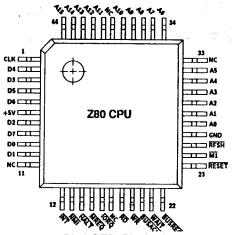
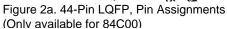


Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.


Applications of Embedded - Microprocessors


Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Active
Core Processor	Z80
Number of Cores/Bus Width	1 Core, 8-Bit
Speed	20MHz
Co-Processors/DSP	-
RAM Controllers	-
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	5.0V
Operating Temperature	-40°C ~ 100°C (TA)
Security Features	-
Package / Case	40-DIP (0.620", 15.75mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z84c0020peg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

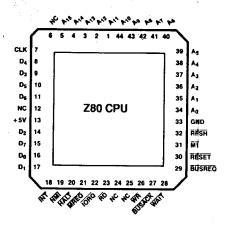


Figure 2b. 44-Pin Chip Carrier Pin Assignments

GENERAL DESCRIPTION

The CPUs are fourth-generation enhanced microprocessors with exceptional computational power. They offer higher system throughput and more efficient memory utilization than comparable second- and third-generation microprocessors. The internal registers contain 208 bits of read/write memory that are accessible to the programmer. These registers include two sets of six general-purpose registers which may be used individually as either 8-bit registers or as 16-bit register pairs. In addition, there are two sets of accumulator and flag registers. A group of "Exchange" instructions makes either set of main or alternate registers accessible to the programmer. The alternate set allows operation in foreground-background mode or it may be reserved for very fast interrupt response.

The CPU also contains a Stack Pointer, Program Counter, two index registers, a Refresh register (counter), and an Interrupt register. The CPU is easy to incorporate into a system since it requires only a single +5V power source. All output signals are fully decoded and timed to control standard memory or peripheral circuits; the CPU is supported by an extensive family of peripheral controllers. The internal block diagram (Figure 3) shows the primary functions of the processors. Subsequent text provides more detail on the I/O controller family, registers, instruction set, interrupts and daisy chaining, and CPU timing.

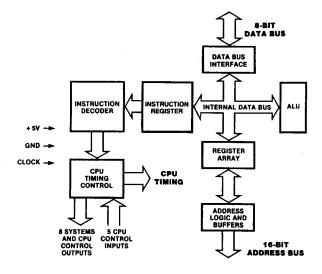


Figure 3. Z80C CPU Block Diagram

address. This flexibility in selecting the interrupt service routine address allows the peripheral device to use several different types of service routines. These routines may be located at any available location in memory. Since the interrupting device supplies the low-order byte of the 2-byte vector, bit 0 (A_a) must be a zero.

Interrupt Enable/Disable Operation. Two flip-flops, IFF1 and IFF2, referred to in the register description, are used to signal the CPU interrupt status. Operation of the two flip-flops is described in Table 2. For more details, refer to the Z80 CPU Technical Manual (03-0029-01) and Z80 Assembly Language Programming Manual (03-0002-01).

Table 2. State of Flip-Flops

Action	IFF ₁	IFF ₂	Comments
CPU Reset	0	0	Maskable interrupt
DI instruction execution	0	0	Maskable interrupt INT disabled
El instruction execution	1	1	Maskable interrupt
LD A,I instruction execution	•	•	IFF ₂ → Parity flag
LD A,R instruction execution	•	•	IFF ₂ → Parity flag
Accept NMI	0	•	Maskable interrupt
RETN instruction execution	IFF ₂	•	IFF ₂ → IFF ₁ at completion of an NMI service routine.

INSTRUCTION SET

The microprocessor has one of the most powerful and versatile instruction sets available in any 8-bit microprocessor. It includes such unique operations as a block move for fast, efficient data transfers within memory, or between memory and I/O. It also allows operations on any bit in any location in memory.

The following is a summary of the instruction set which shows the assembly language mnemonic, the operation, the flag status, and gives comments on each instruction. For an explanation of flag notations and symbols for mnemonic tables, see the Symbolic Notations section which follows these tables. The Z80 CPU Technical Manual (03-0029-01). the Programmer's Reference Guide (03-0012-03), and Assembly Language Programming Manual (03-0002-01) contain significantly more details for programming use.

The instructions are divided into the following categories: ☐ 8-bit loads □ 16-bit loads ☐ Exchanges, block transfers, and searches □ 8-bit arithmetic and logic operations ☐ General-purpose arithmetic and CPU control □ 16-bit arithmetic operations □ Rotates and shifts

- ☐ Bit set, reset, and test operations
- □ Jumps
- □ Calls, returns, and restarts
- □ Input and output operations

A variety of addressing modes are implemented to permit efficient and fast data transfer between various registers, memory locations, and input/output devices. These addressing modes include:

- □ Immediate
- □ Immediate extended
- □ Modified page zero
- □ Relative
- □ Extended
- □ Indexed
- □ Register
- □ Register indirect
- □ Implied
- □ Bit

8-BIT LOAD GROUP

	Symbolic				Fk	ngs					Opcod	•		No. of	No. of M	No. of T		
Mnemonic	Operation	S	Z		H		P/V	N	C	76	543	210	Hex	Bytes	Cycles	States	Com	ments
LD r, r'	r ← r'	•	•			Х	•	•	•	01	r	r'		1	1	4	r, r'	Reg.
LD r, n	r ← n	•	•	Χ	•	Х	•	•	•	00	r	110		2	2	7	000	В
											← n→						001	С
LD r, (HL)	r ← (HL)	•	•	Χ	•	Х	•	•	•	01	r	110		1	2	7	010	D
LD r, (IX + d)	r ← (IX + d)	•	•	Х	•	Χ	•	•	•	11	011	101	DD	3	5	19	011	Ε
										01	r	110					100	н
											~ d→						101	L
LD r, (IY + d)	$r \leftarrow (IY + d)$	•	•	Х	•	Х	•	•	•	11	111	101	FD	3	5	19	111	Α
										01	r	110						
											← d→							
LD (HL), r	(HL) ← r	•	•	Х	•	Χ	•	•	•	01	110	ſ		1	2	7		
LD (IX + d), r	(IX+d) ← r	•	•	X	•	Χ	•	•	•	11	011	101	DD	3	5	19		
										01	110	r						
											← d→							
LD (IY + d), r	(IY+d) r	•	•	Х	•	Х	•	•	•	11	111	101	FD	3	5	19		
		•								01	110	r						
											← d→							
LD (HL), n	(HL) ← n	•	•	Х	•	Х	•	•	•	00	110	110	36	2	3	10		
											←n→							
LD (IX + d), n	(IX + d) ← n	•	•	Х	•	Х	•	•	•	11	011	101	DD	4	5	19		
										00	110	110	36					
											←d →							
											←n→							

