

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Active
Core Processor	Z80
Number of Cores/Bus Width	1 Core, 8-Bit
Speed	10MHz
Co-Processors/DSP	-
RAM Controllers	-
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	5.0V
Operating Temperature	-40°C ~ 100°C (TA)
Security Features	-
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z84c0010veg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8-BIT LOAD GROUP

	Symbolic				Fk	ngs					Opcod	•		No. of	No. of M	No. of T		
Mnemonic	Operation	S	Z		H	•	P/V	N	C	76	543	210	Hex	Bytes	Cycles	States	Com	ments
LD r, r'	r ← r'	•	•			Х	•	•	•	01	r	r'		1	1	4	r, r'	Reg.
LD r, n	r ← n	•	•	Χ	•	Х	•	•	•	00	r	110		2	2	7	000	В
											← n→						001	С
LD r, (HL)	r ← (HL)	•	•	Χ	•	Х	•	•	•	01	r	110		1	2	7	010	D
LD r, (IX + d)	r ← (IX + d)	•	•	Х	•	Χ	•	•	•	11	011	101	DD	3	5	19	011	Ε
										01	r	110					100	н
											~ d→						101	L
LD r, (IY + d)	$r \leftarrow (IY + d)$	•	•	Х	•	Х	•	•	•	11	111	101	FD	3	5	19	111	Α
										01	r	110						
											← d→							
LD (HL), r	(HL) ← r	•	•	Х	•	Χ	•	•	•	01	110	ſ		1	2	7		
LD (IX + d), r	(IX+d) ← r	•	•	X	•	Χ	•	•	•	11	011	101	DD	3	5	19		
										01	110	r						
											← d→							
LD (IY + d), r	(IY+d) r	•	•	Х	•	Х	•	•	•	11	111	101	FD	3	5	19		
		•								01	110	r						
											← d→							
LD (HL), n	(HL) ← n	•	•	Х	•	Х	•	•	•	00	110	110	36	2	3	10		
											+n→							
LD (IX + d), n	(IX + d) ← n	•	•	Х	•	Х	•	•	•	11	011	101	DD	4	5	19		
										00	110	110	36					
											←d →							
											←n→							

8-BIT LOAD GROUP (Continued)

	Symbolic					ags					Opcod			No. of	No. of M	No. of T	
Mnemonic	Operation	S	Z		Н		PΛ	/ N	С	76	543	210	Hex	Bytes	Cycles	States	Comments
LD (IY + d), n	(IY+d) ← n	•	•	Х	•	Х	•	•	•	11	111	101	FD	4	5	19	
										00	110	110	36				
											← d→						
											←n→						
LD A, (BC)	A ← (BC)	•	•	Χ	•	Х	•	•	•	00	001	010	OA	1	2	7	
LD A, (DE)	A ← (DE)	•	•	Χ	•	Х	٠	•	•	00	011	010	1A	1	2	7	
LD A, (nn)	A ← (nn)	•	•	Х	•	Х	•	•	•	00	111	010	3A	3	4	13	
											← n→						
											← n→						
LD (BC), A	(BC) ← A	•	•	Х	•	Х	•	•	•	00	000	010	02	1	2	7	
LD (DE), A	(DE) ← A	•	•	Х	•	Χ	•	•	•	00	010	010	12	1	2	7	
LD (nn), A	(nn) ← A	•	•	Х	•	Х	•	•	•	00	110	010	32	3	4	13	
											← n →						
_											← n→						
LD A, I	A←I	#	‡	Х	0	Х	IFF	0	•	11	101	101	ED	2	2	9	
										01	010	111	57				
LDA, R	A←R	‡	‡	X	0	Х	IFF	0	•	11	101	101	ED	2	2	9	
										01	011	111	5F				
_D I, A	1 A	•	•	Х	•	Х	•	•	•	11	101	101	ED	2	2	9	
	_									01	000	111	47				
₋DR, A	R←A	•	•	X	•	Х	•	•	•	11	101	101	ED	2	2	9	
										01	0 01	111	4F				

NOTE: IFF, the content of the interrupt enable flip-flop, (IFF2), is copied into the P/V flag.

16-BIT LOAD GROUP

Mnemonic	Symbolic Operation	s	z		Fla	ags	P/V	N	С		Opcode 543		Hex	No. of Bytes	No. of M Cycles	No. of T States	Con	nmenti
LD dd, nn	dd ← nn	•	•	X	•	Х	•	•	•	00	dd0 + n →	001		3	3	10	dd	Pair
											+n→						00 01	BC DE
LD IX, nn	IX ← nn	•	•	X	•	X	•	•	•	11	011	101	DD	4	4	14	10	HL
										00	100 ←n→	001	21				11	SP
150											← n →							
LD IY, nn	IY ← nn	•	•	X	•	Х	•	•	•	11	111	101	FD	4	4	14		
										00	← n→	001	21					
LD HL, (nn)	H ← (nn + 1)	•	•	х	•	Х	•	•		00	←n→ 101	010	2A	3	5	16		
	L ← (nn)										←n→ ←n→							
LD dd, (nn)	$dd_H \leftarrow (nn + 1)$ $dd_L \leftarrow (nn)$	•	•	X	•	X	•	•	•	11	101	101	ED	4	6	20		
	40[4- (IIII)									01	dd1 ←n→	011						
											+n →							

NOTE: $(PAIR)_H$, $(PAIR)_L$ refer to high order and low order eight bits of the register pair respectively. e.g., $BC_L = C$, $AF_H = A$.

