

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	36MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	51
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f101r6t6a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 45.	TS characteristics
Table 46.	VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch quad flat package mechanical data
Table 47.	LQFP64 - 64-pin, 10 x 10 mm low-profile guad flat
	package mechanical data
Table 48.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
	mechanical data
Table 49.	Package thermal characteristics
Table 50.	Ordering information scheme
Table 51.	Document revision history

Figure 40.	LQFP64 marking example (package top view)77
Figure 41.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline
Figure 42.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
	recommended footprint
Figure 43.	LQFP48 marking example (package top view)81
Figure 44.	LQFP64 P _D max vs. T _A

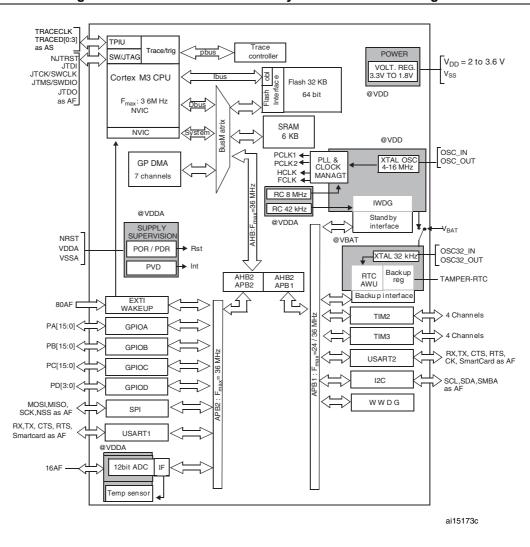


Figure 1. STM32F101xx Low-density access line block diagram

1. AF = alternate function on I/O port pin.

2. $T_A = -40$ °C to +85 °C (junction temperature up to 105 °C).

higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

Refer to Table 10: Embedded reset and power control block characteristics for the values of $V_{POR/PDR}$ and V_{PVD} .

2.3.11 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR) and power down.

- MR is used in the nominal regulation mode (Run)
- LPR is used in the Stop mode
- Power down is used in Standby mode: the regulator output is in high impedance: the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost)

This regulator is always enabled after reset. It is disabled in Standby mode, providing high impedance output.

2.3.12 Low-power modes

The STM32F101xx Low-density access line supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Stop mode

Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode.

The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output or the RTC alarm.

Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.

The device exits Standby mode when an external reset (NRST pin), a IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode.

2.3.13 DMA

The flexible 7-channel general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management avoiding the generation of interrupts when the controller reaches the end of the buffer.