8-BIT LOAD GROUP (Continued)

	Symbolic					ags					Opcod			No. of	No. of M	No. of T	
Mnemonic	Operation	S	Z		Н		PΛ	/ N	С	76	543	210	Hex	Bytes	Cycles	States	Comments
LD (IY + d), n	(IY+d) ← n	•	•	Х	•	Х	•	•	•	11	111	101	FD	4	5	19	
										00	110	110	36				
											← d→						
											←n→						
LD A, (BC)	A ← (BC)	•	•	Χ	•	Х	•	•	•	00	001	010	OA	1	2	7	
LD A, (DE)	A ← (DE)	•	•	Χ	•	Х	٠	•	•	00	011	010	1A	1	2	7	
LD A, (nn)	A ← (nn)	•	•	Х	•	Х	•	•	•	00	111	010	3A	3	4	13	
											← n→						
											← n→						
LD (BC), A	(BC) ← A	•	•	Х	•	Х	•	•	•	00	000	010	02	1	2	7	
LD (DE), A	(DE) ← A	•	•	Х	•	Χ	•	•	•	00	010	010	12	1	2	7	
LD (nn), A	(nn) ← A	•	•	Х	•	Х	•	•	•	00	110	010	32	3	4	13	
											← n →						
_											← n→						
LD A, I	A←I	#	‡	Х	0	Х	IFF	0	•	11	101	101	ED	2	2	9	
										01	010	111	57				
LDA, R	A←R	‡	‡	X	0	Х	IFF	0	•	11	101	101	ED	2	2	9	
										01	011	111	5F				
_D I, A	1 A	•	•	Х	•	Х	•	•	•	11	101	101	ED	2	2	9	
	_									01	000	111	47				
₋DR, A	R←A	•	•	X	•	Х	•	•	•	11	101	101	ED	2	2	9	
										01	0 01	111	4F				

NOTE: IFF, the content of the interrupt enable flip-flop, (IFF2), is copied into the P/V flag.

16-BIT LOAD GROUP

Mnemonic	Symbolic Operation	s	z		Fla	ags	P/V	N	С		Opcode 543		Hex	No. of Bytes	No. of M Cycles	No. of T States	Con	nmenti
LD dd, nn	dd ← nn	•	•	X	•	Х	•	•	•	00	dd0 + n →	001		3	3	10	dd	Pair
											+n→						00 01	BC DE
LD IX, nn	IX ← nn	•	•	X	•	X	•	•	•	11	011	101	DD	4	4	14	10	HL
										00	100 ←n→	001	21				11	SP
150											← n →							
LD IY, nn	IY ← nn	•	•	X	•	Х	•	•	•	11	111	101	FD	4	4	14		
										00	← n→	001	21					
LD HL, (nn)	H ← (nn + 1)	•	•	х	•	Х	•	•		00	←n→ 101	010	2A	3	5	16		
	L ← (nn)										←n→ ←n→							
LD dd, (nn)	$dd_H \leftarrow (nn + 1)$ $dd_L \leftarrow (nn)$	•	•	X	•	X	•	•	•	11	101	101	ED	4	6	20		
	40[4- (IIII)									01	dd1 ←n→	011						
											+n→							

NOTE: $(PAIR)_H$, $(PAIR)_L$ refer to high order and low order eight bits of the register pair respectively. e.g., $BC_L = C$, $AF_H = A$.

16-BIT LOAD GROUP (Continued)

Mnemonic	Symbolic Operation	s	z		Fla H	gs	P/V	N	С	76	Opcod 543		Hex	No. of Bytes	No. of M Cycles	No. of T States	Comme	118
DIX, (nn)	IX _H ← (nn + 1)	•	•	×	•	χ.	•	•	•	11	011	101	DD	4	6	20		+
- 17 (1 (1 (1)	IX _I ← (nn)			^		^				00	101		2A	•	·			
										••	+n→	• • •						į
											+n→							
D IY, (nn)	IY _H ← (nn + 1)			x		Х				11	. 111		FD	4	6	20		
J 11, (1.1.)	IY _L ← (nn)			^		•				00	101		2A	,	·			
	115 (111)									00	+n→	0.0						
											+n→							
O (nn), HL	(nn + 1) ← H			х		х				00	100	010	22	3	5	16		
٠, (١١١), ١١١	(nn)+-L	-	•	^	•	^	•		•	00	+n→	010		J	J			
	(111)										+n→							
D (nn), dd	(nn + 1) ← dd _H			¥		х				11	101	101	ED	4	6	20		
- (rii), uu	(nn) ← dd _L	•	٠	^	•	^	-	•	•	01	dd0		LD	7	J	20		
	(iii) · uu[U	+ n →	011						
											+n→							
O (nn), IX	(nn + 1) ← IX _H			¥		х				11	011	101	DD	4	6	20		i
- (ι ιι η, ι∧	(nn) ← IX _L	-	•	^	•	^	•	•	•	00	100		22	7	J	20		İ
	(111) - 12(w	+n→	010	~~					
											+n→							
O (nn), IY	(nn+1) ← IY _H			¥		X ·				11	111	101	FD	4	6	20		
J (1111), 11	(nn) ← IY _L	•	•	^	Ī	^	•	•	•	00	100		22	7	Ū	20		
	(iii) · II[00	+n→	010	22					
											+n→							1
D SP. HL	SP - HL	_		х		х		_		11	111	001	F9	1	1	6		i
O SP. IX	4SP + IX	-	•	x	•	x			•	11	011	101	DD	2	2	10		
J UF, IA	10F 1-IA	•	•	^	•	^	•	•	•	11	111	001	F9	-	-			
D SP, IY	SP + IY			х		х				11	111	101	FD	2	2	10		
5 51,11	G(- 11	-	•	^	•	^	-	-	-	11	111	001	F9	-	•		qq Pa	air
USH qq	(SP - 2) ← qq _L			¥		х				11	qq0	101		1	3	11	00 B	-
	(SP - 1) ← qq _H	•	٠	^	•	^	•	•	•	1,1	440			•	•	•••	00 DI	
	(SP → SP - 2																10 H	- 1
USH IX	(SP-2) + IXL			¥		х				11	011	101	DD	2	4	15	11 AF	- 1
00111A	(SP - 1) ← IX _H	•	•	^	•	^	•	•	•	11	100	101	E5	-	7	.0	^	
	SP→SP-2									- 11	,00	101	LU					-
USHIY	SP-2) ← IY _L			¥		х				11	111	101	FD	2	4	15		i
OOMII		•	•	^	•	^	-	•	-	11	100	101	E5	_	7			
	$(SP-1) \leftarrow IY_H$ $SP \rightarrow SP-2$									11	100	101	ES					
OP oc	or → or - 2 qq _H ← (SP + 1)			v	_	х				11	qq0	001		1	3	10		
OP qq		•	•	^	•	^	•	•	•	11	440	001		'	3	.0		
	qqL ← (SP) SP → SP +2																	
OD IV			_	v	_	v	_	_	_	11	011	101	DD	2	4	14		
OP IX	IX _H + (SP + 1)	•	•	^	•	Х	•	•	•	11	011 100	001	E1	2	4	1-4		
	IX _L ← (SP)									11	100	w	E1					
	SP → SP +2					v		_			444	404				14		
OP IY	IY _H ← (SP + 1)	•	•	X	•	X	. •	•	•	11	111	101	FD	2	4	14		
	IY _L ← (SP)									11	100	001	E1					
	SP → SP + 2																	

