

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	36MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	26
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-VFQFN Exposed Pad
Supplier Device Package	36-VFQFPN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f101t4u6atr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Figures

Figure 1.	STM32F101xx Low-density access line block diagram	. 12
Figure 2.	Clock tree	. 13
Figure 3.	STM32F101xx Low-density access line LQFP64 pinout	. 21
Figure 4.	STM32F101xx Low-density access line LQFP48 pinout	. 21
Figure 5.	STM32F101xx Low-density access line UFQPFN48 pinout	. 22
Figure 6.	STM32F101xx Low-density access line VFQPFN36 pinout	. 22
Figure 7.	Memory map	. 27
Figure 8.	Pin loading conditions.	. 29
Figure 9.	Pin input voltage	. 29
Figure 10.	Power supply scheme.	. 29
Figure 11.	Current consumption measurement scheme	. 30
Figure 12.	Typical current consumption in Run mode versus frequency (at 3.6 V) -	
-	code with data processing running from RAM, peripherals enabled.	. 36
Figure 13.	Typical current consumption in Run mode versus frequency (at 3.6 V) -	
-	code with data processing running from RAM, peripherals disabled	. 36
Figure 14.	Typical current consumption on V _{BAT} with RTC on versus temperature at different	
C	V _{BAT} values	. 38
Figure 15.	Typical current consumption in Stop mode with regulator in Run mode	
U	versus temperature at V_{DD} = 3.3 V and 3.6 V	. 38
Figure 16.	Typical current consumption in Stop mode with regulator in Low-power mode versus	
U	temperature at V_{DD} = 3.3 V and 3.6 V	. 39
Figure 17.	Typical current consumption in Standby mode versus temperature at V_{DD} = 3.3 V and	
5	3.6 V	. 39
Figure 18.	High-speed external clock source AC timing diagram	. 44
Figure 19.	Low-speed external clock source AC timing diagram	. 44
Figure 20.	Typical application with an 8 MHz crystal.	. 45
Figure 21.	Typical application with a 32.768 kHz crystal	. 47
Figure 22.	Standard I/O input characteristics - CMOS port	. 54
Figure 23.	Standard I/O input characteristics - TTL port	. 54
Figure 24.	5 V tolerant I/O input characteristics - CMOS port	. 55
Figure 25.	5 V tolerant I/O input characteristics - TTL port	. 55
Figure 26.	I/O AC characteristics definition	. 58
Figure 27.	Recommended NRST pin protection	. 59
Figure 28.	I ² C bus AC waveforms and measurement circuit ⁽¹⁾	. 62
Figure 29.	SPI timing diagram - slave mode and CPHA = 0	. 64
Figure 30.	SPI timing diagram - slave mode and CPHA = 1 ⁽¹⁾	. 64
Figure 31.	SPI timing diagram - master mode ⁽¹⁾	. 65
Figure 32.	ADC accuracy characteristics	. 68
Figure 33.	Typical connection diagram using the ADC	. 69
Figure 34.	Power supply and reference decoupling	. 69
Figure 35.	VFQFPN36 - 36-pin. 6x6 mm. 0.5 mm pitch very thin profile fine pitch	
0	guad flat package outline	. 71
Figure 36.	VFQFPN36 - 36-pin. 6x6 mm. 0.5 mm pitch very thin profile fine pitch	
	guad flat package recommended footprint	. 73
Figure 37	VFQFPN36 marking example (package top view)	. 74
Figure 38	LQFP64 - 64-pin, 10 x 10 mm low-profile guad flat package outline	. 75
Figure 39	LQFP64 - 64-pin, 10 x 10 mm low-profile guad flat package	-
<u>J</u> = = = = =	recommended footprint.	. 76
		-

Figure 40.	LQFP64 marking example (package top view)77
Figure 41.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline
Figure 42.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
	recommended footprint
Figure 43.	LQFP48 marking example (package top view)81
Figure 44.	LQFP64 P _D max vs. T _A

2 Description

The STM32F101x4 and STM32F101x6 Low-density access line family incorporates the high-performance ARM Cortex[®]-M3 32-bit RISC core operating at a 36 MHz frequency, high-speed embedded memories (Flash memory of 16 to 32 Kbytes and SRAM of 4 to 6 Kbytes), and an extensive range of enhanced peripherals and I/Os connected to two APB buses. All devices offer standard communication interfaces (one I²C, one SPI, and two USARTs), one 12-bit ADC and up to two general-purpose 16-bit timers.

The STM32F101xx Low-density access line family operates in the –40 to +85 °C temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications.

The STM32F101xx Low-density access line family includes devices in three different packages ranging from 36 pins to 64 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.

These features make the STM32F101xx Low-density access line microcontroller family suitable for a wide range of applications such as application control and user interface, medical and handheld equipment, PC peripherals, gaming and GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, Video intercoms, and HVACs.

^{1.} When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 36 MHz.

2. To have an ADC conversion time of 1 $\mu s,$ APB2 must be at 14 MHz or 28 MHz.

output compare, PWM or one pulse mode output. This gives up to 12 input captures / output compares / PWMs on the largest packages.

The general-purpose timers can work together via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. They all have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

2.3.19 I²C bus

The I²C bus interface can operate in multimaster and slave modes. It can support standard and fast modes.

It supports dual slave addressing (7-bit only) and both 7/10-bit addressing in master mode. A hardware CRC generation/verification is embedded. The interface can be served by DMA and it supports SM Bus 2.0/PM Bus.