DocID15058 Rev 6

F	Pins				, _		Alternate funct	ions ⁽³⁾⁽⁴⁾
LQFP48	LQFP64	VFQFPN36	Pin name	Type ⁽¹⁾	I / O level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
1	1	-	V _{BAT}	S	-	V _{BAT}	-	-
2	2	-	PC13-TAMPER- RTC ⁽⁵⁾	I/O	-	PC13 ⁽⁶⁾	TAMPER-RTC	-
3	3	-	PC14-OSC32_IN ⁽⁵⁾	I/O	-	PC14 ⁽⁶⁾	OSC32_IN	-
4	4	-	PC15-OSC32_OUT ⁽⁵⁾	I/O	-	PC15 ⁽⁶⁾	OSC32_OUT	-
5	5	2	OSC_IN	-	-	OSC_IN	-	-
6	6	3	OSC_OUT	0	-	OSC_OUT	-	-
7	7	4	NRST	I/O	-	NRST	-	-
-	8	-	PC0	I/O	-	PC0	ADC_IN10	-
-	9	-	PC1	I/O	-	PC1	ADC_IN11	-
-	10	-	PC2	I/O	-	PC2	ADC_IN12	-
-	11	-	PC3	I/O	-	PC3	ADC_IN13	-
8	12	5	V _{SSA}	S	-	V _{SSA}	-	-
9	13	6	V _{DDA}	S	-	V _{DDA}	-	-
10	14	7	PA0-WKUP	I/O	-	PA0	WKUP/USART2_CTS/ ADC_IN0/ TIM2_CH1_ETR ⁽⁷⁾	-
11	15	8	PA1	I/O	-	PA1	USART2_RTS/ ADC_IN1/TIM2_CH2 ⁽⁷⁾	-
12	16	9	PA2	I/O	-	PA2	USART2_TX/ ADC_IN2/TIM2_CH3 ⁽⁷⁾	-
13	17	10	PA3	I/O	-	PA3	USART2_RX/ ADC_IN3/TIM2_CH4 ⁽⁷⁾	-
-	18	-	V _{SS_4}	S	-	V _{SS_4}	-	-
-	19	-	V _{DD_4}	S	-	V_{DD_4}	-	
14	20	11	PA4	I/O	-	PA4	SPI_NSS ⁽⁷⁾ /ADC_IN4 USART2_CK	-
15	21	12	PA5	I/O	-	PA5	SPI_SCK ⁽⁷⁾ /ADC_IN5	-
16	22	13	PA6	I/O	-	PA6	SPI_MISO ⁽⁷⁾ /ADC_IN6/ TIM3_CH1 ⁽⁷⁾	-

1	Pins						Alternate functions ⁽³⁾⁽⁴⁾	
LQFP48	LQFP64	VFQFPN36	Pin name	Type ⁽¹⁾	I / O level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
37	49	28	PA14	I/O	FT	JTCK/SWCL K	-	PA14
38	50	29	PA15	I/O	FT	JTDI	-	TIM2_CH1_ETR/ PA15 / SPI_NSS
-	51	-	PC10	I/O	FT	PC10	-	-
-	52	-	PC11	I/O	FT	PC11	-	-
-	53	-	PC12	I/O	FT	PC12	-	-
5	5	2	PD0	I/O	FT	OSC_IN ⁽⁸⁾	-	-
6	6	3	PD1	I/O	FT	OSC_OUT ⁽⁸⁾	-	-
-	54	-	PD2	I/O	FT	PD2	TIM3_ETR	-
39	55	30	PB3	I/O	FT	JTDO	-	TIM2_CH2 / PB3 TRACESWO SPI_SCK
40	56	31	PB4	I/O	FT	NJTRST	-	TIM3_CH1 / PB4 SPI_MISO
41	57	32	PB5	I/O	-	PB5	I2C_SMBA	TIM3_CH2 / SPI_MOSI
42	58	33	PB6	I/O	FT	PB6	I2C_SCL ⁽⁷⁾	USART1_TX
43	59	34	PB7	I/O	FT	PB7	I2C_SDA ⁽⁷⁾	USART1_RX
44	60	35	BOOT0	I	-	BOOT0	-	
45	61	-	PB8	I/O	FT	PB8	-	I2C_SCL
46	62	-	PB9	I/O	FT	PB9	-	I2C_SDA
47	63	36	V _{SS_3}	S	-	V _{SS_3}	-	-
48	64	1	V _{DD_3}	S	-	V _{DD_3}	-	-

Table 4. Low-densit	v STM32F101xx pin	definitions	(continued)
	, • · · · · • · · · · · · · · · · · · ·		(0011011000)

1. I = input, O = output, S = supply.

2. FT= 5 V tolerant.

3. Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower number of peripherals that is included. For example, if a device has only one SPI, two USARTs and two timers, they will be called SPI, USART1 & USART2 and TIM2 & TIM 3, respectively. Refer to *Table 2 on page 11*.

4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).

5. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED).

