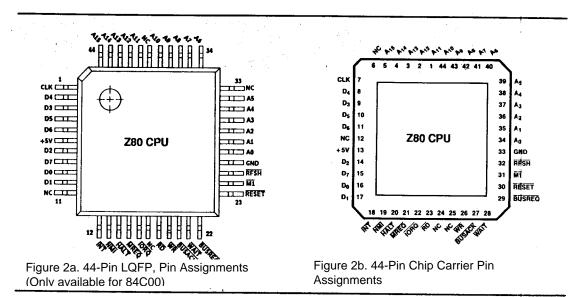


Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**


Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Product Status	Obsolete	
Core Processor	Z80	
Number of Cores/Bus Width	1 Core, 8-Bit	
Speed	10MHz	
Co-Processors/DSP	-	
RAM Controllers	-	
Graphics Acceleration	No	
Display & Interface Controllers	-	
Ethernet	-	
SATA	-	
USB	-	
Voltage - I/O	5.0V	
Operating Temperature	-40°C ~ 100°C (TA)	
Security Features	-	
Package / Case	40-DIP (0.620", 15.75mm)	
Supplier Device Package	40-PDIP	
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z84c0010pec	

Email: info@E-XFL.COM

D - 4 - 11 -

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

GENERAL DESCRIPTION

The CPUs are fourth-generation enhanced microprocessors with exceptional computational power. They offer higher system throughput and more efficient memory utilization than comparable second- and third-generation microprocessors. The internal registers contain 208 bits of read/write memory that are accessible to the programmer. These registers include two sets of six general-purpose registers which may be used individually as either 8-bit registers or as 16-bit register pairs. In addition, there are two sets of accumulator and flag registers. A group of "Exchange" instructions makes either set of main or alternate registers accessible to the programmer. The alternate set allows operation in foreground-background mode or it may be reserved for very fast interrupt response. The CPU also contains a Stack Pointer, Program Counter, two index registers, a Refresh register (counter), and an Interrupt register. The CPU is easy to incorporate into a system since it requires only a single + 5V power source. All output signals are fully decoded and timed to control standard memory or peripheral circuits; the CPU is supported by an extensive family of peripheral controllers. The internal block diagram (Figure 3) shows the primary functions of the processors. Subsequent text provides more detail on the I/O controller family, registers, instruction set, interrupts and daisy chaining, and CPU timing.

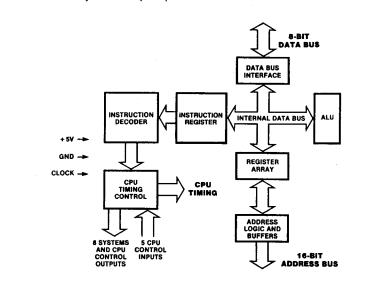


Figure 3. Z80C CPU Block Diagram

address. This flexibility in selecting the interrupt service routine address allows the peripheral device to use several different types of service routines. These routines may be located at any available location in memory. Since the interrupting device supplies the low-order byte of the 2-byte vector, bit 0 (A_n) must be a zero.

Interrupt Enable/Disable Operation. Two flip-flops, IFF₁ and IFF₂, referred to in the register description, are used to signal the CPU interrupt status. Operation of the two flip-flops is described in Table 2. For more details, refer to the Z80 CPU Technical Manual (03-0029-01) and Z80 Assembly Language Programming Manual (03-0002-01).

Table 2. State of Flip-Flops

Action	IFF ₁	IFF2	Comments
CPU Reset	0	0	Maskable interrupt
DI instruction execution	0	0	Maskable interrupt
El instruction execution	1	1	Maskable interrupt
LD A,I instruction execution	٠	٠	IFF ₂ → Parity flag
LD A,R instruction execution	•	•	IFF ₂ → Parity flag
Accept NMI	0	•	Maskable interrupt
RETN instruction execution	IFF ₂	•	IFF ₂ → IFF ₁ at completion of an MII service routine.

INSTRUCTION SET

The microprocessor has one of the most powerful and versatile instruction sets available in any 8-bit microprocessor. It includes such unique operations as a block move for fast, efficient data transfers within memory, or between memory and I/O. It also allows operations on any bit in any location in memory.

The following is a summary of the instruction set which shows the assembly language mnemonic, the operation, the flag status, and gives comments on each instruction. For an explanation of flag notations and symbols for mnemonic tables, see the Symbolic Notations section which follows these tables. The *Z80 CPU Technical Manual* (03-0029-01), the *Programmer's Reference Guide* (03-0012-03), and *Assembly Language Programming Manual* (03-0002-01) contain significantly more details for programming use.

The instructions are divided into the following categories:

- □ 8-bit loads
- □ 16-bit loads
- Exchanges, block transfers, and searches
- 8-bit arithmetic and logic operations
- General-purpose arithmetic and CPU control
- 16-bit arithmetic operations
- Rotates and shifts

- □ Bit set, reset, and test operations
- Jumps
- □ Calls, returns, and restarts
- Input and output operations

A variety of addressing modes are implemented to permit efficient and fast data transfer between various registers, memory locations, and input/output devices. These addressing modes include:

- □ Immediate
- Immediate extended
- Modified page zero
- □ Relative
- Extended
- Indexed
- Register
- Register indirect
- □ Implied
- 🗆 Bit

