50 pf., Decrease width by 10 ns for each additional 50 pf.

PS017801-0602

.

Customer Support

For answers to technical questions about the product, documentation, or any other issues with Zilog's offerings, please visit Zilog's Knowledge Base at http://www.zilog.com/kb.

For any comments, detail technical questions, or reporting problems, please visit Zilog's Technical Support at <u>http://support.zilog.com</u>.