DocID15058 Rev 6

5.3.4 Embedded reference voltage

The parameters given in *Table 11* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT}	Internal reference voltage	–40 °C < T _A < +85 °C	1.16	1.20	1.24	V
T _{S_vrefint} ⁽¹⁾	ADC sampling time when reading the internal reference voltage	-	-	5.1	17.1 ⁽²⁾	μs
V _{RERINT} ⁽²⁾	Internal reference voltage spread over the temperature range	V _{DD} = 3 V ±10 mV	-	-	10	mV
T _{Coeff} ⁽²⁾	Temperature coefficient	-	-	-	100	ppm/ °C

1. Shortest sampling time can be determined in the application by multiple iterations.

2. Guaranteed by design, not tested in production.

5.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 11: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code.

Maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except if it is explicitly mentioned
- The Flash access time is adjusted to f_{HCLK} frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 36 MHz)
- Prefetch in on (reminder: this bit must be set before clock setting and bus prescaling)
- When the peripherals are enabled $f_{PCLK1} = f_{HCLK/2}$, $f_{PCLK2} = f_{HCLK}$

The parameters given in *Table 12* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*.

Symbol	Parameter	Conditions	fнськ	Max ⁽¹⁾	l lució
				T _A = 85 °C	Unit
			36 MHz	26	
	Supply current in Run mode	External clock ⁽²⁾ , all peripherals enabled	24 MHz	18	- mA
			16 MHz	13	
			8 MHz	7	
IDD		External clock ⁽²⁾ , all peripherals Disabled	36 MHz	19	
			24 MHz	13	
			16 MHz	10	
			8 MHz	6	

Table 12. Maximum current consumption in Run mode, code with data processingrunning from Flash

1. Based on characterization, not tested in production.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

Table 13. Maximum current consumption in Run mode, code with data processing
running from RAM

Symbol	Parameter	Conditions	fнсlк	Max ⁽¹⁾	Unit
				T _A = 85 °C	oint
			36 MHz	20	
	Supply current in Run mode	External clock ⁽²⁾ , all peripherals enabled	24 MHz	14	- mA
			16 MHz	10	
			8 MHz	6	
IDD		External clock ⁽²⁾ all peripherals disabled	36 MHz	15	
			24 MHz	10	
			16 MHz	7	
			8 MHz	5	

1. Based on characterization, tested in production at $V_{\text{DD}}\,\text{max},\,f_{\text{HCLK}}\,\text{max}.$

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

Typical current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except if it is explicitly mentioned
- The Flash access time is adjusted to f_{HCLK} frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 36 MHz)
- Prefetch is on (reminder: this bit must be set before clock setting and bus prescaling)
- When the peripherals are enabled f_{PCLK1} = f_{HCLK/4}, f_{PCLK2} = f_{HCLK/2}, f_{ADCCLK} = f_{PCLK2}/4

The parameters given in *Table 16* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*.

		Conditions		Typ ⁽¹⁾	Typ ⁽¹⁾	
Symbol	Parameter		fhclk	All peripherals enabled ⁽²⁾	All peripherals disabled	Unit
			36 MHz	17.2	13.8	
			24 MHz	11.2	8.9	
			16 MHz	8.1	6.6	
			8 MHz	5	4.2	
		External clock ⁽³⁾	4 MHz	3	2.6	
	Supply current in Run mode		2 MHz	2	1.8	
			1 MHz	1.5	1.4	
			500 kHz	1.2	1.2	
			125 kHz	1.05	1	mA
I _{DD}		Running on high speed internal RC	36 MHz	16.5	13.1	
			24 MHz	10.5	8.2	
			16 MHz	7.4	5.9	
			8 MHz	4.3	3.6	
		(HSI), AHB prescaler	4 MHz	2.4	2	
		used to	2 MHz	1.5	1.3	
		reduce the frequency	1 MHz	1	0.9	1
		nequency	500 kHz	0.7	0.65]
			125 kHz	0.5	0.45]

Table 16. Typical current consumption in Run mode, code with data processing
running from Flash

1. Typical values are measures at T_A = 25 °C, V_{DD} = 3.3 V.

2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).

3. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

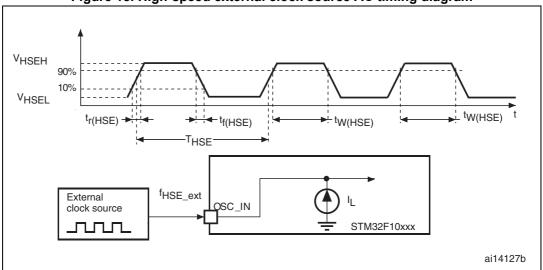
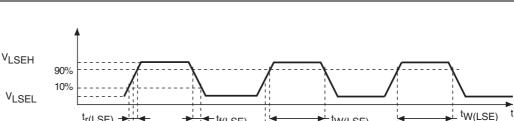



Figure 18. High-speed external clock source AC timing diagram

^{-t}W(LSE)

l

STM32F10xxx

Figure 19. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

tf(LSE)

OSC32 IN

TLSE

^fLSE_ext

tr(ISF)

External

clock source ллл

The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 21. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

ai14140c

Symbol	Parameter		Unit		
Symbol	Falameter	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{LOCK}	PLL lock time	-	-	200	μs
Jitter	Cycle-to-cycle jitter	-	-	300	ps

Table 26. PLL characteristics (continued)

1. Based on device characterization, not tested in production.

2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by f_PLL_OUT.

5.3.9 Memory characteristics

Flash memory

The characteristics are given at $T_A = -40$ to 85 °C unless otherwise specified.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	16-bit programming time	$T_A = -40$ to +85 °C	40	52.5	70	μs
t _{ERASE}	Page (1 KB) erase time	$T_A = -40$ to +85 °C	20	-	40	ms
t _{ME}	Mass erase time	T _A = -40 to +85 °C	20	-	40	ms
I _{DD}		Read mode f_{HCLK} = 36 MHz with 1 wait state, V _{DD} = 3.3 V		-	20	mA
	Supply current	Write / Erase modes f _{HCLK} = 36 MHz, V _{DD} = 3.3 V	-	-	5	mA
		Power-down mode / Halt, V _{DD} = 3.0 to 3.6 V	-	-	50	μA
V _{prog}	Programming voltage	-	2	-	3.6	V

1. Guaranteed by design, not tested in production.

5.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (Electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- **FTB**: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

5.3.13 I/O port characteristics

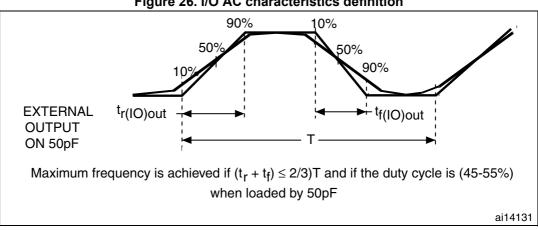
General input/output characteristics

Unless otherwise specified, the parameters given in *Table 33* are derived from tests performed under the conditions summarized in *Table 8*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
V	Standard IO input low level voltage		-0.3	-	0.28*(V _{DD} -2 V)+0.8 V ⁽¹⁾		
V _{IL}	IO FT ⁽²⁾ input low level voltage	-	-0.3	-	0.32*(V _{DD} -2 V)+0.75 V ⁽¹⁾		
	Standard IO input high level voltage	-	0.41*(V _{DD} -2 V)+1.3 V ⁽¹⁾	-	V _{DD} +0.3	V	
V _{IH}	IO FT ⁽²⁾ input high	V _{DD} > 2 V	0.42*(1/2)(1)		5.5		
	level voltage	$V_{DD} \le 2 V$	0.42*(V _{DD} -2 V)+1 V ⁽¹⁾		5.2		
V _{hys}	Standard IO Schmitt trigger voltage hysteresis ⁽³⁾	-	200	-	-	mV	
	IO FT Schmitt trigger voltage hysteresis ⁽³⁾	-	5% V _{DD} ⁽⁴⁾	-	-		
1	Input leakage current	$V_{SS} \le V_{IN} \le V_{DD}$ Standard I/Os	-	-	±1		
l _{lkg}	(5)	V _{IN} = 5 V I/O FT	-	-	3	- μΑ	
R _{PU}	Weak pull-up equivalent resistor ⁽⁶⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ	
R _{PD}	Weak pull-down equivalent resistor ⁽⁶⁾	$V_{IN} = V_{DD}$	30	40	50	K22	
C _{IO}	I/O pin capacitance	-	-	5	-	pF	