NOTE: (PAIR)_H, (PAIR)_L refer to high order and low order eight bits of the register pair respectively, e.g., BC_L = C, AF_H = A.

EXCHANGE, BLOCK TRANSFER, BLOCK SEARCH GROUPS (Continued)

	Symbolic	_	_			ıgs			_		Opcod			No. of	No. of M		
Mnemonic	Operation	5	Z		Н		P/V	N	C	76	543	210	Hex	Bytes	Cycles	States	Comments
			3				1			•							
CPIR	A – (HL)	‡	#	X	‡	X	ŧ	1	•	11	101	101	ED	2	5	21	If BC ≠ 0 and A ≠ (HL)
•	HL ← HL + 1 BC ← BC − 1 Repeat until A = (HL) or									10	110	001	B1	2	4	16	If BC = 0 or A = (HL)
	BC = 0		3				①										
CPD	A - (HL) HL ← HL - 1 BC ← BC - 1	*	•	X	*	X	•	1	•	11 10	101 101	101 001	ED A9	2	4	16	
CPDR	A – (HL)	‡	③ •	X	‡	X	0	1	•	11	101	101	ED	2	5	21	If BC ≠ 0 and A ≠ (HL)
	HL ← HL − 1 BC ← BC − 1 Repeat until A = (HL) or BC = 0									10	111	001	В9	2	4	16	If BC = 0 or A = (HL)

NOTE:

P/V flag is 0 if the result of BC - 1 = 0, otherwise P/V = 1.

P/V flag is 0 only at completion of instruction.

Takes if A = (HL), otherwise Z = 0.

8-BIT ARITHMETIC AND LOGICAL GROUP

Mnemonic	Symbolic Operation	s	z		Fle H	gs	P/V	N	С	76	Opcod 543	9 210	Hex	No. of Bytes	No. of M Cycles	No. of T States	Com	ments
ADD A, r	A←A+r	*	‡	Х	‡	X	٧	0	‡	10	000	ſ		1	1	4	r	Reg.
ADD A, n	A ← A+n	#	#	Х	‡	Х	٧	0		11	000	110		2	2	7	000	В
											←n→						001	C
																	010	D
ADD A, (HL)	A - A+(HL)	‡	‡	Х	‡	Х	٧	0	‡	10	000	110		1	2	7	011	E
ADD A, (IX + c	d) A←A + (IX + d)	#		Х	‡	Х	٧	0	‡	11	011	101	DD	3	5	19	100	H
										10	000	110					101	L
											-d →						111	A
ADD A, (IY+c	d) A ← A + (IY + d)	‡	\$	Х	‡	Х	٧	0	‡	11	111	101	FD	3	5	19		
										10	000	110						
											- d→							
ADC A, s	A - A+s+CY	‡	‡	Χ	‡	Х	٧	0	#		001						s is a	ny of r, n
SUB s	A ← A – s	‡	‡	X	‡	Х	٧	1	\$		010						(HL),	(IX+d),
SBC A, s	A - A-s-CY	‡	‡	Χ	‡	Х	٧	1	‡		011						(IY+	d) as
ANDs	A ← A > s	‡	‡	X	1	Х	Ρ	0	0		100						show	n for AC
OR s	A ← A > s	‡	‡	X	0	Х	Ρ	0	0		110						instru	ction. T
XOR s	A - Aes	‡	‡	Х	0	Х	Ρ	0	0		101						indica	ated bits
CP s	A-s	‡	‡	Х	‡	Х	٧	1	‡		111						repla	ce the
																	000] in the
																	ADD	set abo

PS017801-0602

8-BIT ARITHMETIC AND LOGICAL GROUP (Continued)

	Symbolic		-			ngs					Орсо			No. of	No. of M	No. of T	
Mnemonic	Operation	8	Z		H		PΛ	N	С	76	543	210	Hex	Bytes	Cycles	States	Comments
INC r	r+r+1	‡	‡	х	‡	Х	٧	0	•	00	г	100		1	1	4	
INC (HL)	(HL) ←												•				
	(HL) + 1	#	‡	Х	‡	х	٧	0	•	00	110	100		1	3	11	
INC (IX+d)	(IX + d) ←			X	‡	Х	٧	0	•	11	011	101	DD	3	6	23	
	(IX + d) + 1									00	110	100					
											- -d-	•					
INC (IY+d)	(IY+d) ←		#	X	‡	Х	٧	0	•	11	111	101	FD	3	6	23	
	(IY+d)+1									00	110	100					
											← d-	•					
DEC m	m ← m – 1		*	X	‡	Х	٧	1	•			101					

NOTE: m is any of r, (HL), (IX+d), (IY+d) as shown for INC. DEC same format and states as INC. Replace 100 with 101 in opcode.