Mnemonic	Symbolic Operation	s	z		FI H	aga		/ N	с	76	Opcoc 543	ie 210	Hex	No. of Bytes	No. of M Cycles	No. of T States	Comments
EX DE, HL	DE ++ HL	•	•	x	•	X	•	•	•	11	101	011	EB	 1	1	4	
EX AF, AF'	AF ++ AF'			x	•	x			•	00	001	000	08	1	1	4	
EXX	BC ++ BC'			x		x				11	011	001	D9	1	1	4	De sister bit a
	DE ++ DE' HL ++ HL'	•	-	~	•	Ŷ	·	-	·		011		09	s	ı	4	Register bank and auxiliary register bank exchange
EX (SP), HL	H ↔ (SP + 1) L ↔ (SP)	•	•	х	٠	x	٠	•	•	11	100	011	E3	1	5	19	excitatige
ex (SP), IX	IX _H ↔ (SP + 1) IX _L ↔ (SP)	٠	٠	х	•	X	٠	•	•	11 11	011 100	101 011	DD E3	2	6	23	
EX (SP), IY	IY _H ++ (SP + 1)	•	•	х		x	•	•		11	111	101	FD	2	6	23	
	IYL ↔ (SP)					~	ብ			11	100	011	E3	2	Ū	25	
LDI	(DE) + (HL)	•	•	х	0	х	Ť	0	•	11	101	101	ED	2	4	16	Load (HL) into
	DE ← DE + 1 HL ← HL + 1 BC ← BC - 1				•			•		10	100	000	AO	L	4	10	(DE), increme the pointers a decrement the
							ø										byte counter
LDIR	(DE) - (HL)			¥	0	x	@	0	•	11	101	101	ED	2	5		(BC)
	$DE \leftarrow DE + 1$ HL \leftarrow HL + 1 BC \leftarrow BC - 1 Repeat until BC = 0	-	-	^	Ū	~	Ū	Ū	•	10	110	000	BO	2	4	21 16	If BC ≠ 0 If BC = 0
							ര										
_DD	(DE) ← (HL) DE ← DE – 1 HL ← HL – 1 BC ← BC – 1	•	•	x	0	x	Ť	0	•	11 10	101 101	101 000	ED A8	2	4	16	-
							2										
DDR	(DE) + (HL)	•	•	x	0	х		0	•	11	101	101	ED	2	5	21	lf BC ≠ 0
	DE ← DE 1 HL ← HL 1 BC ← BC 1									10	111	000	B 8	2	4	16	If BC = 0
	BC = 0		~				~										
CPI	A (LH.)	. (ঙ	v		v	() ‡				404		50	•			
261	A – (HL)	ŧ	ŧ	×	Ŧ	X	Ŧ	1	•	11	101	101	ED	2	4	16	
	HL++1 BC++BC-1									10	100	001	A1				

EXCHANGE, BLOCK TRANSFER, BLOCK SEARCH GROUPS

.

② P/V flag is 0 only at completion of instruction.
 ③ Z flag is 1 if A = HL, otherwise Z = 0.

16-BIT ARITHMETIC GROUP

Mnemonic	Symbolic Operation	s	z		Fla H	igs	P/V	N	с		Dpcod 543		Hex	No. of Bytes	No. of M Cycles	No. of T States	Con	merits
ADD HL, ss	HL ← HL + ss	٠	•	х	х	х	٠	0	\$	00	ssi	001		1	3	11	ss	Reg.
																	00	ВĊ
ADC HL, ss	HL←																01	Dŧ
	HL+ss+CY	‡	\$	х	Х	х	۷	0	\$	11	101	101	ED	2	4	15	10	ΗĻ
										01	ss1	010					11	SP
SBC HL, ss	HL ←																	
)	HL-ss-CY	\$	+	Х	Х	х	۷	1	‡	11	101	101	ED	2	4	15		
										01	ss0	010						
ADD IX, pp	IX 🛨 IX + pp	٠	٠	х	Х	х	٠	0	ŧ	11	011	101	DD	2	4	15	pp_	Reg.
										01	pp1	001					00	В¢
																	01	DE
																	10	IX
																	11	SP
ADD IY, rr	IY 🛨 IY + rr	٠	٠	Х	Х	х	٠	0	‡	11	111	101	FD	2	4	15	<u>rr</u>	Reg.
										00	rr1	001					00	B¢
INC ss	ss 🕶 ss + 1	•	•		•	х	٠	٠	•	00	ss0	011		1	1	6	01	Dŧ
INC IX	IX ← IX + 1	•	•	х	٠	х	٠	٠	٠	11	011	101	DD	2	2	10	10	IY
										00	100	011	23				11	SP
INC IY	IY ← IY + 1	٠	٠	х	٠	х	٠	٠	•	11	111	101	FD	2	2	10		
										00	100	011	23			_		
DEC ss	ss ← ss – 1	٠	•		•	X	•	•	•	00	ss1	011		1	1	6		
DEC IX	IX ← IX – 1	٠	٠	х	٠	Х	٠	٠	•	11	011	101	DD	2	2	10		
										00	101	011	2B		_			
DEC IY	IY ← IY – 1	٠	٠	х	٠	х	٠	٠	•	11	111	101	FD	2	2	10		
										00	101	011	28					

.

ROTATE AND SHIFT GROUP

	Symbolic				Fla	lgs					Opcod	e		No. of	No. of M	No. of T	
Mnem	onic Operation	S	Z		Н		P/V	N	С	76	543	210	Hex	Bytes	Cycles	States	Comments
rlca		•	•	x	0	x	•	0	\$	00	000	111	07	1	1	4	Rotate left circular
RLA		•	٠	x	0	x	•	0	ŧ	00	010	111	17	1	1	4	accumulato Rotate lefi accumulato
RRCA		•	•	x	0	x	•	0	ŧ	00	001	111	0F	1	1	4	Rotate right circular accumulato
RRA		•	•	х	0	x	•	0	\$	00	011	111	1F	1	1	4	Rotate right accumulato

PS017801-0602

15

CALL AND RETURN GROUP

	Symbolic				Fi	ags					Opcod	e		No. of	No. of M	No. of T		
Mnemonic	Operation	S	Z		Н	-	P/	/N	C	76	543	210	Hex	Bytes	Cycles	States	Com	nents
CALL nn	(SP - 1)←PC _H	•	•	X	•	X	•	•	•	11			CD	3	5	17		
	(SP-2)←PCL										+n→							
	PC + nn, If condition		•	v		v				11	+n→	100		3	3	10	If cc is	foloo
	cc is false	Ī	•	Ŷ	•	^	•	•	•		+n→			5	0	10	11 00 15	
	continue,										+-n-+			3	5	17	If cc is	true.
	otherwise same as																	
	CALL nn																	
RET	PCL + (SP)	٠	٠	x	٠	х	٠	٠	٠	11	001	001	C9	1	3	10		
	PC _H +-(SP+1)			.,												-	M	6.1. ·
RET cc	If condition cc is false	•	•	X	•	X	•	•	•	11	cc	000		1	1	5	If cc is	talse.
	continue,													/1	3	11	If cc is	true.
	otherwise																	
	same as RET																	Condition
																		NZ (non-zero)
																		Z (zero)
	_			.,		.,								•				NC (non-carry)
RETI	Return from	•	•	X	•	Х	•	•	•	11	101	101	ED	2	4	14		C (carry)
00711	interrupt					~				01	001	101	4D	•				PO (parity odd)
RETN ¹	Return from	•	•	X	•	х	•	•	•	11	101	101	ED	2	4	14		PE (parity even)
	non-maskable									01	000	101	45					P (sign positive)
DOT -	interrupt (SP-1)≁-PCH	_		~		v		-			t	111		4	3	11		M (sign negative
RST p	(SP-1)+PCH (SP-2)+PCI	•	•	^	•	^	•	•	•	11	ĩ	111		1	3	11	t 000	p
																		08H
	PC _H +0																010	
	PCL←b																010	
																	100	
																	100	
																		20H
																		30H
																	111	3011