16-BIT LOAD GROUP (Continued)

Mnemonic	Symbolic Operation	s	z		Fla H	gs	P/V	N	С	76	Opcod 543		Hex	No. of Bytes	No. of M Cycles	No. of T States	Comme	118
DIX, (nn)	IX _H ← (nn + 1)	•	•	×	•	χ.	•	•	•	11	011	101	DD	4	6	20		+
- 17 (, (, 11)	IX _I ← (nn)			^		^				00	101		2A		·			
										••	+n→	• • •						į
											+n→							
D IY, (nn)	IY _H ← (nn + 1)			x		Х				11	. 111		FD	4	6	20		
J 11, (1.1.)	IY _L ← (nn)			^		•				00	101		2A	,	·			
	115 (111)									00	+n→	0.0						
											+n→							
O (nn), HL	(nn + 1) ← H			Х		х				00	100	010	22	3	5	16		
٠, ١،١٠), ١،١٠	(nn)+-L	-	•	^	•	^	•		•	00	+n→	010		J	J			
	(111)										+n→							
D (nn), dd	(nn + 1) ← dd _H			¥		х				11	101	101	ED	4	6	20		
- (rii), uu	(nn) ← dd _L	•	٠	^	•	^	-	•	•	01	dd0		LD	7	J	20		
	(iii) · uu[U	+ n →	011						
											+n→							
O (nn), IX	(nn + 1) ← IX _H			¥		х				11	011	101	DD	4	6	20		i
- (ι ιι η, ι∧	(nn) ← IX _L	-	•	^	•	^	•	•	•	00	100		22	7	J	20		İ
	(111) - 12(w	+n→	010	~~					
											+n→							
O (nn), IY	(nn+1) ← IY _H			¥		X ·				11	111	101	FD	4	6	20		
J (1111), 11	(nn) ← IY _L	•	•	^	•	^	•	•	•	00	100		22	7	Ū	20		
	(iii) · II[00	+n→	010	22					
											+n→							1
D SP. HL	SP - HL	_		х		х		_		11	111	001	F9	1	1	6		i
O SP. IX	4SP + IX	-	•	x	•	x	•		•	11	011	101	DD	2	2	10		
J UF, IA	10F 1-IA	•	•	^	•	^	•	•	•	11	111	001	F9	-	-			
D SP, IY	SP + IY			х		х				11	111	101	FD	2	2	10		
5 51,11	G(- 11	-	•	^	•	^	-	-	-	11	111	001	F9	-	•		qq Pa	air
USH qq	(SP - 2) ← qq _L			¥		х				11	qq0	101		1	3	11	00 B	-
	(SP - 1) ← qq _H	•	٠	^	•	^	•	•	•	1,1	440			•	•	•••	00 DI	
	SP → SP - 2																10 H	- 1
USH IX	(SP-2) + IXL			¥		х				11	011	101	DD	2	4	15	11 AF	- 1
00111A	(SP - 1) ← IX _H	•	•	^	•	^	•	•	•	11	100	101	E5	-	7	.0	^	
	SP→SP-2									- 11	,00	101	LU					-
USHIY	SP-2) ← IY _L			¥		х				11	111	101	FD	2	4	15		i
OOMII		•	•	^	•	^	-	•	-	11	100	101	E5	_	7			
	$(SP-1) \leftarrow IY_H$ $SP \rightarrow SP-2$									11	100	101	ES					
OP oc	or → or - 2 qq _H ← (SP + 1)			v	_	х				11	qq0	001		1	3	10		
OP qq		•	•	^	•	^	•	•	•	11	440	001		'	3	.0		
	qqL ← (SP) SP → SP +2																	
OD IV			_	v	_	v	_	_	_	11	011	101	DD	2	4	14		
OP IX	IX _H + (SP + 1)	•	•	^	•	Х	•	•	•	11	011 100	001	E1	2	4	1-4		
	IX _L ← (SP)									11	100	w	E1					
	SP → SP +2					v		_			444	404				14		
OP IY	IY _H ← (SP + 1)	•	•	X	•	X	. •	•	•	11	111	101	FD	2	4	14		
	IY _L ← (SP)									11	100	001	E1					
	SP → SP + 2																	

NOTE: (PAIR)_H, (PAIR)_L refer to high order and low order eight bits of the register pair respectively, e.g., BC_L = C, AF_H = A.

8-BIT ARITHMETIC AND LOGICAL GROUP (Continued)

••	Symbolic		-			ngs					Орсо			No. of	No. of M	No. of T	
Mnemonic	Operation	8	Z		H		PΛ	N	С	76	543	210	Hex	Bytes	Cycles	States	Comments
INC r	r+r+1	‡	‡	х	‡	Х	٧	0	•	00	r	100		1	1	4	
INC (HL)	(HL) ←												•				
	(HL) + 1	#	‡	Х	‡	х	٧	0	•	00	110	100		1	3	11	
INC (IX+d)	(IX + d) ←			X	‡	Х	٧	0	•	11	011	101	DD	3	6	23	
	(IX + d) + 1									00	110	100					
											- -d-	•					
INC (IY+d)	(IY+d) ←		#	X	‡	Х	٧	0	•	11	111	101	FD	3	6	23	
	(IY+d)+1									00	110	100					
											← d-	•					
DEC m	m ← m – 1		*	X	‡	Х	٧	1	•			101					

NOTE: m is any of r, (HL), (IX+d), (IY+d) as shown for INC. DEC same format and states as INC. Replace 100 with 101 in opcode.

GENERAL-PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

Mnemonic	Symbolic Operation	8	z		FI: H	age		V N	С	76	Opcod 543	e 210	Hex	No. of Bytes	No. of M Cycles	No. of T States	Comments
DAA	Ø	‡	*	х	*	Х	Р	•	‡	00	100	111	27	1	1	4	Decimal adjust
CPL	A+A	•	•	· X	1	×	•	1	•	00	101	111	2F	1	1	4	Complement accumulator (one's complement).
NEG	A - 0 - A	‡	‡	Х	‡	Х	٧	1	‡	11	101	101	ED	2	2	8	Negate acc.
										01	000	100	44			-	(two's complement).
CCF	CY + CY	•	•	X	X	X	•	0	‡	00	111	111	3F	1	. 1	4	Complement carry flag.
SCF	CY - 1	•	•	Х	0	Х	•	0	1	00	110	111	37	1	1	4	Set carry flag.
NOP	No operation	•	•	Х	•	Х	•	•	•	00	000	000	00	1	1	4	oot ourly mag.
HALT	CPU halted	•	•	Х		Х	•	•	•	01	110	110	76	1	1	4	
DI ★	IFF ← 0	•	•	X	•	Х	•	•	•	11	110	011	F3	1	1	4	
El ★	IFF ← 1	•	٠	Х	•	Х	•	•	•	11	111	011	FB	1	1	4	
IM O	Set interrupt mode 0	•	•	X	•	X	•	•	•	11 01	101 000	101 110	ED 46	2	2	8	
IM 1	Set interrupt mode 1	•	•	X	•	X	•	•	•	11 01	101 010	101 110	ED 56	2	2	8	
IM 2	Set interrupt mode 2	•	•	X	•	X	•	•	•	11 01	101 011	101 110	ED 5E	2	2	8	

NOTES: @ converts accumulator content into packed BCD following add or subtract with packed BCD operands. IFF indicates the interrupt enable flip-flop.