GENERAL-PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

Mnemonic	Symbolic Operation	8	z		FI: H	age		V N	С	76	Opcod 543	e 210	Hex	No. of Bytes	No. of M Cycles	No. of T States	Comments
DAA	Ø	‡	*	х	*	Х	Р	•	‡	00	100	111	27	1	1	4	Decimal adjust
CPL	A+A	•	•	· X	1	×	•	1	•	00	101	111	2F	1	1	4	Complement accumulator (one's complement).
NEG	A - 0 - A	‡	‡	Х	‡	Х	٧	1	‡	11	101	101	ED	2	2	8	Negate acc.
										01	000	100	44			-	(two's complement).
CCF	CY + CY	•	•	X	X	X	•	0	‡	00	111	111	3F	1	. 1	4	Complement carry flag.
SCF	CY - 1	•	•	Х	0	Х	•	0	1	00	110	111	37	1	1	4	Set carry flag.
NOP	No operation	•	•	Х	•	Х	•	•	•	00	000	000	00	1	1	4	oot ourly mag.
HALT	CPU halted	•	•	Х		Х	•	•	•	01	110	110	76	1	1	4	
DI ★	IFF ← 0	•	•	X	•	Х	•	•	•	11	110	011	F3	1	1	4	
El ★	IFF ← 1	•	٠	Х	•	Х	•	•	•	11	111	011	FB	1	1	4	
IM O	Set interrupt mode 0	•	•	X	•	X	•	•	•	11 01	101 000	101 110	ED 46	2	2	8	
IM 1	Set interrupt mode 1	•	•	X	•	X	•	•	•	11 01	101 010	101 110	ED 56	2	2	8	
IM 2	Set interrupt mode 2	•	•	X	•	X	•	•	•	11 01	101 011	101 110	ED 5E	2	2	8	

NOTES: @ converts accumulator content into packed BCD following add or subtract with packed BCD operands. IFF indicates the interrupt enable flip-flop.

CY indicates the carry flip-flop.

* indicates interrupts are not sampled at the end of EI or DI.

BIT SET, RESET AND TEST GROUP

Mnemonic	Symbolic Operation	8	z		Fla H	gs	P/V	N	С	76	Opcod 543		Hex	No. of Bytes	No. of M Cycles	No. of T States	Con	nments
BIT b, r	Z←rb	х	‡	Х	1	х	х	0	•	11	001	011	СВ	2	2	8	r	Reg.
										01	b	ſ					000	В
BIT b, (HL)	Z ← (HL) _b	Х	‡	Х	1	Х	Х	0	•	11	001	011	CB	2	3	12	001	С
										01	b	110					010	D
BIT b,(IX + d)b	$Z \leftarrow (IX + d)_b$	X	‡	X	1	X	X	0	•	11	011	101	DD	4	5	20	011	E
										11	001	011	CB				100	Н
											- d-	•					101	L
										01	b	110					111	Α
																	b	Bit Tested
BIT b, $(IY + d)_b$	Z ← (IY+d) _b	X	‡	X	1	Х	X	0	•	11	111	101	FD	4	5	20	000	0
										11	001	011	CB				001	1
											- d→	•					010	2
										01	b	110					011	3
SET b, r	r _b ←1	•	•	X	•	Х	•	•	. •	11	001	011	CB	2	2	8	100	4
										[1]	b	r					101	5
SET b, (HL)	(HL) _b ← 1	•	•	X	•	X	•	•	•	11	001	011	CB	2	4	15	110	6
										11	b	110					111	7
SET b, $(1X + d)$	(IX+d) _b - 1	•	•	X	•	X	•	•	•	11	011	101	DD	4	6	23		
		-								11	001	011	CB					
											-d-	•						
										11	b	110						
SET b, (IY+d)	$(iY+d)_b \leftarrow 1$	•	•	X	•	Х	•	•	•	11	111	101	FD	4	6	23		
										11	001	011	CB					
											+d →	•						
										11	b	110						
RES b, m	m _b ← 0	•	•	X	•	X	•	•	•	10							To fo	kw usija
	m≡r, (H L),														•			ode replace
	(IX+d), $(IY+d)$			•														of SET b, s
									•									10 Alags
																	and	
																		s for SET
																	instr	uction.

NOTE: The notation $m_{\mbox{\scriptsize b}}$ indicates location m, bit b (0 to 7).

JUMP GROUP

Mnemonic	Symbolic Operation	s	z		FI	ag s		۷N	С		Opco 543	ie 210	Hex	No. of Bytes	No. of M Cycles	No. of T States	•	nments
JP nn	PC ← nn	•	•	х	•	Х	•	•	•	11	000	011	СЗ	3	3	10	œ	Condition
											←n-	•					000	NZ (non-zero)
											← n~	•					001	Z (zero)
JP cc, nn	If condition cc		•	Х	•	Χ	•	•	•	11	œ	010		3	3	10	010	NC (non-carry)
	is true PC←nn,										←n-	•					011	C (carry)
	otherwise										← n-	•					100	PO (parity odd)
_	continue																101	PE (parity even)
JR e	PC ← PC+e	•	•	Х	•	Х	•	•	•	00		000	18	2	3	12	110	P (sign positive)
	_									•	-e-2						111	M (sign negiative
JR C, e	#C=0,	•	•	X	•	X	•	•	•	00		000	38	2	2	7	If cor	ndition not met.
	continue									•	-e-2	→						
	HC=1,													2	3	12	If cor	ndition is met.
	PC ← PC+e															•		
JR NC, e	IFC=1,	•	•	Х	•	Х	•	•	•	00			30	2	2	7	If cor	ndition not met.
	continue									•	-e-2	→						
	If C=0,													2	3	12	If cor	ndition is met.
JP Z, e	PC ← PC+e	_	_	v		v								_	_	_		
	continue	•	•	Х	•	X	•	•	•	00		000	28	2	2	7	If cor	ndition not met.
	If Z = 1,									•	-e-2	-		•		40		and the second
	PC←PC+e													2	3	12	IT CO	ndition is met.
	IfZ=1.	_	_	x	_	х	_		_	00	100	000	20	2	2	7	16	
	continue	٠	Ť	^	•	^	٠	•	•		-e-2		20	2	2	′	II COL	ndition not met.
	If Z = 0.									•	6-2			2	3	12	lf aar	ndition is met.
	PC + PC+e													2	3	12	II COI	idition is met.
	PC + HL			¥		Y	•			11	101	001	'E9	1	1	4		
, ,	PC+IX	•					•			11	011	101	DD	2	2	8		
. ()				^		^				11	101	001	E9	-	2	Ü		
JP (IY)	PC ← IY			x		x	•			11	111	101	FD	2	2	8		
,				^	-	^	-	-	-	11	101	001	E9	-	-	U		
DJNZ, e	B ← B – 1			x	•	x		•		00		000	10	2	2	8	If B =	n
=	If B = 0,			••							-e-2		••	-	-	Ū	., 5	-
	continue																	
	lf B≠0,													2	3	13	If B≠	0.
	PC ← PC+e													_	-			