NOTE: ¹RETN loads IFF₂ → IFF₁

SUMMARY OF FLAG OPERATION

	D ₇				-			Do	}
Instructions	S	Z		Н		P/V	N	Ċ	Comments
ADD A, s; ADC A, s	\$	\$	X	+	Х	V	0	\$	8-bit add or add with carry.
SUB s; SBC A, s; CP s; NEG	\$ '	\$	х	\$	х	۷	1	+	8-bit subtract, subtract with carry, compare and negate accumulator.
AND s	\$	\$	Х	1	Х	Ρ	0	0	Logical operation.
OR s, XOR s	\$	\$	х	0	х	Ρ	0	0	Logical operation.
INCs	+	‡.	Х	\$	Х	V	0	•	8-bit increment.
DEC s	‡ -	‡	Х	*	Х	V	1	•	8-bit decrement.
ADD DD, ss	•	•	Х	X	Х	•	0	\$	16-bit add.
ADC HL, ss	\$	\$	Х	х	Х	V	0	‡	16-bit add with carry.
SBC HL. ss	+	\$	х	х	х	V	1	\$	16-bit subtract with carry.
RLA; RLCA; RRA; RRCA		•	х	0	Х	٠	0	‡	Rotate accumulator.
RL m; RLC m; RR m; RRC m; SLA m;	ŧ	\$	х	0	х	Ρ	0	\$	Rotate and shift locations.
SRA m; SRL m						_			.
RLD; RRD	+	+	X	0	X	P	0	•	Rotate digit left and right.
DAA	\$	ŧ	X	\$	X	Ρ	•	+	Decimal adjust accumulator.
CPL	٠	٠	Х	1	X	•	1	•	Complement accumulator.
SCF	٠	٠	X	0	X	•	0	1	Set carry.
CCF	•	•	х	х	Х	٠	0	ŧ	Complement carry.
IN r (C)	\$	ŧ	Х	0	Х	Ρ	0	•	Input register indirect.
INI; IND; OUTI; OUTD	х	+	Х	х	Х	х	1	•	Block input and output. $Z = 1$ if $B \neq 0$, otherwise $Z = 0$.
INIR; INDR; OTIR; OTDR	х	1	Х	х	Х	х	1	٠	Block input and output. $Z = 1$ if $B \neq 0$, otherwise $Z = 0$.
LDI; LDD	х	х	Х	0	Х	\$	0	٠	Block transfer instructions. $PN = 1$ if BC $\neq 0$, otherwise $PN = 0$.
LDIR; LDDR	х	Х	х	0	Х	0	0	•	Block transfer instructions. $PN = 1$ if BC $\neq 0$, otherwise $PN \models 0$.
CPI; CPIR; CPD; CPDR	х	\$	X	x	х	ŧ	1	٠	Block search instructions. $Z = 1$ if $A = (HL)$, otherwise $Z = 0$. P/V = 1 if BC $\neq 0$, otherwise P/V = 0.
LD A; I, LD A, R	\$	\$	х	0	х	IFF	0	٠	IFF, the content of the interrupt enable flip-flop, (IFF ₂), is copied into the P/V flag.
BIT b, s	х	ŧ	х	1	х	х	0	•	The state of bit b of location s is copied into the Z flag.

SYMBOLIC NOTATION

Symbol Operation

- S Sign flag. S = 1 if the MSB of the result is 1.
- Z Zero flag. Z = 1 if the result of the operation is 0.
 P/V Parity or overflow flag. Parity (P) and overflow (V) share the same flag. Logical operations affect this flag with the parity of the result while arithmetic operations affect this flag with the overflow of the result. If P/V holds parity: P/V = 1 if the result of the operation is even; P/V = 0 if result is odd. If P/V holds overflow, P/V = 1 if the result of the operation produced an overflow. If P/V does not hold overflow, P/V = 0.
- H* Half-carry flag. H = 1 if the add or subtract operation produced a carry into, or borrow from, bit 4 of the accumulator.
- N* Add/Subtract flag. N = 1 if the previous operation was a subtract.
- C Carry/Link flag. C = 1 if the operation produced a carry from the MSB of the operand or result.

Symbol Operation

\$	The flag is affected according to the result of the operation.
•	The flag is unchanged by the operation.
0	The flag is reset by the operation.
1	The flag is set by the operation.
Х	The flag is indeterminate.
V	P/V flag affected according to the overflow result of the operation.
Р	PN flag affected according to the parity result of the operation.
r	Any one o the CPU registers A, B, C, D, E, H, L
s	Any 8-bit location for all the addressing modes allowed for the particular instruction.
SS	Any 16-bit location for all the addressing modes allowed for that instruction.
ü	Any one of the two index registers IX or IY.
R	Refresh counter.
n	8-bit value in range < 0, 255 >.
nn	16-bit value in range < 0, 65535 >.

* H and N flags are used in conjunction with the decimal adjust instruction (DAA) to properly correct the result into packed BCD format following addition or subtraction usin ... perands with packed BCD format.

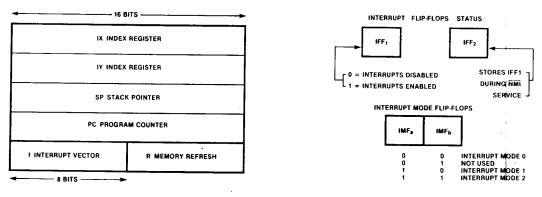

CPU REGISTERS

Figure 4 shows three groups of registers within the CPU. The first group consists of duplicate sets of 8-bit registers: a principal set and an alternate set [designated by ' (prime), e.g., A']. Both sets consist of the Accumulator register, the Flag register, and six general-purpose registers. Transfer of data between these duplicate sets of registers is accomplished by use of "Exchange" instructions. The result is faster response to interrupts and easy, efficient implementation of such versatile programming techniques

as background-foreground data processing. The second set of registers consists of six registers with assigned functions. These are the I (Interrupt register), the R (Refresh register), the IX and IY (Index registers), the SP (Stack Pointer), and the PC (Program Counter). The third group consists of two interrupt status flip-flops, plus an additional pair of flip-flops which assists in identifying the interrupt mode at any particular time. Table 1 provides further information on these registers.