1. Data based on design simulation.

2. FT = Five-volt tolerant. In order to sustain a voltage higher than V_{DD} +0.3 the internal pull-up/pull-down resistors must be disabled.


3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.

4. With a minimum of 100 mV.

5. Leakage could be higher than max. if negative current is injected on adjacent pins.

 Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimum (~10% order).

Figure 26. I/O AC characteristics definition

5.3.14 **NRST** pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see Table 33).

Unless otherwise specified, the parameters given in Table 36 are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in Table 8.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST Input low level voltage	-	-0.5	-	0.8	V
V _{IH(NRST)} ⁽¹⁾	NRST Input high level voltage	-	2	-	V _{DD} +0.5	v
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
V _{F(NRST)} ⁽¹⁾	NRST Input filtered pulse	-	-	-	100	ns
V _{NF(NRST)} ⁽¹⁾	NRST Input not filtered pulse	_	300	-	-	ns

Table 36. NRST pin characteristics

1. Guaranteed by design, not tested in production.

The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to 2. the series resistance must be minimum (~10% order).

SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 40* are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 8*.

Refer to Section 5.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{SCK}	SPI clock frequency	Master mode	0	18	
1/t _{c(SCK)}	SPI Clock frequency	Slave mode	0	18	MHz
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C = 30 pF		8	
t _{su(NSS)} ⁽¹⁾	NSS setup time	Slave mode	4 t _{PCLK}	-	
t _{h(NSS)} ⁽¹⁾	NSS hold time	Slave mode	73	-	
t _{w(SCKH)} (1) t _{w(SCKL)} (1)	SCK high and low time	Master mode, f _{PCLK} = 36 MHz, presc = 4	50	60	
t _{su(MI)} ⁽¹⁾	Data input setup time Master mode	SPI	1	-	
t _{su(SI)} ⁽¹⁾	Data input setup time Slave mode	-	1	-	
t _{h(MI)} ⁽¹⁾	Data input hold time Master mode	SPI	1	-	
t _{h(SI)} ⁽¹⁾	Data input hold time Slave mode	-	3	-	
t _{a(SO)} ⁽¹⁾⁽²⁾	Data output access time	Slave mode, f _{PCLK} = 36 MHz, presc = 4	0	55	ns
		Slave mode, f _{PCLK} = 24 MHz	0	4 t _{PCLK}	
t _{dis(SO)} ⁽¹⁾⁽³⁾	Data output disable time	Slave mode	10		
t _{v(SO)} ⁽¹⁾	Data output valid time	Slave mode (after enable edge)	-	25	
t _{v(MO)} ⁽¹⁾	Data output valid time	Master mode (after enable edge)	-	3	
t _{h(SO)} ⁽¹⁾		Slave mode (after enable edge)	25	-	
t _{h(MO)} ⁽¹⁾	Data output hold time	Master mode (after enable edge)	4	-	

1. Based on characterization, not tested in production.

2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z

5.3.17 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 41* are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 8*.