NOTES: e represents the extension in the relative addressing mode.
e is a signal two's complement number in the range < - 126, 129 >.
e - 2 in the opcode provides an effective address of pc + e as PC is incremented by 2 prior to the addition of e.

CALL AND RETURN GROUP

Mnemonic	Symbolic Operation	s	z		Fia H	ags		/N	С	76	Opcod 543		Hex	No. of Bytes	No. of M Cycles	No. of T States	Com	iments
CALL nn	(SP-1)←PC _H	•	•	X	•	Х	•	•	•	11	001	101	CD	3	5	17		
	(SP-2)←PCL										←n →							
O411	PC ← nn,	_		v		v		_	_	44	← n→			•	3	10	16	in falan
CALL CC, nr	If condition cc is false	•	•	X	•	Х	•	•	•	11	cc ←n→	100		3	3	10	II CC	is false.
	continue,										+-n-+			3	5	17	lf cc	is true.
	same as CALL nn																	
RET	PC _L ← (SP) PC _H ←(SP+1)	•	•	x	•	X	•	•	•	11	0 01	001	C9	1	3	10		
RET∝	If condition cc is false	•	•	X	•	X	•	•	•	11	cc	000		1	1	5	If cc	is false.
	continue,													/1	3	11	If cc	is true.
	same as RET																cc	Condition
																	000	NZ (non-zero)
																	001	Z (zero)
																	010	NC (non-carry)
RETI	Return from	•	•	Х	•	Х	•	٠	•	11	101	101	ED	2	4	14	011	C (carry)
	interrupt									01	001	101	4D				100	PO (parity odd)
RETN ¹	Return from	•	•	Х	•	Х	•	•	•	11	101	101	ED	2	4	14	101	PE (parity even)
	non-maskable									01	000	101	45				110	P (sign positive)
	interrupt																111	·M (sign negative)
RST p	(SP-1)←PCH	•	٠	Х	•	Х	•	•	•	11	t	111		1	3	11	<u>t</u>	P
	(SP-2)←PCL																000	00H
	PC _H ← 0																0 01	08H
	PC _L ← p																010	10H
																	011	18H
																	100	20H
																	101	28H
																	110	30H
																	111	38H

NOTE: ¹RETN loads IFF2 → IFF1

INPUT AND OUTPUT GROUP

Mnemonic	Symbolic Operation	S	Z		FI	age		VN	С	76	Opcod 543	ie 210	Hex	No. of Bytes	No. of M Cycles	No. of T States	Comments
IN A, (n)	A ← (n)	•	۰.	x	•	X	•	•	•	11	011	01	DB	2	3	11	n to A ₀ ∼ A ₇
											← n-	•					Acc. to A ₈ ~ A ₁₅
IN r, (C)	r +- (C)		#	Х	‡	Х	Ρ	0	•	11	101	101	ED	2	3	12	C to A ₀ ~ A ₇
	if $r = 110$ only									01	r	000					B to A ₈ ~ A ₁₅
	the flags will																
	be affected																
			①)													
INI	(HL) ← (C)	Х	ŧ	Х	Х	Х	Х	1	Х	11	101	101	ED	2	4	16	C to A ₀ ~ A ₇
	B ← B – 1									10	100	010	A2				B to A ₈ ~ A ₁₅
	HL+HL+1		2)													0 10
INIR	(HL) ← (C)	X	1	Х	х	X	Х	1	X	11	101	101	ED	2	5	21	C to A ₀ ~ A ₇
	B ← B – 1									10	110	010	B2		(If B≠0)		B to A ₈ ~ A ₁₅
	HL ← HL+1													2	4	16	- 10.0
	Repeat until								5.						(If B = 0)		
	B=0														·,		
			1)													
IND	(HL) ← (C)	Х	Ť	х	х	Х	Х	1	х	11	101	101	ΕD	2	4	16	C to $A_0 \sim A_7$
	B ← B – 1									10	101	010	AA				B to A ₈ ~ A ₁₅
	HL+HL-1		②	ı						-							-10.6
INDR	(HL) ← (C)	Х	$\stackrel{\smile}{1}$	х	х	Х	х	1	х	11	101	101	ED	2	5	21	C to A ₀ ~ A ₇
	B - B-1									10	111	010	BA		(If B≠0)		B to A ₈ ~ A ₁₅
	HL+HL-1													2	4	16	
	Repeat until													_	(If B = 0)		
	B=0														()		
OUT (n), A	(n) - A	•	•	Х	•	Х	•	•.	•	11	010	011	D3	2	3	11	n to A ₀ ~ A ₇
-											+ n→			_	-		Acc. to A ₈ ~ A ₁₅
OUT (C), r	(C) ← r	•	•	X	•	Х	•	•	•	11	101	101	ED	2	3	12	C to Ao ~ A7
	• •									01	r	001					B to A ₈ ~ A ₁₅
			1														
OUTI	(C) + (HL)	Х	•	X	X	Х	Х	1	Х	11	101	101	ED	2 -	4	16	C to A ₀ ~ A ₇
	B+B-1									10	100	011	A3				B to A ₈ ~ A ₁₅
	HL+1		@														•
OTIR	(C) (HL)		$\overline{1}$	X	х	Х	Х	1	х	11	101	101	ED	2	5	21	C to A ₀ ~ A ₇
	B ← B – 1									10	110	011	B3		(If B≠0)		B to A ₈ ~ A ₁₅
	HL+HL+1													2	` 4	16	0 10
	Repeat until														(If $B = 0$)		
	B=0														(
			വ														•
DUTD	(C) ← (HL)	X	¥	Х	X	Х	X	1	Х	11	101	101	ED	2	4	16	C to A ₀ ~ A ₇
	B ← B – 1									10	101	011	AB				B to A _B ~ A ₁₅
	HL ← HL – 1																
			<u>(</u> 2)														
OTOR	(C) ← (HL)		$\widetilde{1}$	х	Х	х	Х	1	х	11	101	101	ED	2	5	21	C to A ₀ ~ A ₇
	B ← B – 1									10	111	011		=	(If B≠0)		B to A ₈ ~ A ₁₅
	HL←HL-1													2	4	16	Q / 110
	Repeat until													-	(If B = 0)	. •	
	B=0														··· — — — — — — — — — — — — — — — — — —		