GISTER SET	ALTERNATE REGISTER SET							
F FLAG REGISTER	A' ACCUMULATOR	F' FLAG REGISTER						
C GENERAL PURPOSE	8' GENERAL PURPOSE	C' GENERAL PURPOSE						
E · GENERAL PURPOSE	D' GENERAL PURPOSE	E' GENERAL PURPOSE						
L GENERAL PURPOSE	H' GENERAL PURPOSE	L' GENERAL PURPOSE						
	F FLAG REGISTER C GENERAL PURPOSE E GENERAL PURPOSE	F FLAG REGISTER A' ACCUMULATOR C GENERAL PURPOSE B' GENERAL PURPOSE E GENERAL PURPOSE D' GENERAL PURPOSE						

8 BITS ------

INTERRUPTS: GENERAL OPERATION

The CPU accepts two interrupt input signals: $\overline{\text{NMI}}$ and $\overline{\text{INT}}$. The $\overline{\text{NMI}}$ is a non-maskable interrupt and has the highest priority. $\overline{\text{INT}}$ is a lower priority interrupt and it requires that interrupts be enabled in software in order to operate. $\overline{\text{INT}}$ can be connected to multiple peripheral devices in a wired-OR configuration.

The Z80 has a single response mode for interrupt service on the non-maskable interrupt. The maskable interrupt, \overline{INT} , has three programmable response modes available. These are:

- Mode 0 similar to the 8080 microprocessor.
- Mode 1 Peripheral Interrupt service, for use with non-8080/Z80 systems.

Mode 2 - a vectored interrupt scheme, usually daisychained, for use with the Z80 Family and compatible peripheral devices.

The CPU services interrupts by sampling the NMI and INT signals at the rising edge of the last clock of an instruction. Further interrupt service processing depends upon the type of interrupt that was detected. Details on interrupt responses are shown in the CPU Timing Section.

Non-Maskable Interrupt (NMI). The nonmaskable interrupt cannot be disabled by program control and therefore will be accepted at all times by the CPU. NMI is usually reserved for servicing only the highest priority type interrupts, such as that for orderly shutdown after power

PS017801-0602

PIN DESCRIPTIONS

A₀-A₁₅. Address Bus (output, active High, 3-state). A₀-A₁₅ form a 16-bit address bus. The Address Bus provides the address for memory data bus exchanges (up to 64K bytes) and for I/O device exchanges.

BUSACK. Bus Acknowledge (output, active Low). Bus Acknowledge indicates to the requesting device that the CPU address bus, data bus, and control signals MREQ, IORQ, RD, and WR have entered their high-impedance states. The external circuitry can now control these lines.

BUSREQ. Bus Request (input, active Low). Bus Request has a higher priority than NMI and is always recognized at the end of the current machine cycle. BUSREQ forces the CPU address bus, data bus, and control signals MREQ, IORQ, RD, and WR to go to a high-impedance state so that other devices can control these lines. BUSREQ is normally wired-OR and requires an external pullup for these applications. Extended BUSREQ periods due to extensive DMA operations can prevent the CPU from properly refreshing dynamic RAMs.

D₀-D₇. Data Bus (input/output, active High, 3-state). D_0 - D_7 constitute an 8-bit bidirectional data bus, used for data exchanges with memory and I/O.

HALT. Halt State (output, active Low). HALT indicates that the CPU has executed a Halt instruction and is awaiting either a nonmaskable or a maskable interrupt (with the mask enabled) before operation can resume. While halted, the CPU executes NOPs to maintain memory refresh.

INT. Interrupt Request (input, active Low). Interrupt Request is generated by I/O devices. The CPU honors a request at the end of the current instruction if the internal software-controlled interrupt enable flip-flop (IFF) is enabled. INT is normally wired-OR and requires an external pullup for these applications.

IORQ. Input/Output Request (output, active Low, 3-state). IORQ indicates that the lower half of the address bus holds a valid I/O address for an I/O read or write operation. IORQ is also generated concurrently with M1 during an interrupt acknowledge cycle to indicate that an interrupt response vector can be placed on the data bus. **M1.** Machine Cycle One (output, active Low). M1, together with MREQ, indicates that the current machine cycle is the opcode fetch cycle of an instruction execution. M1, together with IORQ, indicates an interrupt acknowledge cycle.

MREQ. Memory Request (output, active Low, 3-state). MREQ indicates that the address bus holds a valid address for a memory read or memory write operation.

NMI. Non-Maskable Interrupt (input, negative edgetriggered). NMI has a higher priority than INT. NMI is always recognized at the end of the current instruction, independent of the status of the interrupt enable flip-flop, and automatically forces the CPU to restart at location 0066H.

RD. *Read* (output, active Low, 3-state). RD indicates that the CPU wants to read data from memory or an I/O device. The addressed I/O device or memory should use this signal to gate data onto the CPU data bus.

RESET. Reset (input, active Low). RESET initializes the CPU as follows: it resets the interrupt enable flip-flop, clears the PC and Registers I and R, and sets the interrupt status to Mode 0. During reset time, the address and data bus go to a high-impedance state, and all control output signals go to the inactive state. Note that RESET must be active for a minimum of three full clock cycles before the reset operation is complete.

RFSH. Refresh (output, active Low). RFSH, together with MREQ, indicates that the lower seven bits of the \$ystem's address bus can be used as a refresh address to the system's dynamic memories.

WAIT. Wait (input, active Low). WAIT indicates to the CPU that the addressed memory or I/O devices are not ready for a data transfer. The CPU continues to enter a Wait state as long as this signal is active. Extended WAIT periods can prevent the CPU from properly refreshing dynamic memory.

WR. Write (output, active Low, 3-state). WR indicates that the CPU data bus holds valid data to be stored at the addressed memory or I/O location.