Note: It is recommended to perform a calibration after each power-up.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{DDA}	Power supply	-	2.4	-	3.6	V
f _{ADC}	ADC clock frequency	-	0.6	-	14	MHz
f _S ⁽¹⁾	Sampling rate	-	0.043	-	1	MHz
f _{TRIG} ⁽¹⁾	External trigger frequency	f _{ADC} = 14 MHz	-	-	823	kHz
ITRIG` ′	External ingger requercy	-	-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range ⁽²⁾	-	0 (V _{SSA} or V _{REF-} tied to ground)	-	V _{REF+}	V
R _{AIN} ⁽¹⁾	External input impedance	See <i>Equation 1</i> and <i>Table 42</i> for details	-	-	50	κΩ
R _{ADC} ⁽¹⁾	Sampling switch resistance	-	-	-	1	кΩ
C _{ADC} ⁽¹⁾	Internal sample and hold capacitor	-	-	-	8	pF
+ (1)	Calibration time	f _{ADC} = 14 MHz	5.9			μs
$t_{CAL}^{(1)}$		-	83		1/f _{ADC}	
t _{lat} (1)	Injection trigger conversion	f _{ADC} = 14 MHz	-	-	0.214	μs
^u lat` '	latency	-	-	-	3 ⁽³⁾	1/f _{ADC}
t _{latr} (1)	Regular trigger conversion	f _{ADC} = 14 MHz	-	-	0.143	μs
^l latr` ′	latency	-	-	-	2 ⁽³⁾	1/f _{ADC}
ts ⁽¹⁾	Sampling time	f - 14 MU7	0.107	-	17.1	μs
LS(1)	Sampling time	f _{ADC} = 14 MHz	1.5	-	239.5	1/f _{ADC}
t _{STAB} ⁽¹⁾	Stabilization time	-	14		1/f _{ADC}	
	Total conversion time	f _{ADC} = 14 MHz	1	-	18	μs
t _{CONV} ⁽¹⁾	Total conversion time (including sampling time)	-	14 to 252 (t _S for sampling +12.5 for successive approximation)		1/f _{ADC}	

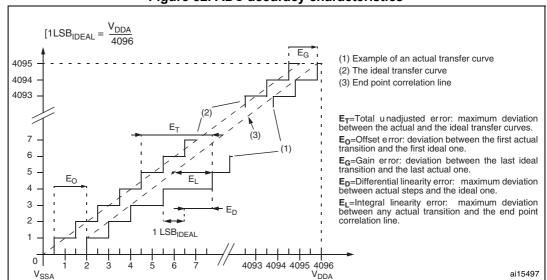
Table	41.	ADC	characteristics
Iabio			

1. Guaranteed by design, not tested in production.

2. V_{REF+} is internally connected to V_{DDA} and V_{REF-} is be internally connected to V_{SSA} .

3. For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in Table 41.

Symbol	Parameter	Test conditions	Тур	Max ⁽⁴⁾	Unit				
ET	Total unadjusted error	f_{PCLK2} = 28 MHz, f_{ADC} = 14 MHz, R_{AIN} < 10 k Ω V_{DDA} = 2.4 V to 3.6 V Measurements made after ADC calibration	±2	±5					
EO	Offset error		±1.5	±2.5					
EG	Gain error		±1.5	±3	LSB				
ED	Differential linearity error		±1	±2					
EL	Integral linearity error		±1.5	±3					


Table 44. ADC accuracy^{(1) (2) (3)}

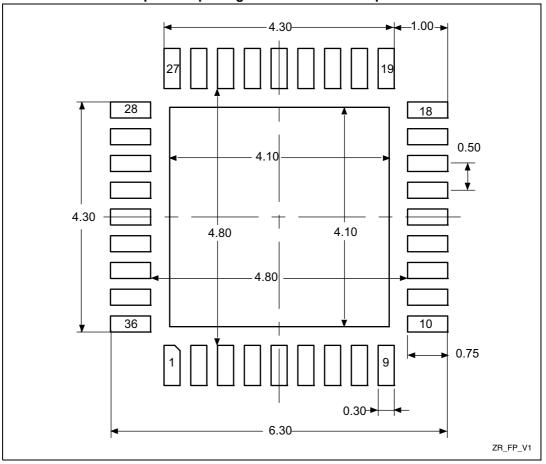
1. ADC DC accuracy values are measured after internal calibration.

