
E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	Z80
Number of Cores/Bus Width	1 Core, 8-Bit
Speed	20MHz
Co-Processors/DSP	
RAM Controllers	
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	
SATA	-
USB	
Voltage - I/O	5.0V
Operating Temperature	-40°C ~ 100°C (TA)
Security Features	-
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z84c0020aeg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8-BIT LOAD GROUP

	Symbolic				Fk	lgs					Opcod	e		No. of	No. of M	No. of T		
Vnemonic	Operation	S	Z		H			N	С		543		Hex	Bytes	Cycles		Com	ments
LDr,r'	r ← r'	٠	٠	х	•	х	•	•	•	01	r	r'		1	1	4	r, r'	Reg
Dr, n	r+−n	٠	٠	х	•	х	٠	٠	٠	00	r	110		2	2	7	000	B
											+n-						001	С
_D r, (HL)	r 🛨 (HL)	٠	٠	Х	٠	Х	٠	٠	٠	01	r	110		1	2	7	010	D
_D r, (IX + d)	r ← (IX + d)	٠	٠	Х	٠	х	٠	٠	٠	11	011	101	DD	3	5	19	011	E
										01	r	110					100	н
							• •				+-d-→						101	L
Dr, (IY+d)	r ← (IY + d)	٠	٠	х	٠	х	٠	٠	٠	11	111	101	FD	3	5	19	111	Ā
										01	r	110						
											+- d →							
_D (HL), r	(HL) ← r	٠	٠	Х	٠	Х	٠	٠	٠	01	110	r		1	2	7		
D (IX + d), r	(lX+d) ← r	٠	٠	Х	٠	Х	٠	٠	٠	11	011	101	DD	3	5	19		
										01	110	r						
											+ d →							
.D (IY + d), r	(IY+d) + r	٠	٠	х	٠	х	•	٠	٠	11	111	101	FD	3	5	19		
		•								01	110	r						
											+ d →							
.D (HL), n	(HL) 🕂 n	•	٠	х	٠	х	٠	٠	٠	00	110	110	36	2	3	10		
											+n→							
.D (IX + d), n	(IX + d) 🕶 n	٠	•	х	٠	х	٠	٠	٠	11	011	101	DD	4	5	19		
										00	110	110	36					
											+-d →							
											← n→							

PS017801-0602

9

ł

8-BIT LOAD GROUP (Continued)

	Symbolic				Fia	aga	,				Opcod	le		No. of	No. of M	No of T	
Mnemonic	Operation	S	Z		н	•		/ N	С		543		Hex	Bytes	Cycles	States	Commente
LD (IY + d), n	(lY+d) ← n	٠	•	х	•	x	٠	•	٠	11	111	101	FD	4	5	19	
										00	110	110	36				
											← d ⊣	•					
											+ n -	•					
LD A, (BC)	A 🛨 (BC)	٠	٠	Х	٠	Х	٠	٠	٠	00	001	010	0A	1	2	7	
LD A, (DE)	A 🗲 (DE)	•	٠	Х	٠	Х	•	٠	٠	00	011	010	1A	1	2	7	
LD A, (nn)	A 🛨 (nn)	٠	٠	х	٠	Х	٠	٠	٠	00	111	010	3A	3	4	13	
											+-n-+	•					
											← n →	•					
LD (BC), A	(BC) 🗕 A	٠	٠	х	٠	х	٠	٠	٠	00	000	010	02	1	2	7	
LD (DE), A	(DE) 🕂 A	٠	٠	х	٠	Х	٠	٠	٠	00	010	010	12	1	2	7	
LD (nn), A	(nn) 🗕 A	٠	٠	х	٠	х	٠	٠	٠	00	110	010	32	3	4	13	
											+- n →	•					
											+ n →	•					
LD A, I	A≁I	+	+	х	0	х	IFF	0	٠	11	101	101	ED	2	2	9	
										01	010	111	57				
LD A, R	A←R	\$	\$	х	0	Х	IFF	0	٠	11	101	101	ED	2	2	9	
										01	011	111	5F				
LD I, A	I←A	•	•	х	•	Х	•	•	•	11	101	101	ED	2	2	9	
	- .									01	000	111	47				
_D R, A	R←A	•	•	х	٠	Х	•	•	•	11	101	101	ED	2	2	9	
										01	001	111	4F				

NOTE: IFF, the content of the interrupt enable flip-flop, (IFF2), is copied into the P/V flag.

16-BIT LOAD GROUP

Mnemonic	Symbolic Operation	S	z		Fla H	ngs	P/\	N	c		Opcod 543		Hex	No. of Byt es	No. of M Cycles	No. of T States	Con	nmenti
LD dd, nn	dd 🛨 nn	٠	•	х	٠	х	•	٠	٠	00				3	3	10	dd	Pair
											+n-+						00	BC
											+ n→						01	DE
LD IX, nn	IX 🕂 nn	•	•	Х	٠	х		٠	•	11	011	101	DD	4	4	14	10	HL
										00	100	001	21				11	SP
											+ n →							
											+n →							
LD IY, nn	IY 🕂 nn	•	•	Х	٠	х	٠	٠	٠	11	111	101	FD	4	4	14		
										00	100	001	21					
											+ n→							
											←n→							
LD HL, (nn)	H 🗲 (nn + 1)	٠	٠	х	٠	х	٠	٠	٠	00	101	010	2A	3	5	16		
	L 🗲 (nn)										←n→							
											←n→							
LD dd, (nn)	dd _H +- (nn + 1)	٠	٠	х	٠	Х	٠	•	٠	11	101	101	ED	4	6	20		
	dd _L 🛨 (nn)									01	dd1	011						
											←n →							
											+ n→							

.

NOTE: $(PAIR)_H$, $(PAIR)_L$ refer to high order and low order eight bits of the register pair respectively. e.g., $BC_L = C$, $AF_H = A$.