NOTES: ① If the result of B – 1 is zero, the Z flag is set; otherwise it is reset.
② Z flag is set upon instruction completion only.

CPU REGISTERS

Figure 4 shows three groups of registers within the CPU. The first group consists of duplicate sets of 8-bit registers: a principal set and an alternate set [designated by ' (prime), e.g., A']. Both sets consist of the Accumulator register, the Flag register, and six general-purpose registers. Transfer of data between these duplicate sets of registers is accomplished by use of "Exchange" instructions. The result is faster response to interrupts and easy, efficient implementation of such versatile programming techniques

as background-foreground data processing. The second set of registers consists of six registers with assigned functions. These are the I (Interrupt register), the R (Refresh register), the IX and IY (Index registers), the SP (Stack Pointer), and the PC (Program Counter). The third group consists of two interrupt status flip-flops, plus an additional pair of flip-flops which assists in identifying the interrupt mode at any particular time. Table 1 provides further information on these registers.

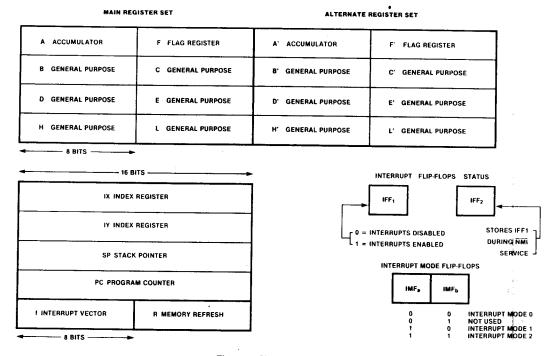


Figure 4. CPU Registers

INTERRUPTS: GENERAL OPERATION

The CPU accepts two interrupt input signals: $\overline{\text{NMI}}$ and $\overline{\text{INT}}$. The $\overline{\text{NMI}}$ is a non-maskable interrupt and has the highest priority. $\overline{\text{INT}}$ is a lower priority interrupt and it requires that interrupts be enabled in software in order to operate. $\overline{\text{INT}}$ can be connected to multiple peripheral devices in a wired-OR configuration.

The Z80 has a single response mode for interrupt service on the non-maskable interrupt. The maskable interrupt, INT, has three programmable response modes available. These are:

- Mode 0 similar to the 8080 microprocessor.
- Mode 1 Peripheral Interrupt service, for use with non-8080/Z80 systems.

Mode 2 - a vectored interrupt scheme, usually daisychained, for use with the Z80 Family and compatible peripheral devices.

The CPU services interrupts by sampling the $\overline{\text{NMI}}$ and $\overline{\text{INT}}$ signals at the rising edge of the last clock of an instruction. Further interrupt service processing depends upon the type of interrupt that was detected. Details on interrupt responses are shown in the CPU Timing Section.

Non-Maskable Interrupt (NMI). The nonmaskable interrupt cannot be disabled by program control and therefore will be accepted at all times by the CPU. NMI is usually reserved for servicing only the highest priority type interrupts, such as that for orderly shutdown after power

Memory Read or Write Cycles. Figure 6 shows the timing of memory read or write cycles other than an opcode fetch (M1) cycle. The MREQ and RD signals function exactly as in the fetch cycle. In a memory write cycle, MREQ also

becomes active when the address bus is stable. The \overline{WR} line is active when the data bus is stable, so that it can be used directly as an $R\overline{W}$ pulse to most semiconductor memories.

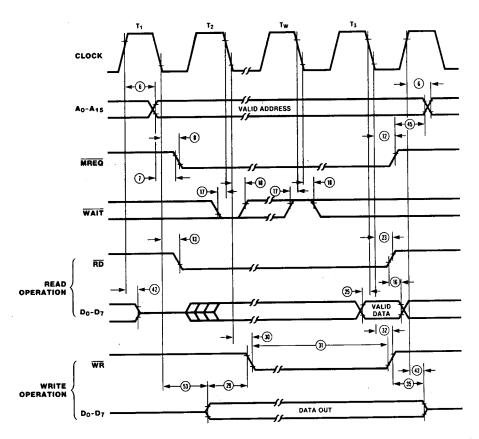
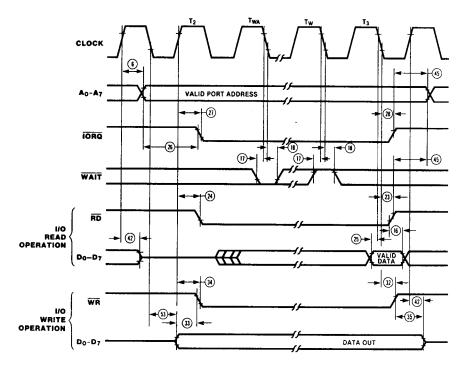
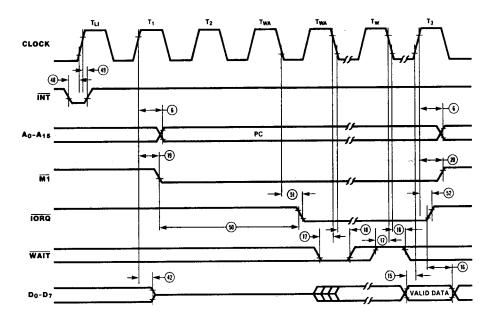