2. Better performance could be achieved in restricted V_{DD} , frequency and temperature ranges.

3. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 5.3.12 does not affect the ADC accuracy.

4. Based on characterization, not tested in production.

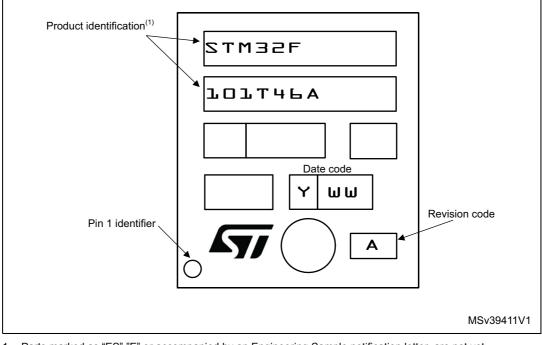
Figure 32. ADC accuracy characteristics



Symbol	millimeters			inches ⁽¹⁾		
	А	0.800	0.900	1.000	0.0315	0.0354
A1	-	0.020	0.050	-	0.0008	0.0020
A2	-	0.650	1.000	-	0.0256	0.0394
A3	-	0.200	-	-	0.0079	-
b	0.180	0.230	0.300	0.0071	0.0091	0.0118
D	5.875	6.000	6.125	0.2313	0.2362	0.2411
D2	1.750	3.700	4.250	0.0689	0.1457	0.1673
Е	5.875	6.000	6.125	0.2313	0.2362	0.2411
E2	1.750	3.700	4.250	0.0689	0.1457	0.1673
е	0.450	0.500	0.550	0.0177	0.0197	0.0217
L	0.350	0.550	0.750	0.0138	0.0217	0.0295
К	0.250	-	-	0.0098	-	-
ddd	-	-	0.080	-	-	0.0031

Table 46. VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitchquad flat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.


Figure 36. VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

Device Marking for VFQFPN36

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Date	Revision	Changes	
19-Apr-2011	5	Updated footnotes below Table 5: Voltage characteristics on page 30 Table 6: Current characteristics on page 31 Updated tw min in Table 19: High-speed external user clock characteristics on page 43 Updated startup time in Table 22: LSE oscillator characteristics (fLSE 32.768 kHz) on page 46 Added Section 5.3.12: I/O current injection characteristics Updated Section 5.3.13: I/O port characteristics	
25-Sep-2015	6	 Updated: All GPIOs are high current' in Section 2.3.22: GPIOs (general- purpose inputs/outputs) first sentence in Output driving current Table 2: Low-density STM32F101xx device features and peripheral counts, Table 4: Low-density STM32F101xx pin definitions, Table 6: Current characteristics Table 8: General operating conditions Table 18: Peripheral current consumption notes in Table 38: I2C characteristics note 2. in Table 44: ADC accuracy title of Table 39: SCL frequency (fPCLK1= MHz, VDD_I2C = 3.3 V) reference for 'V_{ESD(CDM)}' in Table 30: ESD absolute maximum ratings Table 49: Package thermal characteristics, Figure 28: I2C bus AC waveforms and measurement circuit(1) Added note 5. in Table 23: HSI oscillator characteristics Figure 40: LQFP64 marking example (package top view) Figure 43: LQFP48 marking example (package top view) Figure 43: LQFP48 marking example (package top view) Corrected Corrected 'tf(IO)out' in Figure 26: I/O AC characteristics definition Sigma letter in Section 5.1.1: Minimum and maximum values Removed UFDFPN48 package First sentence in Section 5.3.16: Communications interfaces 	

Table 51. Document revision history (continued)