16-BIT LOAD GROUP (Continued)

Mnemonic	Symbolic Operation	s	z		Fla H	ngs	P/V	N	С	76	Opcod 543	e 210	Hex	No. of Bytes	No. of M Cycles	No. of T States	Comm	ente
	•										.				•			
LD IX, (nn)	IX _H ← (nn + 1)	•	•	X	•	X	•	•	•	11 00	011	101 010	DD 2A	4	6	20		
	i∧ (riii)									00	+n→		24					
											+n→							
LD IY, (nn)	lY _H ← (nn + 1)	•	•	х	•	х	•	•	•	11	. 111		FD	4	6	20		
	IYL + (nn)									00	101		2A					
											← n →	•						
											← n→							
LD (nn), HL	(nn + 1) 🕶 H	٠	٠	х	٠	Х	•	•	٠	00	100	010	22	3	5	16		
	(nn)+-L										← n→							
											≁ n→							:
LD (nn), dd	(nn + 1) ← dd _H	٠	٠	х	•	Х	•	•	•	11	101		ED	4	6	20		
	(nn) ← dd _L									01	dd0							
											+ n → + n →							
LD (nn), IX	(nn + 1) ← IX _H	•	•	x		х		•		11		101	DĐ	4	6	20		
20 (111), 01	(nn) ← IX ₁		-	~		~				00	100		22	-	U	20		
											+n→							
											+n→							
LD (nn), IY	(nn + 1) ← IY _H	٠	٠	х	٠	Х	•	•	٠	11	111	101	FD	4	6	20		
	(nn) 🛨 IY _L									00	100	010	22					
											← n →							
											← n→							
LD SP, HL	SP - HL	٠	•		•	X	•	•	٠	11	111		F9	1	1	6		
LD SP, IX	4SP + IX	•	•	Х	٠	х	•	•	•	11	011	101	DD	2	2	10		
LD SP, IY	SP ← IY		•	x		x	•		•	11 11	111	001 101	F9 FD	2	2	10		
LD OF, II	3F - 11	•	•	^	•	^	•	•	•	11	111	001	F9	2	2	10	qq	Pair
PUSH qq	(SP - 2) ← qq	•	•	x		x	•	•	•	11	qq0	101		1	3	11		BC
भभ	(SP ~ 1) ← qq _H										777				-			DE
	SP→SP - 2																	HL
PUSHIX	(SP - 2) + IXL	٠	٠	х	•	х	٠	•	•	11	011	101	DD	2	4	15	11	AF
	(SP - 1) + IX _H									11	100	101	E5					
	SP→SP -2																	
PUSHIY	(SP - 2) ← IY _L	٠	٠	х	٠	Х	•	•	•	11	111	101	FD	2	4	15		
	(SP – 1) ← IY _H									11	100	101	E5					
	SP→SP -2											004			0	10		
POP qq	qq _H ← (SP + 1)	•	•	X	٠	Х	•	•	•	11	qq0	001		1	3	10		
	qqL ← (SP) SP → SP + 2																	1
POP IX	$SP \rightarrow SP + 2$ $IX_H \leftarrow (SP + 1)$			y		¥				11	011	101	DD	2	4	14		
	IX _L ← (SP + 1)	-	-	^	•	^	-	-	2	11		001	E1	£	т			
	$SP \rightarrow SP + 2$									••								
POPIY	IY _H ← (SP + 1)	•	•	х	•	х	. •	•	•	11	111	101	FD	2	4	14		
	IYL + (SP)									11		001	E1					
	SP -+ SP +2																	

.

NOTE: (PAIR)_H, (PAIR)_L refer to high order and low order eight bits of the register pair respectively, e.g., BC_L = C, AF_H = A.

PS017801-0602

16-BIT ARITHMETIC GROUP

Mnemonic	Symbolic Operation	s	z		Fla H	igs	P/V	N	с		Dpcod 543		Hex	No. of Bytes	No. of M Cycles	No. of T States	Con	merits
ADD HL, ss	HL ← HL + ss	٠	•	х	х	х	٠	0	\$	00	ssi	001		1	3	11	ss	Reg.
																	00	ВĊ
ADC HL, ss	HL←																01	Dŧ
	HL+ss+CY	‡	\$	х	Х	х	۷	0	\$	11	101	101	ED	2	4	15	10	ΗĻ
										01	ss1	010					11	SP
SBC HL, ss	HL ←																	
)	HL-ss-CY	\$	+	Х	Х	х	۷	1	‡	11	101	101	ED	2	4	15		
										01	ss0	010						
ADD IX, pp	IX 🛨 IX + pp	٠	٠	х	Х	х	٠	0	ŧ	11	011	101	DD	2	4	15	pp_	Reg.
										01	pp1	001					00	В¢
																	01	DE
																	10	IX
																	11	SP
ADD IY, rr	IY 🛨 IY + rr	٠	٠	Х	Х	х	٠	0	‡	11	111	101	FD	2	4	15	<u>rr</u>	Reg.
										00	rr1	001					00	B¢
INC ss	ss 🕶 ss + 1	•	•		•	х	٠	٠	•	00	ss0	011		1	1	6	01	Dŧ
INC IX	IX ← IX + 1	•	•	х	•	х	٠	٠	٠	11	011	101	DD	2	2	10	10	IY
										00	100	011	23				11	SP
INC IY	IY ← IY + 1	٠	٠	х	٠	х	٠	٠	٠	11	111	101	FD	2	2	10		
										00	100	011	23			_		
DEC ss	ss ← ss – 1	٠	•		•	X	•	•	•	00	ss1	011		1	1	6		
DEC IX	IX ← IX – 1	٠	٠	х	٠	Х	٠	٠	•	11	011	101	DD	2	2	10		
										00	101	011	2B		_			
DEC IY	IY ← IY – 1	٠	٠	х	٠	х	٠	٠	•	11	111	101	FD	2	2	10		
										00	101	011	28					

.

ROTATE AND SHIFT GROUP

	Symbolic				Fla	lgs					Opcod	e		No. of	No. of M	No. of T	
Mnem	onic Operation	S	Z		Н		P/V	N	С	76	543	210	Hex	Bytes	Cycles	States	Comments
rlca		•	•	x	0	x	•	0	\$	00	000	111	07	1	1	4	Rotate left circular
RLA		•	٠	x	0	x	•	0	ŧ	00	010	111	17	1	1	4	accumulato Rotate lefi accumulato
RRCA		•	•	x	0	x	•	0	ŧ	00	001	111	0F	1	1	4	Rotate right circular accumulato
RRA		•	•	х	0	x	•	0	\$	00	011	111	1F	1	1	4	Rotate right accumulato

PS017801-0602

ROTATE AND SHIFT GROUP (Continued)