CPU TIMING

The Z80 CPU executes instructions by proceeding through a specific sequence of operations:

- Memory read or write
- I/O device read or write
- Interrupt acknowledge

The basic clock period is referred to as a T time or cycle, and three or more T cycles make up a machine cycle (M1, M2 or M3 for instance). Machine cycles can be extended either by the CPU automatically inserting one or more Wait states or by the insertion of one or more Wait states by the user. Instruction Opcode Fetch. The CPU places the contents of the Program Counter (PC) on the address bus at the start of the cycle (Figure 5). Approximately one-half clock cycle later, MREQ goes active. When active, RD indicates that the memory data can be enabled onto the CPU data bus.

The CPU samples the \overline{WAIT} input with the falling edge of clock state T_2 . During clock states T_3 and T_4 of an $\overline{M1}$ cycle, dynamic RAM refresh can occur while the CPU starts decoding and executing the instruction. When the Refresh Control signal becomes active, refreshing of dynamic memory can take place.

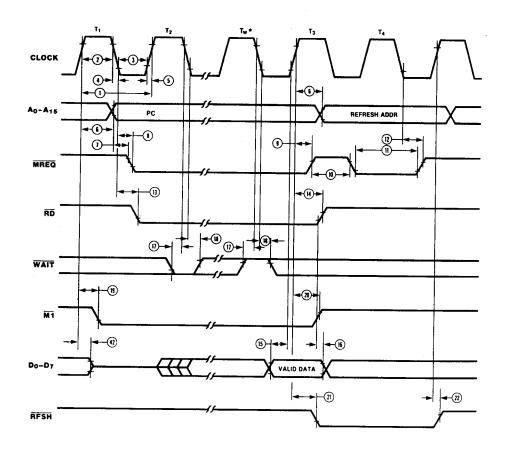


Figure 5. Instruction Opcode Fetch

Memory Read or Write Cycles. Figure 6 shows the timing of memory read or write cycles other than an opcode fetch (M1) cycle. The MREQ and RD signals function exactly as in the fetch cycle. In a memory write cycle, MREQ also

becomes active when the address bus is stable. The \overline{WR} line is active when the data bus is stable, so that it can be used directly as an R/\overline{W} pulse to most semiconductor memories.

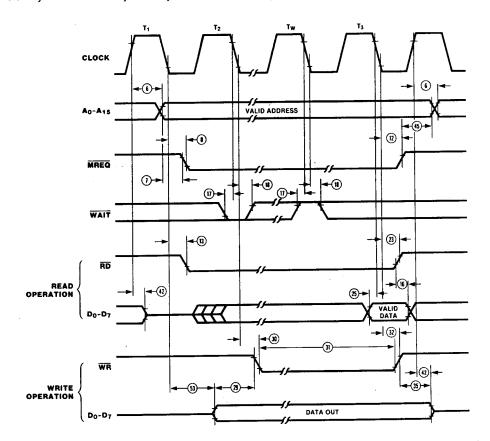
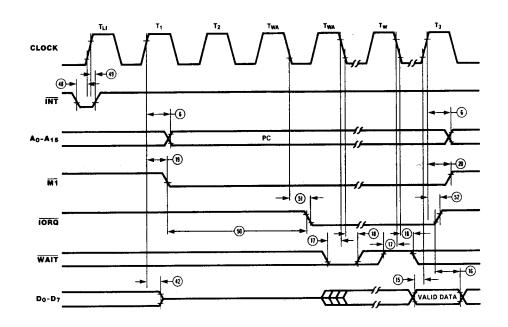
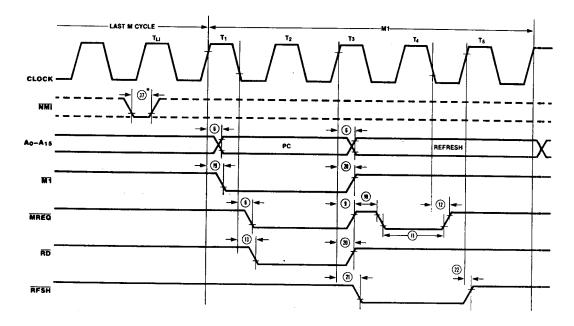



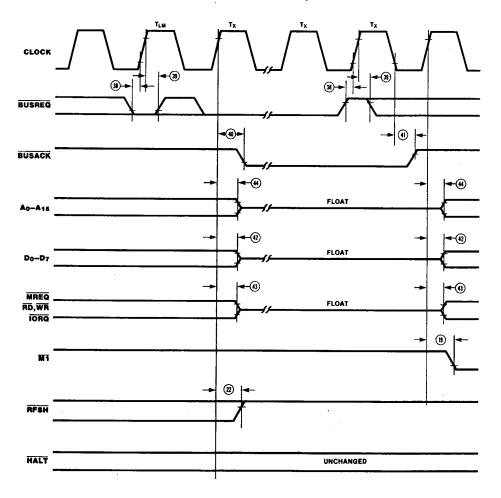
Figure 6. Memory Read or Write Cycles


.

Interrupt Request/Acknowledge Cycle. The CPU samples the interrupt signal with the rising edge of the last clock cycle at the end of any instruction (Figure 8). When an interrupt is accepted, a special $\overline{M1}$ cycle is generated.

During this $\overline{M1}$ cycle, \overline{IORQ} becomes active (instead of \overline{MREQ}) to indicate that the interrupting device can place an 8-bit vector on the data bus. The CPU automatically adds two Wait states to this cycle.

Non-Maskable Interrupt Request Cycle. NMI is sampled at the same time as the maskable interrupt input INT but has higher priority and cannot be disabled under software control. The subsequent timing is similar to that of a normal memory read operation except that data put on the bus by the memory is ignored. The CPU instead executes a restart (RST) operation and jumps to the $\overline{\text{NMI}}$ service routine located at address 0066H (Figure 9).

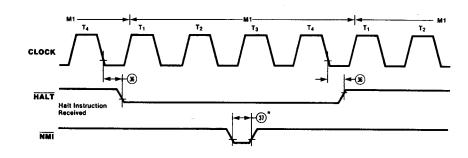


*Although NMI is an asynchronous input, to guarantee its being recognized on the following machine cycle, NMI's falling edge must occur no later than the rising edge of the clock cycle preceding the last state of any instruction cycle (TLI).