CY indicates the carry flip-flop.

* indicates interrupts are not sampled at the end of EI or DI.

ROTATE AND SHIFT GROUP (Continued)

Maar -	Symbolic	_	_		FI	age			_		Opcod			No. of	No. of M	No. of T	
	nic Operation	S	Z		Н		PΛ	/ N	<u> </u>	76	543	210	Hex	Bytes	Cycles	States	Comments
RLCr		‡	‡	x	0	x	₽	0	• ‡	11 00	001	011 r	СВ	2	2	8	Rotate left circular register r.
RLC (HL	.) [ev]- 7	‡ 	‡	X	0	X	P	0	‡	11 00	001 000	011 110	СВ	2	4	15	r Reg 000 B
RLC (IX -		.‡	‡	X	0	X	P	0	*	11 11	011 001 ← d →	101 011	DD CB	4	6	23	001 C 010 D 011 E 001 H
RLC (IY +	+ d) }	*	‡	x	0	x	P	0		11	111	101	FD	4	6	23	101 L 111 A
iL m	$m = r_i(HL_i(IX + d))$] ; ,(1Y+	‡ d)	x	0	x	Р	0	•	00	001 ← d → 000 010		СВ				Instruction format and states are as shown for
RCm	m = r, (HL), (IX + d)	‡),(IY+	‡ d)	x	0	x	Ρ	0	*		001						RLCs. To form new opcode replace 000 or RLCs with
lR m	m = r, (HL), (iX + d)	•	‡ d)	x	0	x	Р	0	‡		011						shown code.
LA m	$CY \longrightarrow 7 \longrightarrow 0 \longrightarrow 0$ $m = r_1(HL), (IX + d)$	-	‡ ď)	X	0	X	P	0	‡		100						
RA m	$m = r_i(HL), (IX + d)$			X	0	X	Ρ	0	*	. 2.	101						
RLm	$0+7 \rightarrow 0$ CY $m=r,(HL),(IX+d)$			X	0	X	P	0	*		111						:
רט [7-4 3-0 7-4 3-0 A (HL)		‡	x	0	x	Ρ	0	•	11 01	101 101	101 111	ED 6F		5		Rotate digit left and right between the accumu- lator and
RD [74 30 74 30 A (HL)	*	‡	x	0	x	P	0	•	11 01	101 100	101 111	ED 67	2	5	18	location (HL). The content of the upper half of the accumulator is unaffected.

BIT SET, RESET AND TEST GROUP

Mnemonic	Symbolic Operation	8	z		Fla H	gs	P/V	N	С	76	Opcod 543		Hex	No. of Bytes	No. of M Cycles	No. of T States	Con	nments
BIT b, r	Z←rb	х	‡	Х	1	х	х	0	•	11	001	011	СВ	2	2	8	r	Reg.
										01	b	ſ					000	В
BIT b, (HL)	Z ← (HL) _b	Х	‡	Х	1	Х	Х	0	•	11	001	011	CB	2	3	12	001	С
										01	b	110					010	D
BIT b,(IX + d)b	$Z \leftarrow (IX + d)_b$	X	‡	X	1	X	X	0	•	11	011	101	DD	4	5	20	011	E
										11	001	011	CB				100	Н
											- d-	•					101	L
										01	b	110					111	Α
																	b	Bit Tested
BIT b, $(IY + d)_b$	Z ← (IY+d) _b	X	‡	X	1	Х	X	0	•	11	111	101	FD	4	5	20	000	0
										11	001	011	CB				001	1
											- d→	•					010	2
										01	b	110					011	3
SET b, r	r _b ←1	•	•	X	•	Х	•	•	. •	11	001	011	CB	2	2	8	100	4
										11	b	r					101	5
SET b, (HL)	(HL) _b ← 1	•	•	X	•	X	•	•	•	11	001	011	CB	2	4	15	110	6
										11	b	110					111	7
SET b, $(1X + d)$	(IX+d) _b - 1	•	•	X	•	X	•	•	•	11	011	101	DD	4	6	23		
		-								11	001	011	CB					
											-d-	•						
										11	b	110						
SET b, (IY+d)	$(iY+d)_b \leftarrow 1$	•	•	X	•	Х	•	•	•	11	111	101	FD	4	6	23		
										11	001	011	CB					
											+d →	•						
										11	b	110						
RES b, m	m _b ← 0	•	•	X	•	X	•	•	•	10							To fo	kw usiA
	m≡r, (HL),														•			ode replace
	(IX+d), $(IY+d)$			•														of SET b, s
									•									10 Flags
																	and	
																		s for SET
																	instr	uction.

NOTE: The notation m_b indicates location m_s bit b (0 to 7).

CALL AND RETURN GROUP

Mnemonic	Symbolic Operation	s	z		Fia H	ags		/N	С	76	Opcod 543		Hex	No. of Bytes	No. of M Cycles	No. of T States	Com	ments
CALL nn	(SP-1)←PC _H	•	•	х	•	Х	•	•	•	11	001	101	CD	3	5	17		
	(SP-2)←PC _L PC ← nn.										+n→							
CALL cc nr	PC ← nn, If condition			¥		х				11	←n→ cc	100		3	3	10	If co.is	s false.
O/1LL 00,111	cc is false	_	-	^	-	^		-		••	+ n →			Ü	·			5 Ka300.
	continue, otherwise										+-n-			3	5	17	If oc is	s true.
	same as CALL nn																	
RET	PC _L ← (SP) PC _H ←(SP+1)	•	•	x	•	X	•	•	•	11	0 01	001	C9	1	3	10		
RET ∞	If condition cc is false	•	•	X	•	X	•	•	•	11	cc	000		1	1	5	If cc is	s false.
	continue,													/1	3	11	If oc is	s true.
	same as RET																	Condition
																		NZ (non-zero)
																		Z (zero)
																		NC (non-carry)
RETI	Return from	•	•	Х	•	Х	•	•	•	11	101	101	ED	2	4	14		C (carry)
	interrupt									01	001	101	4D					PO (parity odd)
RETN ¹	Return from	•	•	Х	•	Х	•	•	•	11	101	101	ED	2	4	14		PE (parity even)
	non-maskable									01	000	101	45				110	P (sign positive)
	interrupt																	·M (sign negative)
RST p	(SP-1)←PCH	•	•	X	•	Х	•	•	•	11	t	111		1	3	11	t	P
	(SP-2)←PC _L																000	
	PC _H ← 0																	08H
	PC _L ← p																-	10H
																	011	18H
																	100	20H
																		28H
																	110	30H
																	111	38H