Mnemonic	Symbolic Operation	S	z		Fla H	ngs		/ N	C	76	Opcod 543	e 210	Hex	No. of Byt es	No. of M Cycles	No. of T States	Comment
RLC r		\$	\$	x	0	x	P	0	• ŧ	11 00	001 000	011 r	СВ	2	2	8	Rotate left circular register r.
RLC (HL)		;	\$	x	0	X	Ρ	0	\$	11 00	001 000	011 110	СВ	2	4	15	<u>r Re</u> 000 B
RLC (IX + d)	r,(HL),(IX + d),(IY +	t d)	\$	X	0	х	P	0	+	11 11 00	011 001 ← d → 000		DD CB	4	6	23	001 C 010 D 011 E 001 H 101 L
RLC (IY + d)	ļ	‡	ŧ	x	0	x	Ρ	0	*	11 11	111 001	101 011	FD CB	4	6	23	111 A
1 6 171	[cy]+7●]+-] m = r,(HL,(IX + d),(i	‡ Y+0		x	0	x	P	0	ŧ	00	+-d-+ 000 010	110					Instruction format and states are as shown for
IRCm ⊊	<u>7+0</u> -€CY m = r,(HL),(IX + d),(I			x	0	x	Ρ	0	ŧ		001						RLCs. To for new opcode replace 000 or RLCs with
	7+e]€cy-] m = r,(HL),(IX + d),(I	•		x	0	x	Ρ	0	ŧ		011						shown code
	cv][70]-+-0 m = r,(HL),(IX + d),(I			ĸ	0	x	Ρ	0	ŧ		100						
	<mark>7>●]</mark> >[cv] m = r,(HL),(IX + d),(I	•		<	0	x	Ρ	0	ŧ	- 1.	101						
	<u>7</u> €CY m = r,(HL),(IX + d),(I	‡ Y+c		(0	x	P	0	\$		[111]						
LD 7-4	30 7-4 30 4 7-4 30 4 7-4 30 (HL)	;	; >	¢	0	x	P	0	•	11 01		101 111	ED 6F	2	5		Rotate digit left and right betwee the accumu-
RD 74	30)	•	;)	[0	x	Ρ	0	•	11 01		101 111	ED 67	2	5	18	lator and location (HL) The content of the upper half of the accumulator is unaffected

.

PS017801-0602

	Symbolic				Fk	lgs				(Opcod	e		No. of	No. of M	No. of T		
Mnemonic	Operation	8	Z		H	•	P/V	N	С	76	543	210	Hex	Bytes	Cycles	States	Соп	ments
BIT b, r	Z ← r _b	х	\$	x	1	х	х	0	•	11	001	011	СВ	2	2	8	r	Reg.
										01	ь	r					000	В
BIT b, (HL)	Z ← (HL) _b	х	\$	х	1	х	х	0	٠	11	001	011	СВ	2	3	12	001	С
										01	b	110					010	D
BIT b,(IX + d)b	Z + (IX + d) _b	х	\$	х	1	х	Х	0	٠	11	011	101	DD	4	5	20	011	Е
										11	001	011	СВ				100	н
											+d-	•					101	L
										01	b	110					111	Α
																	ь	Bit Tester
BIT b, (IY + d) _b	Z ← (IY + d) _b	х	\$	х	1	х	Х	0	٠	11	111	101	FD	4	5	20	000	0
_										11	001	011	CB				001	1
											+ d -						010	2
		•								01	b	110					011	3
SET b, r	r _b ← 1	٠	•	х	٠	х	٠	٠	.•	11	001	011	СВ	2	2	8	100	4
	-									[1]	b	r					101	5
SET b, (HL)	(HL) _b ← 1	٠	٠	х	٠	х	٠	٠	٠	11	001	011	CB	2	4	15	110	6
										11	b	110					111	7
SET b, (1X + d)	(IX+d) _b + 1	٠	٠	х	٠	х	٠	٠	٠	11	011	101	DD	4	6	23		
										11	001	011	CB					
											+d-	•						
										11	ь	110						
SET b, (IY + d)	(IY+d) _b ← 1	٠	٠	х	٠	х	•	٠	٠	11	111	101	FD	4	6	23		
										11	001	011	CB					
											+ d →	•						
										11	b	110						
RES b, m	m _b ← 0	٠	٠	х	٠	х	•	٠	•	10							To fo	rm neiv
	m≡r, (HL),														•		opco	ode replac
	(1X + d), (1Y + d)																11	of SET b, s
	· · · ·																with	10 Flag
																	and	time
																	state	s for SET
																	instr	uction.

BIT SET, RESET AND TEST GROUP

NOTE: The notation mb indicates location m, bit b (0 to 7).

CALL AND RETURN GROUP

	Symbolic				Fi	ags					Opcod	e		No. of	No. of M	No. of T		
Mnemonic	Operation	S	Z		Н	-	P/	/N	C	76	543	210	Hex	Bytes	Cycles	States	Com	nents
CALL nn	(SP - 1)←PC _H	•	•	X	•	X	•	•	•	11			CD	3	5	17		
	(SP-2)←PCL										+n→							
	PC + nn, If condition		•	v		v				11	+n→	100		3	3	10	If cc is	foloo
	cc is false	Ī	•	Ŷ	•	^	•	•	•		+n→			5	0	10	11 00 15	
	continue,										+-n-+			3	5	17	If cc is	true.
	otherwise same as																	
	CALL nn																	
RET	PCL + (SP)	٠	٠	x	٠	х	٠	٠	٠	11	001	001	C9	1	3	10		
DFT	PC _H +-(SP+1)			.,												-	M	6.1. ·
RET cc	If condition cc is false	•	•	X	•	X	•	•	•	11	cc	000		1	1	5	If cc is	talse.
	continue,													/1	3	11	If cc is	true.
	otherwise																	
	same as RET																	Condition
																		NZ (non-zero)
																		Z (zero)
	_			.,		.,								•				NC (non-carry)
RETI	Return from	•	•	X	•	Х	•	•	•	11	101	101	ED	2	4	14		C (carry)
00711	interrupt					~				01	001	101	4D	•				PO (parity odd)
RETN ¹	Return from	•	•	X	•	х	•	•	•	11	101	101	ED	2	4	14		PE (parity even)
	non-maskable									01	000	101	45					P (sign positive)
DOT -	interrupt (SP-1)≁-PCH	_		~		~		-			t	111		4	3	11		M (sign negative
RST p	(SP-1)+PCH (SP-2)+PCI	•	•	^	•	^	•	•	•	11	ĩ	111		1	3	11	t 000	p
																		08H
	PC _H +0																010	
	PCL←b																010	
																	100	
																	100	
																		20H
																		30H
																	111	3011