Figure 6. Memory Read or Write Cycles

Input or Output Cycles. Figure 7 shows the timing for an I/O read or I/O write operation. During I/O operations, the CPU automatically inserts a single Wait state (T_{WA}). This

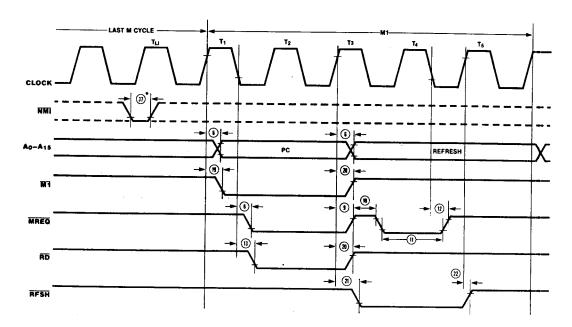
extra Wait state allows sufficient time for an 1/O port to decode the address from the port address lines.



T_{WA} = One wait cycle automatically inserted by CPU.

Figure 7. Input or Output Cycles

Interrupt Request/Acknowledge Cycle. The CPU samples the interrupt signal with the rising edge of the last clock cycle at the end of any instruction (Figure 8). When an interrupt is accepted, a special $\overline{\text{M1}}$ cycle is generated.


During this $\overline{\text{M1}}$ cycle, $\overline{\text{IORQ}}$ becomes active (instead of $\overline{\text{MREQ}}$) to indicate that the interrupting device can place an 8-bit vector on the data bus. The CPU automatically adds two Wait states to this cycle.

27

Non-Maskable Interrupt Request Cycle. NMI is sampled at the same time as the maskable interrupt input INT but has higher priority and cannot be disabled under software control. The subsequent timing is similar to that of a normal

memory read operation except that data put on the bus by the memory is ignored. The CPU instead executes a restart (RST) operation and jumps to the $\overline{\text{NMI}}$ service routine located at address 0066H (Figure 9).

^{*}Although NMI is an asynchronous input, to guarantee its being recognized on the following machine cycle, NMI's falling edge must occur no later than the rising edge of the clock cycle preceding the last state of any instruction cycle (T_{LI}).

Figure 9. Non-Maskable Interrupt Request Operation

ABSOLUTE MAXIMUM RATINGS

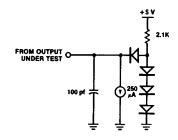
Voltage on V_{CC} with respect to $V_{SS} \dots -0.3V$ to $+7V$	
Voltages on all inputs with respect	
to V _{SS} – 0.3V to V _{CC} + 0.3V	
Operating Ambient	
Temperature See Ordering Information	
Storage Temperature 65°C to + 150°C	

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

STANDARD TEST CONDITIONS

The DC Characteristics and capacitance sections below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND (0V). Positive current flows into the referenced pin.

Available operating temperature ranges are:


■ S = 0°C to +70°C Voltage Supply Range:

NMOS: +4.75V ≤ VCC ≤ +5.25V CMOS: +4.50V ≤ VCC ≤ +5.50V

■ E= -40° C to 100° C, +4.50V \leq VCC \leq +5.50V

All ac parameters assume a load capacitance of 100 pf. Add 10 ns delay for each 50 pf increase in load up to a maximum of 200 pf for the data bus and 100 pf for address and control lines. AC timing measurements are referenced to 1.5 volts (except for clock, which is referenced to the 10% and 90% points).

The Ordering Information section lists temperature ranges and product numbers. Package drawings are in the Package Information section. Refer to the Literature List for additional documentation.

AC CHARACTERISTICS† (Z84C00/CMOS Z80 CPU)

 V_{cc} =5.0V \pm 10%, unless otherwise specified

			Z84C0004		*Z84	C0006	784	C0008	Z840	C0010	784	C0020[1]	Unit	Note
No	Symbol	Parameter		Max		Max		Max	Min	Max	Min		OH	:40(6
1	TcC	Clock Cycle time	250	, DC	162	DC	125	DC	100*	DC	50*	DC	nS	
2	TwCh	Clock Pulse width (high)	110	DC	65	DC	55	DC	40	DC	20	DC	nS	
3	TwCi	Clock Pulse width (low)		DC	65	DC	55	DC	40	DC	20	DC	nS	
4	TfC	Clock Fall time		30		20		10		10		10	nS	
5	TrC	Clock Rise time		30		20		10		10		10	nS	
6	TdCr(A)	Address vaild from Clock Rise	i	110		90		80		65		57	nS	[2]
7	TdA(MREQf)	Address valid to /MREQ Fall	65*		35*		20*		5*		-15*		nS	
8	TdCf(MREQf)	Clock Fail to MREQ Fail delay		85		70		60		55		40	nS	
9	TdCr(MREQr)	Clock Rise to /MREQ Rise delay		85		70		60		55		40	nS	
10	TwMREQh	/MREQ pulse width (High)	110*		65*		45**		30*		10*		nS	[3]
	TwMREQI	/MREQ pulse width (low)	220*		132*		100*		75*		25*		nS	[3]
		Clock Fall to MREQ Rise delay		85		70		60		55		40	nS	• •
	TdCf(RDf)	Clock Fall to /RD Fall delay		95		80		70		6 5		40	nS	
	TdCr(RDr)	Clock Rise to /RD Rise delay		85		70		60		55		40	nS	
15	TsD(Cr)	Data setup time to Clock Rise	35		30		30		25		12		nS	
	ThD(RDr)	Data hold time after /RD Rise	0		0		0		0		0		nS	
	TsWAIT(Cf)	WAIT setup time to Clock Fall	70		60		50		20		7.5		nS	
	ThWAIT(Cf)	WAIT hold time after Clock Fall	10		10		10		10		10		nS	
	TdCr(M1f)	Clock Rise to /M1 Fall delay		100		80	•	70		65		4 5	nS	
20	TdCr(M1r)	Clock Rise to /M1 Rise delay		100		80		70		6 5		4 5	nS	
	TdCr(RFSHf)	Clock Rise to /RFSH Fall delay		130		110		95		80		60	nS	
	TdCr(RFSHr)	Clock Rise to /RFSH Rise delay		120		100		85		80		60	nS	
	TdCf(RDr)	Clock Fall to /RD Rise delay		85		70		60		55		40	nS	
	TdCr(RDf)	Clock Rise to /RD Fall delay		85		70		60		5 5		40	nS	
25	TsD(Cf)	Data setup to Clock Fall during												
		M2, M3, M4 or M5 cycles	50		40		30		25		12		nS	
26	TdA(IORQf)	Address stable prior to /IORQ Fall	180*		107*		75*		50*		0*		nS	
27	TdCr(IORQf)	Clock Rise to /IORQ Fall delay		75		65 .		55		50		40	nS	
28	TdCf(IORQr)	Clock Fall to /IORQ Rise delay		85		70		60		55		40 '	nS	
29	TdD(WRf)Mw	Data stable prior to /WR Fall	80*		22*		5*		40 *		-10*		nS	
30	TdCf(WRf)	Clock Fall to /WR Fall delay		80		70	···	60		55		40	nS	
31	TwWR	MR pulse width	220*		132*		100*		75*		25*		nS	
32	TdCf(WRr)	Clock Fall to MR Rise delay		80		70		60		55		40	nS	
33	TdD(WRf)IO	Data stable prior to /WR Fall	-10*		-55*		-55*		-10*		-30*		nS	
34	TdCr(WRf)	Clock Rise to /WR Fall delay		6 5		60		60		50		40	nS	
35	TdWRr(D)	Data stable from MR Rise	60*		30*		15*		10*		0*		nS	
6	TdCf(HALT)	Clock Fall to /HALT 'L' or 'H'		300		260		225		90		70	nS	
	TwnM!	/NMI pulse width	80		60		60		60		60		nS	
8	TsBUSREQ	/BUSREQ setup time	50		50		40		30		15		nS	
((Cr)	to Clock Rise												