NOTE: ¹RETN loads IFF2 → IFF1

SUMMARY OF FLAG OPERATION

	D ₇							Do	
Instructions	s	Z		Н		P/V	N	C	Comments
ADD A, s; ADC A, s	‡	#	X	‡	X	٧	0	‡	8-bit add or add with carry.
SUB s; SBC A, s; CP s; NEG	‡	#	X	‡	Х	٧	1	‡	8-bit subtract, subtract with carry, compare and negate accumulator.
ANDs	‡	#	Х	1	Х	Ρ	0	0	Logical operation.
OR s, XOR s	‡	#	Х	0	Х	Ρ	0	0	Logical operation.
INCs	‡	‡.	Х	‡	Х	٧	0	•	8-bit increment.
DEC s		#	Х	*	Х	٧	1	•	8-bit decrement.
ADD DD, as	•	•	Х	Х	Х	•	0	‡	16-bit add.
ADC HL. ss		‡	Х	Х	Х	٧	0	‡	16-bit add with carry.
SBC HL. ss			Х	Х	Х	٧	1	‡	16-bit subtract with carry.
RLA; RLCA; RRA; RRCA	•	•	X	0	X	•	0	#	Rotate accumulator.
RL m; RLC m; RR m; RRC m; SLA m; SRA m; SRL m	‡	‡	X	0	X	Р	0	‡	Rotate and shift locations.
RLD; RRD		‡	Х	0	Х	Р	0	•	Rotate digit left and right.
DAA			X	ŧ	X	P	•	‡	Decimal adjust accumulator.
CPL	•	•	X	1	X	•	1	•	Complement accumulator.
SCF	•	•	X	0	Х	•	0	1	Set carry.
CCF	•	•	X	X	X	•	Ö	‡	Complement carry.
IN r (C)	ŧ		X	0	X	Ρ	0	•	Input register indirect.
INI; IND; OUTI; OUTD	X	į	X	X	Х	Х	1	•	Block input and output, $Z = 1$ if $B \neq 0$, otherwise $Z = 0$.
INIR; INDR; OTIR; OTDR	X	1	X	X	X	Х	1	•	Block input and output. $Z = 1$ if $B \neq 0$, otherwise $Z = 0$.
LDI; LDD	X	X	X	0	X	#	0	•	Block transfer instructions. P/V = 1 if BC ≠ 0, otherwise P/V = 0
LDIR: LDDR	X	X	X	ō	X	ò	Ō	•	Block transfer instructions. $PN = 1$ if $BC \neq 0$, otherwise $PN = 0$
CPI; CPIR; CPD; CPDR	X	‡	X	X	X	‡	1	•	Block search instructions. $Z = 1$ if $A = (HL)$, otherwise $Z = 0$. $P/V = 1$ if $BC \neq 0$, otherwise $P/V = 0$.
LD A; I, LD A, R	‡	#	X	0	X	IFF	0	•	IFF, the content of the interrupt enable flip-flop, (IFF ₂), is copied into the P/V flag.
BIT b, s	X	#	Х	1	Χ	Х	0	•	The state of bit b of location s is copied into the Z flag.

SYMBOLIC NOTATION

Symbol	Operation	Symbol	Operation
S	Sign flag, S = 1 if the MSB of the result is 1.	‡	The flag is affected according to the result of the
Z	Zero flag. $Z = 1$ if the result of the operation is 0.		operation.
PΝ	Parity or overflow flag. Parity (P) and overflow (V)	•	The flag is unchanged by the operation.
	share the same flag. Logical operations affect	0	The flag is reset by the operation.
	this flag with the parity of the result while	1	The flag is set by the operation.
	arithmetic operations affect this flag with the	X	The flag is indeterminate.
	overflow of the result. If P/V holds parity: P/V = 1	V	P/V flag affected according to the overflow result
	if the result of the operation is even; P/V = 0 if		of the operation.
	result is odd. If P/V holds overflow, P/V = 1 if the	Р	PN flag affected according to the parity result of
	result of the operation produced an overflow. If		the operation.
	PN does not hold overflow. $PN = 0$.	r	Any one o the CPU registers A, B, C, D, E, H, L.
H*	Half-carry flag. H = 1 if the add or subtract	s	Any 8-bit location for all the addressing modes
• •	operation produced a carry into, or borrow from,		allowed for the particular instruction.
	bit 4 of the accumulator.	SS	Any 16-bit location for all the addressing modes
N*	Add/Subtract flag. N = 1 if the previous		allowed for that instruction.
•••	operation was a subtract.	ü	Any one of the two index registers IX or IY.
С	Carry/Link flag. C = 1 if the operation produced	R	Refresh counter.
•	a carry from the MSB of the operand or result.	n	8-bit value in range < 0, 255 >.
		nn	16-bit value in range < 0, 65535 >.

^{*}H and N flags are used in conjunction with the decimal adjust instruction (DAA) to properly correct the result into packed BCD format following addition or subtraction usin. perands with packed BCD format.

PIN DESCRIPTIONS

A₀-A₁₅. Address Bus (output, active High, 3-state). A₀-A₁₅ form a 16-bit address bus. The Address Bus provides the address for memory data bus exchanges (up to 64K bytes) and for I/O device exchanges.

BUSACK. Bus Acknowledge (output, active Low). Bus Acknowledge indicates to the requesting device that the CPU address bus, data bus, and control signals MREQ, IORQ, RD, and WR have entered their high-impedance states. The external circuitry can now control these lines.