NOTE: ¹RETN loads IFF₂ → IFF₁

INPUT AND OUTPUT GROUP

Maamania	Symbolic	~				aga			~		Opcod			No. of		No. of T	•
mnemonic	Operation		Z		H		P /	VN	<u> </u>	76	543	210	Hex	Bytes	Cycles	States	Comments
N A, (n)	A 🛨 (n)	٠	` •	Х	٠	Х	٠	٠	٠	11	011	01	DB	2	3	11	n to A ₀ ~ A ₇
											←n→						Acc. to $A_8 \sim A_{15}$
N r, (C)	r ← (C)	\$	+	Х	\$	Х	Ρ	0	٠	11	101	101	ED	2	3	12	C to $A_0 \sim A_7$
	if r = 110 only									01	r	000					B to A ₈ ~ A ₁₅
	the flags will																
	be affected		_														
			C	· · ·													
11	(HL) ← (C)	Х	\$	X	Х	X	X	1	x	11	101	101	ED	2	4	16	C to $A_0 \sim A_7$
	B←B-1		~							10	100	010	A2				B to Ag ~ A ₁₅
	HL←HL+1		Ø														
liR	(HL) ← (C)	X	1	X	X	x	Х	1	x	11	101	101	ED	2	5	21	C to A ₀ ~ A ₇
	B+B-1									10	110	010	B2		(lf B≠0)		B to A ₈ ~ A ₁₅
	HL ← HL+1													2	4	16	
	Repeat until								٦.						(If B = 0)		
	B=0		\sim														
		••	Ý	۱.,	••	••	• •		۰.					~			• • •
1D	(HL) ← (C)	X	\$	Х	X	Х	X	1	Х	11	101	101	ED	2	4	16	C to $A_0 \sim A_7$
	B←B-1		~							10	101	010	AA				B to $A_8 \sim A_{15}$
			Q)	.,	.,	.,							-	_	·	.
IDR	(HL) ← (C)	X	1	X	X	X	X	1	x	11	101	101	ED	2	5	21	C to $A_0 \sim A_7$
	B←B-1									10	111	010	BA		(lf B≠0)		B to A8 ~ A15
	HL←HL-1													2	4	16	
	Repeat until B = 0														(If B = 0)		
UT (n), A				v	•	x	•	•		11	010	011	D3	2	3	11	
-	(1) N	Ē	•	^	•	^	Ī	•	•		+ n →	VII	05	· 2	3		
UT (C), r	(C) + r			x	•	х				11	101	101	ED	2	3	12	Acc. to $A_8 \sim A_{15}$ C to $A_0 \sim A_7$
01(0),1		•	•	^	•		•	•	•	01	r	001	20	2	3	12	$B to A_8 \sim A_{15}$
			ി							01	ſ	001					D 10 18 10 115
UTI	(C) + (HL)	x	Ť	x	x	x	x	1	x	11	101	101	ED	2 [;]	4	16	C to $A_0 \sim A_7$
	B←B-1	~	•	~	~	~	Ŷ	•	^	10	100	011	A3	-	-	.0	B to $A_8 \sim A_{15}$
	HL←HL+1		0	ŀ								•	~~~				01010-015
rir	(C) ← (HL)		1	x	x	x	x	1	x	11	101	101	ED	2	5	21	C to A ₀ ~ A ₇
-	B←B-1		•			.,		•		10		011	83	-	(If B≠0)		B to A ₈ ~ A ₁₅
	 HL ← HL + 1											••••		2	4	16	0 10 18 10 115
	Repeat until													-	(If B = 0)		
	B=0														(
	-		ി														
JTD	(C) ← (HL)		¥	х	х	х	х	1	х	11	101	101	ED	2	4	16	C to $A_0 \sim A_7$
	B+B-1		,							10		011	AB	-	•		B to $A_8 \sim A_{15}$
	HL+HL-1																
	,		ć														
DR	(C) ~ (HL)		1	х	х	х	х	1	х	11	101	101	ED	2	5	21	C to $A_0 \sim A_7$
	B←B-1									10	-	011		-	(lf B≠0)		B to A ₈ ~ A ₁₅
	HL←HL-1													2	4	16	
	Repeat until														(If B=0)		
	B=0														··· = -/		

.

NOTES: (1) If the result of B - 1 is zero, the Z flag is set; otherwise it is reset. (2) Z flag is set upon instruction completion only.

SUMMARY OF FLAG OPERATION

	D ₇				-			Do	}
Instructions	S	Ζ		Н		P/V	N	Ċ	Comments
ADD A, s; ADC A, s	\$	\$	X	+	Х	V	0	\$	8-bit add or add with carry.
SUB s; SBC A, s; CP s; NEG	\$ '	\$	х	\$	х	۷	1	+	8-bit subtract, subtract with carry, compare and negate accumulator.
AND s	\$	\$	Х	1	Х	Ρ	0	0	Logical operation.
OR s, XOR s	\$	\$	х	0	х	Ρ	0	0	Logical operation.
INCs	+	‡.	Х	\$	Х	V	0	٠	8-bit increment.
DEC s	‡ -	‡	Х	*	Х	V	1	•	8-bit decrement.
ADD DD, ss	•	•	Х	X	Х	•	0	\$	16-bit add.
ADC HL, ss	\$	\$	Х	х	Х	V	0	‡	16-bit add with carry.
SBC HL. ss	+	\$	х	х	х	V	1	\$	16-bit subtract with carry.
RLA; RLCA; RRA; RRCA		•	х	0	Х	٠	0	‡	Rotate accumulator.
RL m; RLC m; RR m; RRC m; SLA m;	ŧ	\$	х	0	х	Ρ	0	\$	Rotate and shift locations.
SRA m; SRL m						_			.
RLD; RRD	+	+	X	0	X	P	0	•	Rotate digit left and right.
DAA	\$	ŧ	X	\$	X	Ρ	•	+	Decimal adjust accumulator.
CPL	٠	٠	Х	1	X	•	1	•	Complement accumulator.
SCF	٠	٠	X	0	X	•	0	1	Set carry.
CCF	•	•	х	х	Х	٠	0	ŧ	Complement carry.
IN r (C)	\$	ŧ	Х	0	Х	Ρ	0	•	Input register indirect.
INI; IND; OUTI; OUTD	х	+	Х	х	Х	х	1	•	Block input and output. $Z = 1$ if $B \neq 0$, otherwise $Z = 0$.
INIR; INDR; OTIR; OTDR	х	1	Х	х	Х	х	1	٠	Block input and output. $Z = 1$ if $B \neq 0$, otherwise $Z = 0$.
LDI; LDD	х	х	Х	0	Х	\$	0	٠	Block transfer instructions. $PN = 1$ if BC $\neq 0$, otherwise $PN = 0$.
LDIR; LDDR	х	Х	х	0	Х	0	0	•	Block transfer instructions. $PN = 1$ if BC $\neq 0$, otherwise $PN \models 0$.
CPI; CPIR; CPD; CPDR	х	\$	X	x	х	ŧ	1	٠	Block search instructions. $Z = 1$ if $A = (HL)$, otherwise $Z = 0$. P/V = 1 if BC $\neq 0$, otherwise P/V = 0.
LD A; I, LD A, R	\$	\$	х	0	х	IFF	0	٠	IFF, the content of the interrupt enable flip-flop, (IFF ₂), is copied into the P/V flag.
BIT b, s	х	ŧ	х	1	х	х	0	•	The state of bit b of location s is copied into the Z flag.