Figure 9. Non-Maskable Interrupt Request Operation

Bus Request/Acknowledge Cycle. The CPU samples BUSREQ with the rising edge of the last clock period of any machine cycle (Figure 10). If BUSREQ is active, the CPU sets its address, data, and MREQ, IORQ, RD, and WR lines

to a high-impedance state with the rising edge of the next clock pulse. At that time, any external device can take control of these lines, usually to transfer data between memory and I/O devices.



NOTES: 1) T_{LM} = Last state of any M cycle. 2) T_X = An arbitrary clock cycle used by requesting device.

Figure 10. BUS Request/Acknowledge Cycle

Halt Acknowledge Cycle. When the CPU receives a HALT instruction, it executes NOP states until either an INT or NMI input is received. When in the Halt state, the HALT output is

active and remains so until an interrupt is received (Figure 11). INT will also force a Halt exit.

*Although NMI is an asynchronous input, to guarantee its being recognized on the following machine cycle, NMI's falling edge must occur no later than the rising edge of the clock cycle preceding the last state of any instruction cycle (T_{LI}).

Figure 11. Halt Acknowledge

Reset Cycle. RESET must be active for at least three clock cycles for the CPU to properly accept it. As long as RESET remains active, the address and <u>data buses</u> float, and the control outputs are inactive. Once RESET goes inactive, two

internal T cycles are consumed before the CPU resumes normal processing operation. RESET clears the PC register, so the first opcode fetch will be to location 0000H (Figure 12).

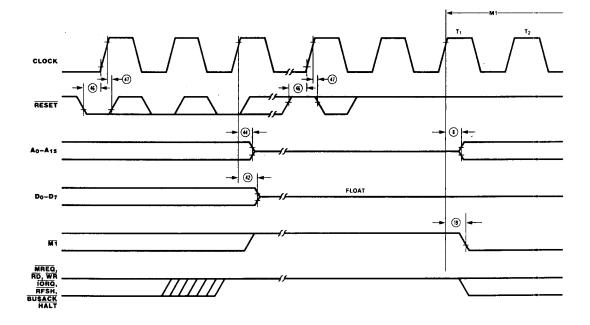
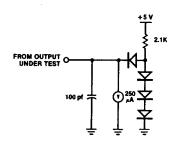


Figure 12. Reset Cycle

ABSOLUTE MAXIMUM RATINGS

Voltage on V _{CC} with respect to V_{SS} 0.3V to +7V
Voltages on all inputs with respect
to V_{SS}
Operating Ambient
Temperature
Storage Temperature 65°C to + 150°C

STANDARD TEST CONDITIONS


The DC Characteristics and capacitance sections below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND (0V). Positive current flows into the referenced pin.

Available operating temperature ranges are:

S = 0°C to +70°C Voltage Supply Range: NMOS: +4.75V ≤ VCC ≤ +5.25V CMOS: +4.50V ≤ VCC ≤ +5.50V E = -40°C to 100°C, +4.50V ≤ VCC ≤ +5.50V

All ac parameters assume a load capacitance of 100 pf. Add 10 ns delay for each 50 pf increase in load up to a maximum of 200 pf for the data bus and 100 pf for address and control lines. AC timing measurements are referenced to 1.5 volts (except for clock, which is referenced to the 10% and 90% points). Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

The Ordering Information section lists temperature ranges and product numbers. Package drawings are in the Package Information section. Refer to the Literature List for additional documentation.

DC CHARACTERISTICS (Z84C00/CMOS Z80 CPU)

Symbol	Parameter	Min	Max	Unit	Condition
VILC	Clock Input Low Voltage	~0.3	0.45	v	
VIHC	Clock Input High Voltage	V _{CC} – .6	V _{CC} +.3	v	
V _{IL}	Input Low Voltage	- 0.3	0.8	v	
VIH	Input High Voltage	2.2	Vcc	v	
V _{OL}	Output Low Voltage		0.4	v	l _{OL} = 2.0 mA
V _{OH1}	Output High Voltage	2.4		v	l _{OH} = −1.6 mA
V _{OH2}	Output High Voltage	V _{CC} -0.8		v	$I_{OH} = -250 \mu A$
ICC1	Power Supply Current 4 MHz 6 MHz 8 MHz 10 MHz 20 MHz		20 30 40 50 100	mA mA mA mA	$V_{CC} = 5V$ $V_{IH} = V_{CC} - 0.2V$ $V_{IL} = 0.2V$ $V_{IL} = 5V$
ICC2	Standby Supply Current		10	μA	$V_{oc} = 5V$ $V_{CC} = 5V$
					CLK = (0) $V_{IH} = V_{CC} - 0.2V$ $V_{IL} = 0.2V$
ILI	Input Leakage Current	-10	10	μA	$V_{IN} = 0.4$ to V_{CC}
lo	3-State Output Leakage Current in Float	- 10	10 ²	μA	$V_{OUT} = 0.4$ to V_{CC}

Measurements made with outputs floating.
 A₁₅-A₀, D₇-D₀, MREQ, IORQ, RD, and WR.
 I_{CC2} standby supply current is guaranteed only when the supplied clock is stopped at a low level during T₄ of the machine cycle immediately following the execution of a HALT instruction.

CAPACITANCE

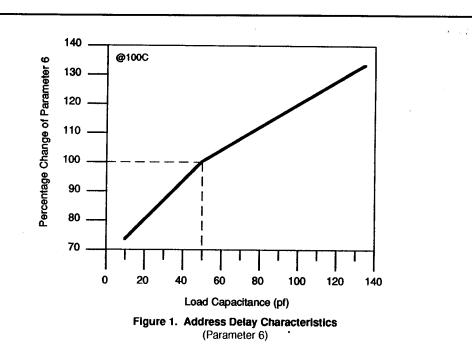
Symbol	Parameter	Min	Max	Unit
CCLOCK	Clock Capacitance		10	pf
C _{IN}	Input Capacitance		5	pf
COUT	Output Capacitance		15	pif

 $T_A = 25$ °C, f = 1 MHz. Unmeasured pins returned to ground.