BUSREQ. Bus Request (input, active Low). Bus Request has a higher priority than NMI and is always recognized at the end of the current machine cycle. BUSREQ forces the CPU address bus, data bus, and control signals MREQ, IORQ, RD, and WR to go to a high-impedance state so that other devices can control these lines. BUSREQ is normally wired-OR and requires an external pullup for these applications. Extended BUSREQ periods due to extensive DMA operations can prevent the CPU from properly refreshing dynamic RAMs.

D₀-D₇. Data Bus (input/output, active High, 3-state). D₀-D₇ constitute an 8-bit bidirectional data bus, used for data exchanges with memory and I/O.

HALT. Halt State (output, active Low). HALT indicates that the CPU has executed a Halt instruction and is awaiting either a nonmaskable or a maskable interrupt (with the mask enabled) before operation can resume. While halted, the CPU executes NOPs to maintain memory refresh.

INT. Interrupt Request (input, active Low). Interrupt Request is generated by I/O devices. The CPU honors a request at the end of the current instruction if the internal software-controlled interrupt enable flip-flop (IFF) is enabled. INT is normally wired-OR and requires an external pullup for these applications.

IORQ. Input/Output Request (output, active Low, 3-state). IORQ indicates that the lower half of the address bus holds a valid I/O address for an I/O read or write operation. IORQ is also generated concurrently with M1 during an interrupt acknowledge cycle to indicate that an interrupt response vector can be placed on the data bus.

M1. Machine Cycle One (output, active Low). M1, together with MREQ, indicates that the current machine cycle is the opcode fetch cycle of an instruction execution. M1, together with IORQ, indicates an interrupt acknowledge cycle.

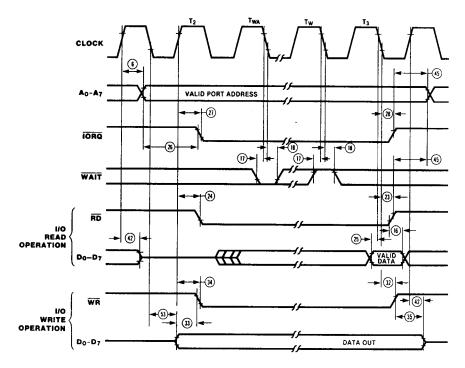
MREQ. Memory Request (output, active Low, 3-state). MREQ indicates that the address bus holds a valid address for a memory read or memory write operation.

NMI. Non-Maskable Interrupt (input, negative edgetriggered). NMI has a higher priority than INT. NMI is always recognized at the end of the current instruction, independent of the status of the interrupt enable flip-flop, and automatically forces the CPU to restart at location 0066H.

RD. Read (output, active Low, 3-state). RD indicates that the CPU wants to read data from memory or an I/O device. The addressed I/O device or memory should use this signal to gate data onto the CPU data bus.

RESET. Reset (input, active Low). RESET initializes the CPU as follows: it resets the interrupt enable flip-flop, clears the PC and Registers I and R, and sets the interrupt status to Mode 0. During reset time, the address and data bus go to a high-impedance state, and all control output signals go to the inactive state. Note that RESET must be active for a minimum of three full clock cycles before the reset operation is complete.

RFSH. Refresh (output, active Low). RFSH, together with MREQ, indicates that the lower seven bits of the system's address bus can be used as a refresh address to the system's dynamic memories.

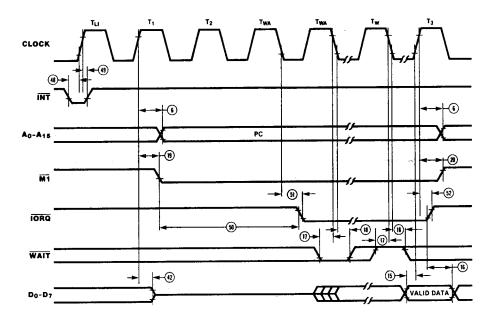

WAIT. Wait (input, active Low). WAIT indicates to the CPU that the addressed memory or I/O devices are not ready for a data transfer. The CPU continues to enter a Wait state as long as this signal is active. Extended WAIT periods can prevent the CPU from properly refreshing dynamic memory.

WR. Write (output, active Low, 3-state). WR indicates that the CPU data bus holds valid data to be stored at the addressed memory or I/O location.

PS017801-0602

Input or Output Cycles. Figure 7 shows the timing for an I/O read or I/O write operation. During I/O operations, the CPU automatically inserts a single Wait state (T_{WA}). This

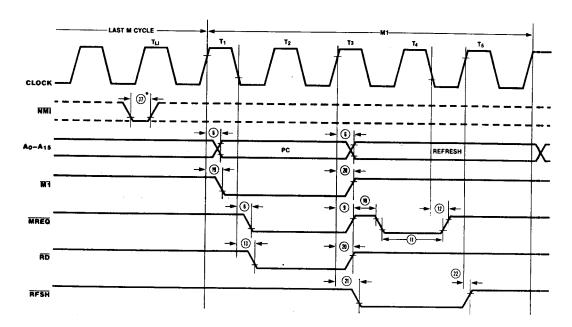
extra Wait state allows sufficient time for an 1/O port to decode the address from the port address lines.



T_{WA} = One wait cycle automatically inserted by CPU.

Figure 7. Input or Output Cycles

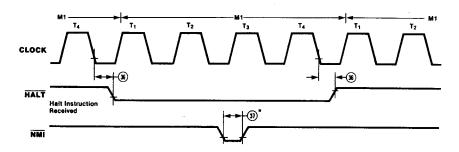
Interrupt Request/Acknowledge Cycle. The CPU samples the interrupt signal with the rising edge of the last clock cycle at the end of any instruction (Figure 8). When an interrupt is accepted, a special $\overline{\text{M1}}$ cycle is generated.


During this $\overline{\text{M1}}$ cycle, $\overline{\text{IORQ}}$ becomes active (instead of $\overline{\text{MREQ}}$) to indicate that the interrupting device can place an 8-bit vector on the data bus. The CPU automatically adds two Wait states to this cycle.

27

Non-Maskable Interrupt Request Cycle. NMI is sampled at the same time as the maskable interrupt input INT but has higher priority and cannot be disabled under software control. The subsequent timing is similar to that of a normal

memory read operation except that data put on the bus by the memory is ignored. The CPU instead executes a restart (RST) operation and jumps to the $\overline{\text{NMI}}$ service routine located at address 0066H (Figure 9).