SYMBOLIC NOTATION

Symbol Operation

- S Sign flag. S = 1 if the MSB of the result is 1.
- Z Zero flag. Z = 1 if the result of the operation is 0.
 P/V Parity or overflow flag. Parity (P) and overflow (V) share the same flag. Logical operations affect this flag with the parity of the result while arithmetic operations affect this flag with the overflow of the result. If P/V holds parity: P/V = 1 if the result of the operation is even; P/V = 0 if result is odd. If P/V holds overflow, P/V = 1 if the result of the operation produced an overflow. If P/V does not hold overflow, P/V = 0.
- H* Half-carry flag. H = 1 if the add or subtract operation produced a carry into, or borrow from, bit 4 of the accumulator.
- N* Add/Subtract flag. N = 1 if the previous operation was a subtract.
- C Carry/Link flag. C = 1 if the operation produced a carry from the MSB of the operand or result.

Symbol Operation

\$	The flag is affected according to the result of the operation.
•	The flag is unchanged by the operation.
0	The flag is reset by the operation.
1	The flag is set by the operation.
Х	The flag is indeterminate.
V	P/V flag affected according to the overflow result of the operation.
Р	PN flag affected according to the parity result of the operation.
r	Any one o the CPU registers A, B, C, D, E, H, L
s	Any 8-bit location for all the addressing modes allowed for the particular instruction.
SS	Any 16-bit location for all the addressing modes allowed for that instruction.
ü	Any one of the two index registers IX or IY.
R	Refresh counter.
n	8-bit value in range < 0, 255 >.
nn	16-bit value in range < 0, 65535 >.

* H and N flags are used in conjunction with the decimal adjust instruction (DAA) to properly correct the result into packed BCD format following addition or subtraction usin ... perands with packed BCD format.

PIN DESCRIPTIONS

A₀-A₁₅. Address Bus (output, active High, 3-state). A₀-A₁₅ form a 16-bit address bus. The Address Bus provides the address for memory data bus exchanges (up to 64K bytes) and for I/O device exchanges.

BUSACK. Bus Acknowledge (output, active Low). Bus Acknowledge indicates to the requesting device that the CPU address bus, data bus, and control signals MREQ, IORQ, RD, and WR have entered their high-impedance states. The external circuitry can now control these lines.

BUSREQ. Bus Request (input, active Low). Bus Request has a higher priority than NMI and is always recognized at the end of the current machine cycle. BUSREQ forces the CPU address bus, data bus, and control signals MREQ, IORQ, RD, and WR to go to a high-impedance state so that other devices can control these lines. BUSREQ is normally wired-OR and requires an external pullup for these applications. Extended BUSREQ periods due to extensive DMA operations can prevent the CPU from properly refreshing dynamic RAMs.

D₀-D₇. Data Bus (input/output, active High, 3-state). D_0 - D_7 constitute an 8-bit bidirectional data bus, used for data exchanges with memory and I/O.

HALT. Halt State (output, active Low). HALT indicates that the CPU has executed a Halt instruction and is awaiting either a nonmaskable or a maskable interrupt (with the mask enabled) before operation can resume. While halted, the CPU executes NOPs to maintain memory refresh.

INT. Interrupt Request (input, active Low). Interrupt Request is generated by I/O devices. The CPU honors a request at the end of the current instruction if the internal software-controlled interrupt enable flip-flop (IFF) is enabled. INT is normally wired-OR and requires an external pullup for these applications.

IORQ. Input/Output Request (output, active Low, 3-state). IORQ indicates that the lower half of the address bus holds a valid I/O address for an I/O read or write operation. IORQ is also generated concurrently with M1 during an interrupt acknowledge cycle to indicate that an interrupt response vector can be placed on the data bus. **M1.** Machine Cycle One (output, active Low). M1, together with MREQ, indicates that the current machine cycle is the opcode fetch cycle of an instruction execution. M1, together with IORQ, indicates an interrupt acknowledge cycle.

MREQ. Memory Request (output, active Low, 3-state). MREQ indicates that the address bus holds a valid address for a memory read or memory write operation.

NMI. Non-Maskable Interrupt (input, negative edgetriggered). NMI has a higher priority than INT. NMI is always recognized at the end of the current instruction, independent of the status of the interrupt enable flip-flop, and automatically forces the CPU to restart at location 0066H.

RD. *Read* (output, active Low, 3-state). RD indicates that the CPU wants to read data from memory or an I/O device. The addressed I/O device or memory should use this signal to gate data onto the CPU data bus.

RESET. Reset (input, active Low). RESET initializes the CPU as follows: it resets the interrupt enable flip-flop, clears the PC and Registers I and R, and sets the interrupt status to Mode 0. During reset time, the address and data bus go to a high-impedance state, and all control output signals go to the inactive state. Note that RESET must be active for a minimum of three full clock cycles before the reset operation is complete.

RFSH. Refresh (output, active Low). RFSH, together with MREQ, indicates that the lower seven bits of the \$ystem's address bus can be used as a refresh address to the system's dynamic memories.

WAIT. Wait (input, active Low). WAIT indicates to the CPU that the addressed memory or I/O devices are not ready for a data transfer. The CPU continues to enter a Wait state as long as this signal is active. Extended WAIT periods can prevent the CPU from properly refreshing dynamic memory.

WR. Write (output, active Low, 3-state). WR indicates that the CPU data bus holds valid data to be stored at the addressed memory or I/O location.