AC CHARACTERISTICS[†] (Z84C00/CMOS Z80 CPU)

 V_{cc} =5.0V ± 10%, unless otherwise specified

No	Symbol	ymbol Parameter		C0004 Max				Z84C0008 Min Max		C0010 Max			Unit	Note
1	TcC	Clock Cycle time	250*		162	DC	125	• DC	100*	DC	50*	DC	nS	•
2	TwCh	Clock Pulse width (high)		DC	65	DC	55	DC	40	DC	20	DC	nS	
3	TwCl	Clock Pulse width (low)	110	DC	65	DC	55	DC	40	DC	20		nS	
4	TfC	Clock Fall time		30		20	00	10	10	10	20	10	nS	
5	TrC	Clock Rise time		30		20		10		10		10	nS	
6	TdCr(A)	Address vaild from Clock Rise	1	110		90		80		65		57	nS	[2]
7	TdA(MREQf)	Address valid to /MREQ Fall	65*		35*		20*		5*		-15*		nS	• •
8	TdCf(MREQf)	,,		85		70		60		55		40	nS	
9	TdCr(MREQr)	Clock Rise to /MREQ Rise delay		85		70		60		55		40	nS	
10	TwMREQh	/MREQ pulse width (High)	110*		65*		45**		30*		10*		nS	[3]
11	TwMREQ	/MREQ pulse width (low)	220*		132*		100'	,	75*		25*		nS	[3]
	TdCf(MERQr)			85		70		60		55		40	nS	
13	TdCf(RDf)	Clock Fall to /RD Fall delay		95		80		70		6 5		40	nS	
	TdCr(RDr)	Clock Rise to /RD Rise delay		85		70		60		55		40	nS	
15	TsD(Cr)	Data setup time to Clock Rise	35		30		30		25		12		nS	
	ThD(RDr)	Data hold time after /RD Rise	0		0		0		0		0		nS	
	TsWAIT(Cf)	WAIT setup time to Clock Fall	70		60		50		20		7.5		nS	
	ThWAIT(Cf)	WAIT hold time after Clock Fall	10		10		10		10		10		nS	
19	TdCr(M1f)	Clock Rise to /M1 Fall delay		100		80	•	70		65		45	nS	
20	TdCr(M1r)	Clock Rise to /M1 Rise delay		100		80		70		65		45	nS	
	TdCr(RFSHf)	Clock Rise to /RFSH Fall delay		130		110		95		80		60	nS	
	TdCr(RFSHr)	Clock Rise to /RFSH Rise delay		120		100		85		80		60	nS	
	TdCf(RDr)	Clock Fall to /RD Rise delay		85		70		60		55		40	nS	
	TdCr(RDf)	Clock Rise to /RD Fall delay		85		70		60		55		40	nS	
25	TsD(Cf)	Data setup to Clock Fall during												
		M2, M3, M4 or M5 cycles	50		40		30		25		12		nS	
26	TdA(IORQf)	Address stable prior to /IORQ Fall	180*		107*		75*		50*		0*		nS	
27	TdCr(IORQf)	Clock Rise to /IORQ Fall delay		75		65		55		50		40	nS	
28	TdCf(IORQr)	Clock Fall to /IORQ Rise delay		85		70		60		55		40 [°]	nS	
29	TdD(WRf)Mw	Data stable prior to /WR Fall	80*		22*		5*		40*		-10*		nS	
	TdCf(WRf)	Clock Fall to /WR Fall delay		80		70		60		55		40	nS	
31	TwWR	/WR pulse width	220*		132*		100*		75*		25*		nS	
		Clock Fall to /WR Rise delay		80		70		60		55		40	nS	
		Data stable prior to /WR Fall	-10*		-55*		-55*		-10*		-30*		nS	
34	TdCr(WRf)	Clock Rise to /WR Fall delay		65		60		60		50		40	nS	
	•••	Data stable from /WR Rise	60*		30*		15*		10*	,	0*		nS	
	• •	Clock Fall to /HALT 'L' or 'H'		300		260		225		90		70	nS	
		/NMI pulse width	80		60		60		60		60		nS	
		/BUSREQ setup time	50		50		40		30		15		nS	
1	(Cr)	to Clock Rise												


*For clock periods other than the minimums shown, calculate parameters using the table on the following page. Calculated values above assumed TrC = TfC = 20 ns.

The second seco

**4 MHz CMOS Z80 is obsoleted and replaced by 6 MHz

PS017801-0602

¢

DC CHARACTERISTICS (Z8400/NMOS Z80 CPU)

All parameters are tested unless otherwise noted.

Symbol	Parameter	Min	Max	Unit	Test Condition
V _{ILC}	Clock Input Low Voltage	-0.3	0.45	v	
VIHC	Clock Input High Voltage	V _{CC} – .6	V _{CC} +.3	v	
VIL	Input Low Voltage	- 0.3	0.8	v	
VIH	Input High Voltage	2.0 ¹	Vcc	v	
VOL	Output Low Voltage		0.4	v	l _{Oi} = 2.0 mA
V _{OH}	Output High Voltage	2.4 ¹		v .	l _{OH} = -250 μA
ICC.	Power Supply Current		200	mA	Note 3
lLi	Input Leakage Current		10	μA	$V_{IN} = 0$ to V_{CC}
ILO	3-State Output Leakage Current in Float	- 10	10 ²	μΑ	$V_{OUT} = 0.4$ to V_{CC}

For military grade parts, refer to the Z80 Military Electrical Specification.
 A₁₅-A₀, D₇-D₀, MREO, IORO, RD, and WR.
 Measurements made with outputs floating.

CAPACITANCE

Guaranteed by design and characterization.

Symbol	Parameter	Min	Max	Unit
C _{CLOCK}	Clock Capacitance		35	pf
C _{IN}	Input Capacitance		5	pf
COUT	Output Capacitance		15	pf

NOTES:

 $T_A = 25$ °C, f = 1 MHz. Unmeasured pins returned to ground.