^{*}Although NMI is an asynchronous input, to guarantee its being recognized on the following machine cycle, NMI's falling edge must occur no later than the rising edge of the clock cycle preceding the last state of any instruction cycle (T_{LI}).

Figure 9. Non-Maskable Interrupt Request Operation

Halt Acknowledge Cycle. When the CPU receives a HALT instruction, it executes NOP states until either an INT or NMI input is received. When in the Halt state, the HALT output is

active and remains so until an interrupt is received (Figure 11). INT will also force a Halt exit.

*Although NMI is an asynchronous input, to guarantee its being recognized on the following machine cycle, NMI's falling edge must occur no later than the rising edge of the clock cycle preceding the last state of any instruction cycle (T_{L1}).

Figure 11. Halt Acknowledge

Reset Cycle. RESET must be active for at least three clock cycles for the CPU to properly accept it. As long as RESET remains active, the address and data buses float, and the control outputs are inactive. Once RESET goes inactive, two

internal T cycles are consumed before the CPU resumes normal processing operation. RESET clears the PC register, so the first opcode fetch will be to location 0000H (Figure 12).

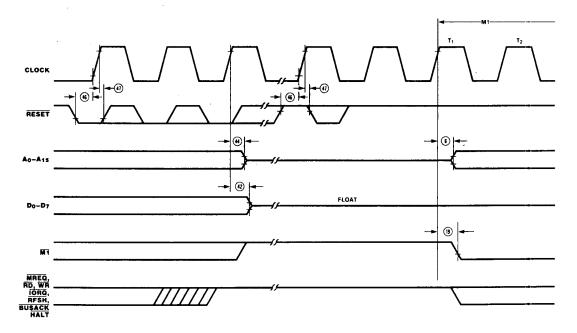


Figure 12. Reset Cycle

Power-Down Release Cycle. The system clock must be supplied to the CPU to release the power-down state. When the system clock is supplied to the CLK input, the CPU restarts operations from the point at which the power-down state was implemented.

The timing diagrams for the release from power-down mode are shown in Figure 14.

NOTES:

- When the external oscillator has been stopped to enter the power-down state, some warm-up time may be required to obtain a stable clock for the release.
- 2) When the HALT instruction is executed to enter the power-down state, the CPU will also enter the Halt state. An interrupt signal (either NMI or INT) or a RESET signal must be applied to the CPU after the system clock is supplied in order to release the power-down state.

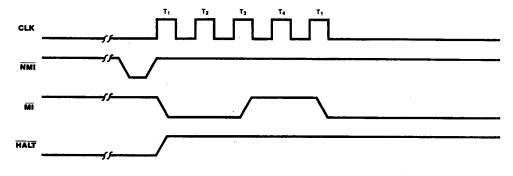


Figure 14a.

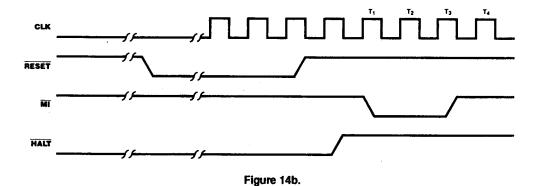


Figure 14c.

Figure 13. Power-Down Release

ABSOLUTE MAXIMUM RATINGS

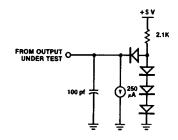
Voltage on V _{CC} with respect to V _{SS} 0.3V to +	7V
Voltages on all inputs with respect	
to V _{SS} – 0.3V to V _{CC} + 0.	3V
Operating Ambient	
TemperatureSee Ordering Informati	on
Storage Temperature 65°C to + 150	°C

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

STANDARD TEST CONDITIONS

The DC Characteristics and capacitance sections below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND (0V). Positive current flows into the referenced pin.

Available operating temperature ranges are:


■ S = 0°C to +70°C Voltage Supply Range:

NMOS: +4.75V ≤ VCC ≤ +5.25V CMOS: +4.50V ≤ VCC ≤ +5.50V

■ E= -40° C to 100° C, +4.50V \leq VCC \leq +5.50V

All ac parameters assume a load capacitance of 100 pf. Add 10 ns delay for each 50 pf increase in load up to a maximum of 200 pf for the data bus and 100 pf for address and control lines. AC timing measurements are referenced to 1.5 volts (except for clock, which is referenced to the 10% and 90% points).

The Ordering Information section lists temperature ranges and product numbers. Package drawings are in the Package Information section. Refer to the Literature List for additional documentation.

DC CHARACTERISTICS (Z84C00/CMOS Z80 CPU)

Symbol	Parameter	Min	Max	Unit	Condition
V _{ILC}	Clock Input Low Voltage	-0.3	0.45	٧	
VIHC	Clock Input High Voltage	V _{CC} 6	V _{CC} +.3	٧	
V_{IL}	Input Low Voltage	-0.3	0.8	٧	
V _{IH}	Input High Voltage	2.2	Vcc	V	
V _{OL}	Output Low Voltage		0.4	٧	$I_{OL} = 2.0 \text{mA}$
V _{OH1}	Output High Voltage	2.4		٧	$I_{OH} = -1.6 \text{mA}$
V _{OH2}	Output High Voltage	V _{CC} - 0.8		٧	$I_{OH} = -250 \mu\text{A}$
lcc ₁	Power Supply Current 4 MHz 6 MHz 8 MHz 10 MHz 20 MHz		20 30 40 50	mA mA mA	$V_{CC} = 5V$ $V_{IH} = V_{CC} - 0.2V$ $V_{IL} = 0.2V$
Icc ₂	Standby Supply Current		100	mΑ μΑ	$V_{\infty} = 5V$ $V_{CC} = 5V$
					CLK = (0) $V_{IH} = V_{CC} - 0.2V$ $V_{IL} = 0.2V$
ILI	Input Leakage Current	-10	10	μΑ	$V_{IN} = 0.4 \text{ to } V_{CC}$
ILO	3-State Output Leakage Current in Float	-10	10 ²	μΑ	$V_{OUT} = 0.4$ to V_{CC}

CAPACITANCE

Symbol	Parameter	Min	Max	Unit
C _{CLOCK}	Clock Capacitance		10	prf
C _{IN}	Input Capacitance		5	pf
C _{OUT}	Output Capacitance		15	pif

T_A = 25°C, f = 1 MHz. Unmeasured pins returned to ground.