CPU TIMING

The Z80 CPU executes instructions by proceeding through a specific sequence of operations:

- Memory read or write
- I/O device read or write
- Interrupt acknowledge

The basic clock period is referred to as a T time or cycle, and three or more T cycles make up a machine cycle (M1, M2 or M3 for instance). Machine cycles can be extended either by the CPU automatically inserting one or more Wait states or by the insertion of one or more Wait states by the user. Instruction Opcode Fetch. The CPU places the contents of the Program Counter (PC) on the address bus at the start of the cycle (Figure 5). Approximately one-half clock cycle later, MREQ goes active. When active, RD indicates that the memory data can be enabled onto the CPU data bus.

The CPU samples the \overline{WAIT} input with the falling edge of clock state T_2 . During clock states T_3 and T_4 of an $\overline{M1}$ cycle, dynamic RAM refresh can occur while the CPU starts decoding and executing the instruction. When the Refresh Control signal becomes active, refreshing of dynamic memory can take place.

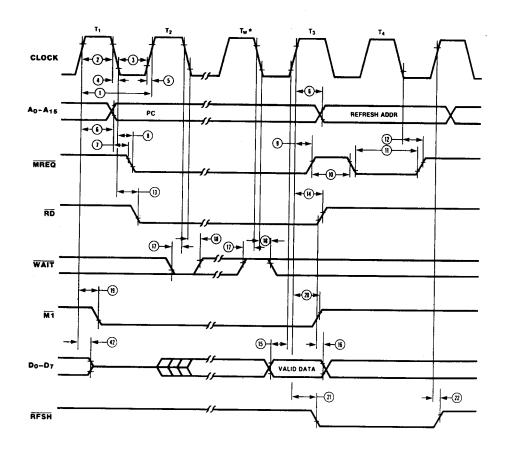


Figure 5. Instruction Opcode Fetch

Memory Read or Write Cycles. Figure 6 shows the timing of memory read or write cycles other than an opcode fetch (M1) cycle. The MREQ and RD signals function exactly as in the fetch cycle. In a memory write cycle, MREQ also

becomes active when the address bus is stable. The \overline{WR} line is active when the data bus is stable, so that it can be used directly as an R/\overline{W} pulse to most semiconductor memories.

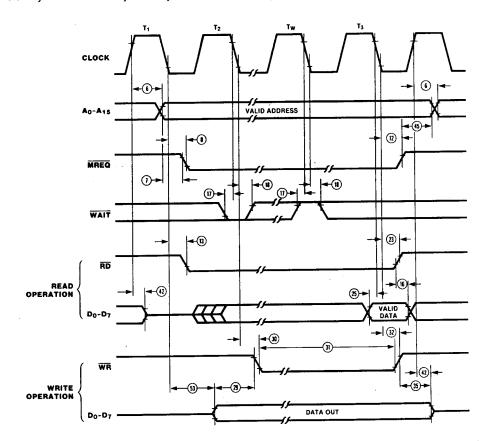
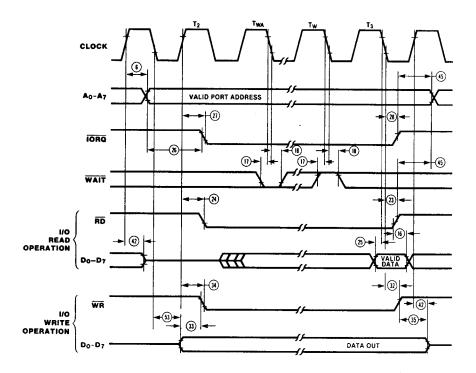



Figure 6. Memory Read or Write Cycles

.

Input or Output Cycles. Figure 7 shows the timing for an I/O read or I/O write operation. During I/O operations, the CPU automatically inserts a single Wait state (T_{WA}). This

extra Wait state allows sufficient time for an I/O port to decode the address from the port address lines.

T_{WA} = One wait cycle automatically inserted by CPU.

.

Figure 7. Input or Output Cycles

Power-Down mode of operation (Only applies to CMOS Z80 CPU).

Z80 CPU). supply current for the CPU goes down as low as 10 uA CMOS Z80 CPU supports Power-Down mode of operation. (Where specified as lcc_2).

Power-Down Acknowledge Cycle. When the clock input to the CPU is stopped at either a High or Low level, the CPU stops its operation and maintains all registers and control signals. However, I_{cc2} (standby supply current) is guaranteed only when the system clock is stopped at a Low

level during T_4 of the machine cycle following the execution of the HALT instruction. The timing diagram for the power-down function, when implemented with the HALT **instruction, is shown in Figure 13.**

This mode is also referred to as the "standby mode", and

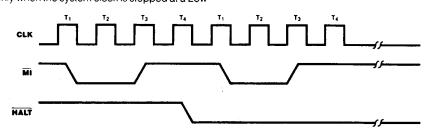
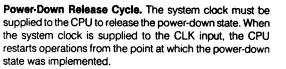
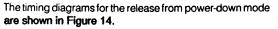




Figure 13. Power-Down Acknowledge

NOTES:

- When the external oscillator has been stopped to enter the power-down state, some warm-up time may be required to obtain a stable clock for the release.
- 2) When the HALT instruction is executed to enter the power-down state, the CPU will also enter the Halt state. An interrupt signal (either NMI or INT) or a RESET signal must be applied to the CPU after the system clock is supplied in order to release the power-down state.

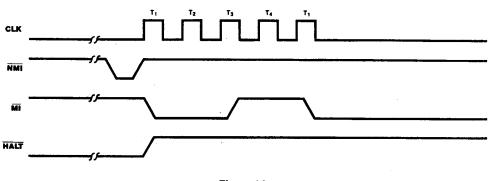


Figure 14a.

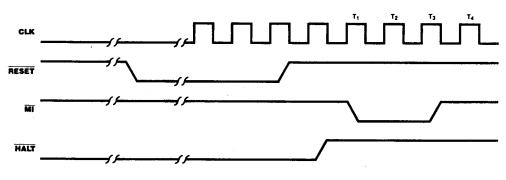


Figure 14b.

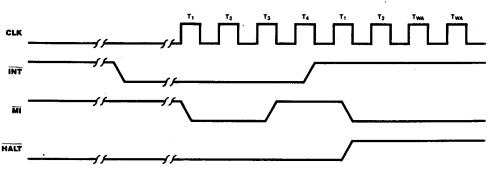


Figure 14c.