^{*}For clock periods other than the minimums shown, calculate parameters using the table on the following page. Calculated values above assumed TrC = TfC = 20 ns.

[†]Units in nanoseconds (ns). †† For loading ≥ 50 pf. Decrease width by 10 ns for each additional 50 pf...

^{**4} MHz CMOS Z80 is obsoleted and replaced by 6 MHz

AC CHARACTERISTICS[†] (Z8400/NMOS Z80 CPU)

			Z084	0004	Z08 4	0006	Z084	8000
Number	Symbol	Parameter	Min	Max	Min	Max	Min	Max
1	TcC	Clock Cycle Time	250*		162*		125*	
2	TwCh	Clock Pulse Width (High)	110	2000	6 5	2000	55	2000
3	TwCl	Clock Pulse Width (Low)	110	2000	65	2000	55	2000
4	TfC	Clock Fall Time		30		20		10
5	TrC	Clock Rise Time		30		20		10
6	TdCr(A)	Clock † to Address Valid Delay		110		90		80
7	TdA(MREQf)	Address Valid to MREQ ↓ Delay	65*		35*		20*	
8	TdCf(MREQf)	Clock I to MREQ I Delay		85		70		60
9	TdCr(MREQr)	Clock f to MREQ f Delay		85		70		60
10	TwMREQh	MREQ Pulse Width (High)	110**	Ħ	65**	Ħ	45*1	+
11	Twmreqi	MREQ Pulse Width (Low)	220*	Ħ	135*1	i	100*1	+
12	TdCf(MREQr)	Clock I to MREQ ↑ Delay		85		70		60
13	TdCf(RDf)	Clock I to RD I Delay		95		80		70
14	TdCr(RDr)	Clock † to RD † Delay		85		70		60
15	TsD(Cr)	Data Setup Time to Clock †	35		30		30	
16	ThD(RDr)	Data Hold Time to RD †		0		0		0
17	TsWAIT(Cf)	WAIT Setup Time to Clock ↓	70		60		50	
18	ThWAIT(Cf)	WAIT Hold Time after Clock ↓		0		0		0
19	TdCr(M1f)	Clock † to M1 ↓ Delay		100		80		70
20	TdCr(M1r)	Clock † to M1 † Delay		100		80		70
21	TdCr(RFSHf)	Clock ↑ to RFSH ↓ Delay		130		110		95
22	TdCr(RFSHr)	Clock to RFSH t Delay		120		100		85
23	TdCf(RDr)	Clock I to RD ↑ Delay		85		70		60
24	TdCr(RDf)	Clock † to RD ↓ Delay		85		70		60
25	TsD(Cf)	Data Setup to Clock ↓ during M ₂ , M ₃ , M ₄ , or M ₅ Cycles	50		40		30	
26	TdA(IORQf)	Address Stable prior to IORQ ↓	180*		110*		75*	
27	TdCr(IORQf)	Clock † to IORQ ↓ Delay		75		65		55
28	TdCf(IORQr)	Clock to IORQ ↑ Delay		85		70		.60
29	TdD(WRf)	Data Stable prior to WR ↓	80*		25*		5*	
30	TdCf(WRf)	Clock ∮ to WR ∮ Delay		80		70		60
31	TwWR	WR Pulse Width	220*		135*		100*	
32	TdCf(WRr)	Clock ↓ to WR↑ Delay		80		70		60
· 33	TdD(WRf)	Data Stable prior to WR ↓	−10 *		-55*		55*	
34	TdCr(WRf)	Clock † to WR ↓ Delay		65		60		55
35	TdWRr(D)	Data Stable from WR †	60*		30*		15*	
36	TdCf(HALT)	Clock ↓ to HALT ↑ or ↓		300		260		225
37	TwNMI	NMI Pulse Width	80		70		60*	
38	TsBUSREQ(Cr)	BUSREQ Setup Time to Clock †	50		50		40	

^{*}For clock periods other than the minimums shown, calculate parameters using the table on the following page. Calculated values above assumed TrC = TrC = 20 ns.
†Units in nanoseconds (ns).

[#] For loading \geq 50 pf., Decrease width by 10 ns for each additional 50 pf.

Customer Support

For answers to technical questions about the product, documentation, or any other issues with Zilog's offerings, please visit Zilog's Knowledge Base at http://www.zilog.com/kb.

For any comments, detail technical questions, or reporting problems, please visit Zilog's Technical Support at http://support.zilog.com.

PS017801-0602 Customer Support