^{1.} Measurements made with outputs floating.
2. A₁₅·A₀, D₇·D₀, MREQ, IORQ, RD, and WR.
3. I_{CC₂} standby supply current is guaranteed only when the supplied clock is stopped at a low level during T₄ of the machine cycle immediately following the execution of a HALT instruction.

AC CHARACTERISTICS† (Z84C00/CMOS Z80 CPU)

 V_{cc} =5.0V \pm 10%, unless otherwise specified

			Z84C0004**Z84C0006		784	C0008	Z840	C0010	784	C0020[1]	Unit	Note		
No	Symbol	Parameter		Max		Max		Max	Min	Max	Min		OH	:40(6
1	TcC	Clock Cycle time	250	, DC	162	DC	125	DC	100*	DC	50*	DC	nS	
2	TwCh	Clock Pulse width (high)	110	DC	65	DC	55	DC	40	DC	20	DC	nS	
3	TwCi	Clock Pulse width (low)		DC	65	DC	55	DC	40	DC	20	DC	nS	
4	TfC	Clock Fall time		30		20		10		10		10	nS	
5	TrC	Clock Rise time		30		20		10		10		10	nS	
6	TdCr(A)	Address vaild from Clock Rise	i	110		90		80		65		57	nS	[2]
7	TdA(MREQf)	Address valid to /MREQ Fall	65*		35*		20*		5*		-15*		nS	
8	TdCf(MREQf)	Clock Fail to MREQ Fail delay		85		70		60		55		40	nS	
9	TdCr(MREQr)	Clock Rise to /MREQ Rise delay		85		70		60		55		40	nS	
10	TwMREQh	/MREQ pulse width (High)	110*		65*		45**		30*		10*		nS	[3]
	TwMREQI	/MREQ pulse width (low)	220*		132*		100*		75*		25*		nS	[3]
		Clock Fall to MREQ Rise delay		85		70		60		55		40	nS	• •
	TdCf(RDf)	Clock Fall to /RD Fall delay		95		80		70		6 5		40	nS	
	TdCr(RDr)	Clock Rise to /RD Rise delay		85		70		60		55		40	nS	
15	TsD(Cr)	Data setup time to Clock Rise	35		30		30		25		12		nS	
	ThD(RDr)	Data hold time after /RD Rise	0		0		0		0		0		nS	
	TsWAIT(Cf)	WAIT setup time to Clock Fall	70		60		50		20		7.5		nS	
	ThWAIT(Cf)	WAIT hold time after Clock Fall	10		10		10		10		10		nS	
	TdCr(M1f)	Clock Rise to /M1 Fall delay		100		80	•	70		65		4 5	nS	
20	TdCr(M1r)	Clock Rise to /M1 Rise delay		100		80		70		6 5		4 5	nS	
	TdCr(RFSHf)	Clock Rise to /RFSH Fall delay		130		110		95		80		60	nS	
	TdCr(RFSHr)	Clock Rise to /RFSH Rise delay		120		100		85		80		60	nS	
	TdCf(RDr)	Clock Fall to /RD Rise delay		85		70		60		55		40	nS	
	TdCr(RDf)	Clock Rise to /RD Fall delay		85		70		60		5 5		40	nS	
25	TsD(Cf)	Data setup to Clock Fall during												
		M2, M3, M4 or M5 cycles	50		40		30		25		12		nS	
26	TdA(IORQf)	Address stable prior to /IORQ Fall	180*		107*		75*		50*		0*		nS	
27	TdCr(IORQf)	Clock Rise to /IORQ Fall delay		75		65 .		55		50		40	nS	
28	TdCf(IORQr)	Clock Fall to /IORQ Rise delay		85		70		60		55		40 '	nS	
29	TdD(WRf)Mw	Data stable prior to /WR Fall	80*		22*		5*		40 *		-10*		nS	
30	TdCf(WRf)	Clock Fall to /WR Fall delay		80		70	···	60		55		40	nS	
31	TwWR	MR pulse width	220*		132*		100*		75*		25*		nS	
32	TdCf(WRr)	Clock Fall to MR Rise delay		80		70		60		55		40	nS	
33	TdD(WRf)IO	Data stable prior to /WR Fall	-10*		-55*		-55*		-10*		-30*		nS	
34	TdCr(WRf)	Clock Rise to /WR Fall delay		6 5		60		60		50		40	nS	
35	TdWRr(D)	Data stable from MR Rise	60*		30*		15*		10*		0*		nS	
6	TdCf(HALT)	Clock Fall to /HALT 'L' or 'H'		300		260		225		90		70	nS	
	TwnM!	/NMI pulse width	80		60		60		60		60		nS	
8	TsBUSREQ	/BUSREQ setup time	50		50		40		30		15		nS	
((Cr)	to Clock Rise												

^{*}For clock periods other than the minimums shown, calculate parameters using the table on the following page. Calculated values above assumed TrC = TfC = 20 ns.

[†]Units in nanoseconds (ns). †† For loading ≥ 50 pf. Decrease width by 10 ns for each additional 50 pf...

^{**4} MHz CMOS Z80 is obsoleted and replaced by 6 MHz

AC CHARACTERISTICS[†] (Z8400/NMOS Z80 CPU)