Figure 13. Power-Down Release

DC CHARACTERISTICS (Z84C00/CMOS Z80 CPU)

Symbol	Parameter	Min	Max	Unit	Condition
VILC	Clock Input Low Voltage	~0.3	0.45	v	
VIHC	Clock Input High Voltage	V _{CC} – .6	V _{CC} +.3	v	
V _{IL}	Input Low Voltage	- 0.3	0.8	v	
VIH	Input High Voltage	2.2	Vcc	v	
V _{OL}	Output Low Voltage		0.4	v	l _{OL} = 2.0 mA
V _{OH1}	Output High Voltage	2.4		v	l _{OH} = −1.6 mA
V _{OH2}	Output High Voltage	V _{CC} -0.8		v	$I_{OH} = -250 \mu A$
ICC1	Power Supply Current 4 MHz 6 MHz 8 MHz 10 MHz 20 MHz		20 30 40 50 100	mA mA mA mA	$V_{CC} = 5V$ $V_{IH} = V_{CC} - 0.2V$ $V_{IL} = 0.2V$ $V_{IL} = 5V$
Icc ₂	Standby Supply Current		10	μA	$V_{oc} = 5V$ $V_{CC} = 5V$
					CLK = (0) $V_{IH} = V_{CC} - 0.2V$ $V_{IL} = 0.2V$
ILI	Input Leakage Current	-10	10	μA	$V_{IN} = 0.4$ to V_{CC}
lo	3-State Output Leakage Current in Float	- 10	10 ²	μA	$V_{OUT} = 0.4$ to V_{CC}

Measurements made with outputs floating.
 A₁₅-A₀, D₇-D₀, MREQ, IORQ, RD, and WR.
 I_{CC2} standby supply current is guaranteed only when the supplied clock is stopped at a low level during T₄ of the machine cycle immediately following the execution of a HALT instruction.

CAPACITANCE

Symbol	Parameter	Min	Max	Unit
CCLOCK	Clock Capacitance		10	pf
C _{IN}	Input Capacitance		5	pf
COUT	Output Capacitance		15	pif

 $T_A = 25$ °C, f = 1 MHz. Unmeasured pins returned to ground.

AC CHARACTERISTICS[†] (Z84C00/CMOS Z80 CPU)

 V_{cc} =5.0V ± 10%, unless otherwise specified

No	Symbol	Parameter		C0004 Max		C0000 Max		C0008 Max		C0010 Max		C0020[1] Max	Unit	Note
1	TcC	Clock Cycle time	250*	DC	162	DC	125	• DC	100*	DC	50*	DC	nS	
2	TwCh	Clock Pulse width (high)			65	DC	55	DC	40	DC	20	DC	nS	
3	TwCl	Clock Pulse width (low)	110		65	DC	55	DC	40	DC	20		nS	
4	TfC	Clock Fall time		30		20	00	10	10	10	20	10	nS	
5	TrC	Clock Rise time		30		20		10		10		10	nS	
6	TdCr(A)	Address vaild from Clock Rise	1	110		90		80		65		57	nS	[2]
7	TdA(MREQf)	Address valid to /MREQ Fall	65*		35*		20*		5*		-15*		nS	• •
8	TdCf(MREQf)	,		85		70		60		55		40	nS	
9	TdCr(MREQr)	Clock Rise to /MREQ Rise delay		8 5		70		60		55		40	nS	
10	TwMREQh	/MREQ pulse width (High)	110*		65*		45**		30*		10*		nS	[3]
11	TwMREQ	/MREQ pulse width (low)	220*		132*		100'		75*		25*		nS	[3]
	TdCf(MERQr)			85		70		60		55		40	nS	
13	TdCf(RDf)	Clock Fall to /RD Fall delay		95		80		70		6 5		40	nS	
	TdCr(RDr)	Clock Rise to /RD Rise delay		85		70		60		55		40	nS	
15	TsD(Cr)	Data setup time to Clock Rise	35		30		30		25		12		nS	
	ThD(RDr)	Data hold time after /RD Rise	0		0		0		0		0		nS	
	TsWAIT(Cf)	WAIT setup time to Clock Fall	70		60		50		20		7.5		nS	
	ThWAIT(Cf)	WAIT hold time after Clock Fall	10		10		10		10		10		nS	
19	TdCr(M1f)	Clock Rise to /M1 Fall delay		100		80	•	70		65		45	nS	
20	TdCr(M1r)	Clock Rise to /M1 Rise delay		100		80		70		65		45	nS	
	TdCr(RFSHf)	Clock Rise to /RFSH Fall delay		130		110		95		80		60	nS	
	TdCr(RFSHr)	Clock Rise to /RFSH Rise delay		120		100		85		80		60	nS	
	TdCf(RDr)	Clock Fall to /RD Rise delay		85		70		60		55		40	nS	
	TdCr(RDf)	Clock Rise to /RD Fall delay		85		70		60		55		40	nS	
25	TsD(Cf)	Data setup to Clock Fall during												
		M2, M3, M4 or M5 cycles	50		40		30		25		12		nS '	
26	TdA(IORQf)	Address stable prior to /IORQ Fall	180*		107*		75*		50*		0*		nS	
27	TdCr(IORQf)	Clock Rise to /IORQ Fall delay		75		65		55		50		40	nS	
28	TdCf(IORQr)	Clock Fall to /IORQ Rise delay		85		70		60		55		40 '	nS	
29	TdD(WRf)Mw	Data stable prior to /WR Fall	80*		22*		5*		40*		-10*		nS	
	TdCf(WRf)	Clock Fall to /WR Fall delay		80		70		60		55		40	nS	
		/WR pulse width	220*		132*		100*		75*		25*		nS	
		Clock Fall to /WR Rise delay		80		70		60		55		40	nS	
		Data stable prior to /WR Fall	-10*		-55*		-55*		-10*		-30*		nS	
34	TdCr(WRf)	Clock Rise to /WR Fall delay		65		60		60		50		40	nS	
	• •	Data stable from /WR Rise	60*		30*		15*		10*		0*		nS	
	• •	Clock Fall to /HALT 'L' or 'H'		300		260		225		90		70	nS	
		/NMI pulse width	80		60		60		60		60		nS	
		/BUSREQ setup time	50		50		40		30		15		nS	
1	(Cr)	to Clock Rise												

*For clock periods other than the minimums shown, calculate parameters using the table on the following page. Calculated values above assumed TrC = TfC = 20 ns.