•

PS017801-0602

			Z084	0004	Z08 4	0006	Z084	8000
Number	Symbol	Parameter	Min	Max	Min	Max	Min	Max
1	TcC	Clock Cycle Time	250*		162*		125*	
2	TwCh	Clock Pulse Width (High)	110	2000	65	2000	55	2000
3	TwCl	Clock Pulse Width (Low)	110	2000	65	2000	55	2000
4	TfC	Clock Fall Time		30		20		10
5	TrC	Clock Rise Time		30		20		10
6	TdCr(A)	Clock t to Address Valid Delay		110		90		80
7	TdA(MREQf)	Address Valid to MREQ ↓ Delay	65*		35*		20*	
8	TdCf(MREQf)	Clock ↓ to MREQ ↓ Delay		85		70		60
9	TdCr(MREQr)	Clock t to MREQ t Delay		85		70		60
10	TwMREQh	MREQ Pulse Width (High)	110**	H	65*	Ħ	45*1	H t
11	TwMREQI	MREQ Pulse Width (Low)	220*	Ħ	135**	İ.	100*1	HT .
12	TdCf(MREQr)	Clock I to MREQ t Delay		85		70		60
13	TdCf(RDf)	Clock ↓ to RD ↓ Delay		95		80		70
14	TdCr(RDr)	Clock t to RD t Delay		85		70		60
15	TsD(Cr)	Data Setup Time to Clock †	35		30		30	
16	ThD(RDr)	Data Hold Time to \overline{RD} t		0		0		C
17	TsWAIT(Cf)	WAIT Setup Time to Clock I	70		60		50	
18	ThWAIT(Cf)	WAIT Hold Time after Clock +		0		0		0
19	TdCr(M1f)	Clock ↑ to M1 ↓ Delay		100		80		70
20	TdCr(M1r)	Clock t to M1 t Delay		100		80		70
21	TdCr(RFSHf)	Clock ↑ to RFSH ↓ Delay		130		110		95
22	TdCr(RFSHr)	Clock t to RFSH t Delay		120		100		85
23	TdCf(RDr)	Clock ↓ to RD ↑ Delay		85		70		60
24	TdCr(RDf)	Clock ↑ to RD ↓ Delay		85		70		60
25	TsD(Cf)	Data Setup to Clock I during M ₂ , M ₃ , M ₄ , or M ₅ Cycles	50		40		30	
26	TdA(IORQf)	Address Stable prior to IORQ +	180*		110*		75*	
27	TdCr(IORQf)	Clock † to IORQ ↓ Delay		75		65		55
28	TdCf(IORQr)	Clock ↓ to IORQ ↑ Delay		85		70		·60
29	TdD(WRf)	Data Stable prior to WR	80*		25*		5*	
30	TdCf(WRf)	Clock ↓ to WR ↓ Delay		80		70		60
31	TwWR	WR Pulse Width	220*		135*		100*	
32	TdCf(WRr)	Clock↓to WR↑Delay		80		70		60
· 33	TdD(WRf)	Data Stable prior to WR +	-10*		-55*		55*	
34	TdCr(WRf)	Clock ↑ to WR ↓ Delay		65		60		55
35	TdWRr(D)	Data Stable from WR 1	60*		30*		15*	
36	TdCf(HALT)	Clock ↓ to HALT ↑ or ↓		300		260		225
37	TwNMI	NMI Pulse Width	80		70		60*	
38	TsBUSREQ(Cr)	BUSREQ Setup Time to Clock t	50		50		40	

AC CHARACTERISTICS[†] (Z8400/NMOS Z80 CPU)

*For clock periods other than the minimums shown, calculate parameters using the table on the following page. Calculated values above assumed TrC = TIC = 20 ns. †Units in nanoseconds (ns).

For loading \geq 50 pf., Decrease width by 10 ns for each additional 50 pf.

PS017801-0602

.

AC CHARACTERISTICS[†] (Z8400/NMOS Z80 CPU; Continued)

			Z08 4	10004	Z0840006		Z0840008	
Number	Symbol	Parameter	Min	Max	Min	Max	Min	Max
39	ThBUSREQ(Cr)	BUSREQ Hold Time after Clock t	0		0	-	0	•
40	TdCr(BUSACKf)	Clock t to BUSACK I Delay		100		90		80
41	TdCf(BUSACKr)	Clock ↓ to BUSACK ↑ Delay		100		90		80
42	TdCr(Dz)	Clock t to Data Float Delay		90		80		70
43	43 TdCr(CTz) Clock t to Control Outputs Float Delay (MREQ, IORQ, RD, and WR)			80		70		60
44	TdCr(Az)	Clock t to Address Float Delay		90		80		70
45	TdCTr(A)	MREQ t, IORQ t, RD t, and WR t to Address Hold Time	. 80*		35*		20*	
46	TsRESET(Cr)	RESET to Clock † Setup Time	60		60		45	
47	ThRESET(Cr)	RESET to Clock t Hold Time		0		0		0
48	TsINTf(Cr)	INT to Clock † Setup Time	80		70		55	
49	ThINTr(Cr)	INT to Clock t Hold Time		0		0		0
50	TdM1f(IORQf)	M1 ↓ to IORQ ↓ Delay	565*		365*		270*	
51	TdCf(IORQf)	Clock ↓ to IORQ ↓ Delay		85		70		60
52	TdCf(IORQr)	Clock † IORQ † Delay		85		70		60
53	TdCf(D)	Clock I to Data Valid Delay		150		130		115

*For clock periods other than the minimums shown, calculate parameters using the following table. Calculated values above assumed TrC = TfC = 20 ns. †Units in nanoseconds (ns).

FOOTNOTES TO AC CHARACTERISTICS

Number	Symbol	General Parameter	Z0840004	Z0840006	Z0840008
1	TcC	TwCh + TwCl + TrC + TfC			
7	TdA(MREQf)	TwCh + TfC	- 65	- 50	- 45
10	TwMREQh	TwCh + TfC	- 20	- 20	- 20
11	TwMREQI	TcC	- 30	- 30	- 25
26	TdA(IORQf)	TcC	- 70	55	- 50
29	TdD(WRf)	TcC	- 170	- 140	- 120
31	TwWR	TcC	- 30	- 30	- 25
33	TdD(WRf)	TwCI + TrC	- 140	- 140	- 120
35	TdWRr(D)	TwCl + TrC	- 70	- 55	50
45	TdCTr(A)	TwCI + TrC	- 50	- 50	45
50	TdM1f(IORQf)	2TcC + TwCh + TfC	- 65	- 50	45

- AC Test Conditions: $V_{IH} = 2.0 V$ $V_{IL} = 0.8 V$ $V_{\rm IHC} = V_{\rm CC} - 0.6 V$ $V_{\rm ILC} = 0.45 V$

V_{OH} = 1.5 V V_{OL} = 1.5 V FLOAT = ±0.5 V

~