			Z084	0004	Z08 4	0006	Z084	8000
Number	Symbol	Parameter	Min	Max	Min	Max	Min	Max
1	TcC	Clock Cycle Time	250*		162*		125*	
2	TwCh	Clock Pulse Width (High)	110	2000	6 5	2000	55	2000
3	TwCl	Clock Pulse Width (Low)	110	2000	65	2000	55	2000
4	TfC	Clock Fall Time		30		20		10
5	TrC	Clock Rise Time		30		20		10
6	TdCr(A)	Clock † to Address Valid Delay		110		90		80
7	TdA(MREQf)	Address Valid to MREQ ↓ Delay	65*		35*		20*	
8	TdCf(MREQf)	Clock I to MREQ I Delay		85		70		60
9	TdCr(MREQr)	Clock f to MREQ f Delay		85		70		60
10	TwMREQh	MREQ Pulse Width (High)	110**	Ħ	65**	Ħ	45*1	+
11	Twmreqi	MREQ Pulse Width (Low)	220*	Ħ	135*1	i	100*1	+
12	TdCf(MREQr)	Clock I to MREQ ↑ Delay		85		70		60
13	TdCf(RDf)	Clock I to RD I Delay		95		80		70
14	TdCr(RDr)	Clock † to RD † Delay		85		70		60
15	TsD(Cr)	Data Setup Time to Clock †	35		30		30	
16	ThD(RDr)	Data Hold Time to RD †		0		0		0
17	TsWAIT(Cf)	WAIT Setup Time to Clock ↓	70		60		50	
18	ThWAIT(Cf)	WAIT Hold Time after Clock ↓		0		0		0
19	TdCr(M1f)	Clock † to M1 ↓ Delay		100		80		70
20	TdCr(M1r)	Clock † to M1 † Delay		100		80		70
21	TdCr(RFSHf)	Clock ↑ to RFSH ↓ Delay		130		110		95
22	TdCr(RFSHr)	Clock to RFSH t Delay		120		100		85
23	TdCf(RDr)	Clock I to RD ↑ Delay		85		70		60
24	TdCr(RDf)	Clock † to RD ↓ Delay		85		70		60
25	TsD(Cf)	Data Setup to Clock ↓ during M ₂ , M ₃ , M ₄ , or M ₅ Cycles	50		40		30	
26	TdA(IORQf)	Address Stable prior to IORQ ↓	180*		110*		75*	
27	TdCr(IORQf)	Clock † to IORQ ↓ Delay		75		65		55
28	TdCf(IORQr)	Clock to IORQ ↑ Delay		85		70		.60
29	TdD(WRf)	Data Stable prior to WR ↓	80*		25*		5*	
30	TdCf(WRf)	Clock ∮ to WR ∮ Delay		80		70		60
31	TwWR	WR Pulse Width	220*		135*		100*	
32	TdCf(WRr)	Clock ↓ to WR↑ Delay		80		70		60
· 33	TdD(WRf)	Data Stable prior to WR ↓	−10 *		-55*		55*	
34	TdCr(WRf)	Clock † to WR ↓ Delay		65		60		55
35	TdWRr(D)	Data Stable from WR †	60*		30*		15*	
36	TdCf(HALT)	Clock ↓ to HALT ↑ or ↓		300		260		225
37	TwNMI	NMI Pulse Width	80		70		60*	
38	TsBUSREQ(Cr)	BUSREQ Setup Time to Clock †	50		50		40	

^{*}For clock periods other than the minimums shown, calculate parameters using the table on the following page. Calculated values above assumed TrC = TrC = 20 ns.
†Units in nanoseconds (ns).

[#] For loading \geq 50 pf., Decrease width by 10 ns for each additional 50 pf.

AC CHARACTERISTICS† (Z8400/NMOS Z80 CPU; Continued)

			Z 084	10004	Z0840006		Z0840008	
Number	Symbol	Parameter	Min	Max	Min	Max	Min	Max
39	ThBUSREQ(Cr)	BUSREQ Hold Time after Clock †	0		0		0	•
40	TdCr(BUSACKf)	Clock † to BUSACK ↓ Delay		100		90		80
41	TdCf(BUSACKr)	Clock to BUSACK Delay		100		90		80
42	TdCr(Dz)	Clock ↑ to Data Float Delay		90		80		70
43	TdCr(CTz)	Clock † to Control Outputs Float Delay (MREQ, IORQ, RD, and WR)		80		70		60
44	TdCr(Az)	Clock † to Address Float Delay		90		80		70
45	TdCTr(A)	MREQ t, IORQ t, RD t, and WR t to Address Hold Time	. 80*		35*		20*	
46	TsRESET(Cr)	RESET to Clock † Setup Time	60		60		45	-
47	ThRESET(Cr)	RESET to Clock † Hold Time		0		0		0
48	TsINTf(Cr)	INT to Clock † Setup Time	80		70		55	
49	ThINTr(Cr)	INT to Clock † Hold Time		0		0		0
50	TdM1f(IORQf)	M1 ↓ to IORQ ↓ Delay	565*		365*		270*	
51	TdCf(IORQf)	Clock I to IORQ I Delay		85		70		60
52	TdCf(IORQr)	Clock † IORQ † Delay		85		70		6 0
53	TdCf(D)	Clock ∔ to Data Valid Delay		150		130		115

^{*}For clock periods other than the minimums shown, calculate parameters using the following table. Calculated values above assumed TrC = TrC = 20 ns. †Units in nanoseconds (ns).

FOOTNOTES TO AC CHARACTERISTICS

Number	Symbol	General Parameter	Z0840004	Z0840006	Z084D008
1	TcC	TwCh + TwCl + TrC + TfC	714		
7	TdA(MREQf)	TwCh + TfC	- 65	-50	- 45
10	TwMREQh	TwCh + TfC	- 20	-20	-20
11	TwMREQI	TcC	- 30	-30	- 25
26	TdA(IORQf)	TcC	- 70	55	-50
29	TdD(WRf)	TcC	- 170	140·	- 120
31	TwWR	TcC	- 30	-30	- 25
33	TdD(WRf)	TwCl + TrC	- 140	- 140	120
35	TdWRr(D)	TwCl + TrC	- 70	- 55	50
45	TdCTr(A)	TwCl + TrC	- 50	- 50	45
50	TdM1f(IORQf)	2TcC + TwCh + TfC	- 65	- 50	45

$$V_{OH} = 1.5 V$$

 $V_{OL} = 1.5 V$
FLOAT = ±0.5 V

AC Test Conditions: V_{IH} = 2.0 V V_{IL} = 0.8 V

 $V_{IHC} = V_{CC} - 0.6 V$ $V_{ILC} = 0.45 V$

Customer Support

For answers to technical questions about the product, documentation, or any other issues with Zilog's offerings, please visit Zilog's Knowledge Base at http://www.zilog.com/kb.

For any comments, detail technical questions, or reporting problems, please visit Zilog's Technical Support at http://support.zilog.com.

PS017801-0602 Customer Support