The second seco

**4 MHz CMOS Z80 is obsoleted and replaced by 6 MHz

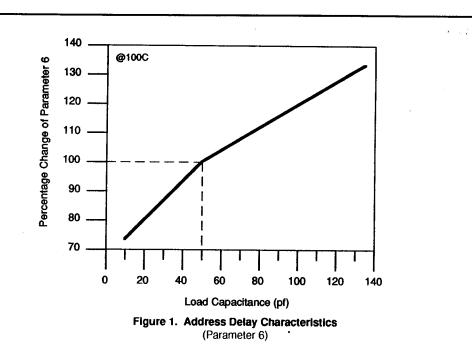
PS017801-0602

¢

AC CHARACTERISTICS[†] (Z84C00/CMOS Z80 CPU; Continued) V_{cc} =5.0V ± 10%, unless otherwise specified

			Z84C0004 Z84C0006			Z840	0008	Z84C0010		Z84C0020[1]		Unit	Note	
No	Symbol	Parameter	Min	Мах	Min	Мах	Min	Max	Min	Max	Min	Max		
39	ThBUSREQ	/BUSREQ hold time	10		10		10		10	•••••	10		nS	
	(Cr)	after Clock Rise												
40	TdCr	Clock Rise to /BASACK		100		90		80		75		40	nS	
	(BUSACKf)	Fall delay												
41	TdCf	Clock Fall to /BASACK		100		90		80		75		40	nS	
	(BUSACKr)	Rise delay												
42	TdCr(Dz)	Clock Rise to Data float delay		90		80		70		6 5		40	nS	
43	TdCr(CTz)	Clock Rise to Control Outputs												
		Float Delay (/MREQ, /IORQ,												
		/RD and /WR)		80		70		60		65		40	nS	
44	TdCr(Az)	Clock Rise to Address		90		80		70		75		40	nS	
		float delay												
45	TdCTr(A)	Address Hold time from /MREQ,	80*		35*		20*		20*		0*		nS	
		/IORQ, /RD or /WR												
46	TsRESET(Cr)	/RESET to Clock Rise setup time	60		60		45		40		15		nS	
47	ThRESET(Cr)	/RESET to Clock Rise Hold time	10		10		10		10		10		nS	
48	TsINTf(Cr)	/INT Fall to Clock Rise	80		70		55		50		15		nS	
		Setup Time												
49	ThINTr(Cr)	/INT Rise to Clock Rise	10		10		10		10		10		nS	
		Hold Time												
50	TdM1f	/M1 Fall to /IORQ Fall delay	565'	,	359*		270'	*	220'	•	100*	r	nS	
	(IORQf)													
51	TdCf(IORQf)	/Clock Fall to /IORQ Fall delay		8 5		70		60		55		45	nS	
52	TdCf(IORQr)	Clock Rise to /IORQ Rise delay		85		70		60		55		45	nS	
53	TdCf(D)	Clock Fall to Data Valid delay		150		130		115		110		75	nS	

Notes: * For Clock periods other than the minimum shown, calculate parameters using the following table.


Calculated values above assumed TrC = TfC = maximum. ** 4 MHz CMOS Z80 is obsoleted and replaced by 6 MHz

Z84C0020 parameters are guuaranteed with 50pF load Capacitance.
 If Capacitive Load is other than 50pF, please use Figure 1. to calculate the value.
 Increasing delay by 10nS for each 50pF increase in loading, 200pF max for data lines, and 100pF for control lines.

FOOTNOTES TO AC CHARACTERISTICS

No	Symbol	Parameter	Z84C0004	[*] Z84C0006	Z84C0008	Z84C0010	Z84C0020
1	TcC	TwCh + TwCl + TrC + TfC					
7	TdA(MREQf)	TwCh + TfC	-65	-50	-45	-45	-45
10	TwMREQh	TwCh + TfC	-20	-20	-20	-20	-20
11	TwMREQI	TcC	-30	-30	-25	-25	-25
26	TdA(IORQf)	TcC	-70	-55	-50	-50	-50
29	TdD(WRf)	TcC	-170	-140	-120	-60	-60
31	TwWR	TcC /	-30	-30	-25	-25	-25
33	TdD(WRf)	TwCI + TrC	-140	-140	-120	-60	-60
35	TdWRr(D)	TwCl + TrC	-70	-55	-50	-40	-25
45	TdCTr(A)	TwCI + TrC	-50	-50	-45	-30	-30
50	TdM1f(IORQf)	2TcC + TwCh + TfC	-65	-50	-45	-30	-30
AC Test	Conditions: $V_{IH} = 2.0$ $V_{IL} = 0.8$		V _{IHC} = V _{ILC} =	V _{CC} -0.6 V 0.45 V	Float = 1	E0.5 V	

PS017801-0602

DC CHARACTERISTICS (Z8400/NMOS Z80 CPU)

All parameters are tested unless otherwise noted.

Symbol	Parameter	Min	Max	Unit	Test Condition
V _{ILC}	Clock Input Low Voltage	-0.3	0.45	v	
VIHC	Clock Input High Voltage	V _{CC} – .6	V _{CC} +.3	v	
VIL	Input Low Voltage	- 0.3	0.8	v	
VIH	Input High Voltage	2.0 ¹	V _{CC}	v	
VOL	Output Low Voltage		0.4	v	l _{Oi} = 2.0 mA
V _{OH}	Output High Voltage	2.4 ¹		v .	l _{OH} = -250 μA
ICC.	Power Supply Current		200	mA	Note 3
lLi	Input Leakage Current		10	μA	$V_{IN} = 0$ to V_{CC}
ILO	3-State Output Leakage Current in Float	- 10	10 ²	μΑ	$V_{OUT} = 0.4$ to V_{CC}

For military grade parts, refer to the Z80 Military Electrical Specification.
 A₁₅-A₀, D₇-D₀, MREO, IORO, RD, and WR.
 Measurements made with outputs floating.

CAPACITANCE

Guaranteed by design and characterization.

Symbol	Parameter Min Clock Capacitance Input Capacitance	Min	Max	Unit	
C _{CLOCK}	Clock Capacitance		35	pf	
C _{IN}	Input Capacitance		5	pf	
COUT	Output Capacitance		15	pf	

NOTES:

 $T_A = 25$ °C, f = 1 MHz. Unmeasured pins returned to ground.

•

PS017801-0602

Customer Support

For answers to technical questions about the product, documentation, or any other issues with Zilog's offerings, please visit Zilog's Knowledge Base at http://www.zilog.com/kb.

For any comments, detail technical questions, or reporting problems, please visit Zilog's Technical Support at <u>http://support.zilog.com</u>.