2.3.20 Universal synchronous/asynchronous receiver transmitter (USART)

The available USART interfaces communicate at up to 2.25 Mbit/s. They provide hardware management of the CTS and RTS signals, support IrDA SIR ENDEC, are ISO 7816 compliant and have LIN Master/Slave capability.

The USART interfaces can be served by the DMA controller.

2.3.21 Serial peripheral interface (SPI)

The SPI interface is able to communicate up to 18 Mbit/s in slave and master modes in fullduplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.

The SPI interface can be served by the DMA controller.

2.3.22 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current-capable.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

2.3.23 ADC (analog to digital converter)

The 12-bit analog to digital converter has up to 16 external channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

I	Pins						Alternate functions ⁽³⁾⁽⁴⁾	
LQFP48	LQFP64	VFQFPN36	Pin name	Type ⁽¹⁾	I / O level ⁽²⁾	Main function ⁽³⁾ (after reset)	Main function ⁽³⁾ (after reset) Default	
17	23	14	PA7	I/O	-	PA7	SPI_MOSI ⁽⁷⁾ /ADC_IN7/ TIM3_CH2 ⁽⁷⁾	-
-	24	-	PC4	I/O	-	PC4	ADC_IN14	-
-	25	-	PC5	I/O	-	PC5	ADC_IN15	-
18	26	15	PB0	I/O	-	PB0	ADC_IN8/TIM3_CH3 ⁽⁷⁾	-
19	27	16	PB1	I/O	-	PB1	ADC_IN9/TIM3_CH4 ⁽⁷⁾	-
20	28	17	PB2	I/O	FT	PB2/BOOT1	-	-
21	29	-	PB10	I/O	FT	PB10	-	TIM2_CH3
22	30	-	PB11	I/O	FT	PB11	-	TIM2_CH4
23	31	18	V _{SS_1}	S	-	V _{SS_1}	-	-
24	32	19	V _{DD_1}	S	-	V _{DD_1}	-	-
25	33	-	PB12	I/O	FT	PB12	-	-
26	34	-	PB13	I/O	FT	PB13	-	-
27	35	-	PB14	I/O	FT	PB14	-	-
28	36	-	PB15	I/O	FT	PB15	-	-
-	37	-	PC6	I/O	FT	PC6	-	TIM3_CH1
-	38	-	PC7	I/O	FT	PC7	-	TIM3_CH2
-	39	-	PC8	I/O	FT	PC8	-	TIM3_CH3
-	40	-	PC9	I/O	FT	PC9	-	TIM3_CH4
29	41	20	PA8	I/O	FT	PA8	USART1_CK/MCO	-
30	42	21	PA9	I/O	FT	PA9	USART1_TX ⁽⁷⁾	-
31	43	22	PA10	I/O	FT	PA10	USART1_RX ⁽⁷⁾	-
32	44	23	PA11	I/O	FT	PA11	USART1_CTS	-
33	45	24	PA12	I/O	FT	PA12	USART1_RTS	-
34	46	25	PA13	I/O	FT	JTMS- SWDIO	-	PA13
35	47	26	V _{SS_2}	S	-	V _{SS_2}	-	-
36	48	27	V _{DD 2}	S	-	V _{DD 2}	-	-

Table 4. Low-density of work for A pin deminitions (continued)
--

- 6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com.
- This alternate function can be remapped by software to some other port pins (if available on the used package). For more
 details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available
 from the STMicroelectronics website: www.st.com.
- The pins number 2 and 3 in the VFQFPN36 package, and 5 and 6 in the LQFP48 and LQFP64 packages are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual.

4 Memory mapping

The memory map is shown in Figure 7.

Figure 7. Memory map

Symbol	Ratings	Max.	Unit
I _{VDD}	Total current into V_{DD}/V_{DDA} power lines (source) ⁽¹⁾	150	
I _{VSS}	I _{VSS} Total current out of V _{SS} ground lines (sink) ⁽¹⁾		
1	Output current sunk by any I/O and control pin	25	
IO	Output current source by any I/Os and control pin	-25	mA
ı (2)	Injected current on five volt tolerant pins ⁽³⁾	-5/+0	
INJ(PIN)	Injected current on any other pin ⁽⁴⁾	± 5	
$\Sigma I_{INJ(PIN)}$	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	± 25	

Table 6. Current characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. Negative injection disturbs the analog performance of the device. See note in Section 5.3.17: 12-bit ADC characteristics.

 Positive injection is not possible on these I/Os. A negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 5: Voltage characteristics* for the maximum allowed input voltage values.

 A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 5: Voltage characteristics* for the maximum allowed input voltage values.

5. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 7. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
Т _Ј	Maximum junction temperature	150	°C

5.3 Operating conditions

5.3.1 General operating conditions

Table 8. General operating conditions

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{HCLK}	Internal AHB clock frequency	-	0	36	
f _{PCLK1}	Internal APB1 clock frequency	-	0	36	MHz
f _{PCLK2}	Internal APB2 clock frequency	-	0	36	
V _{DD}	Standard operating voltage	-	2	3.6	
V _{DDA} ⁽¹⁾	Analog operating voltage (ADC not used)	Must be the same potential	2	3.6	
	Analog operating voltage (ADC used)	as V _{DD} ⁽²⁾	2.4	3.6	
V _{BAT}	Backup operating voltage	-	1.8	3.6]

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
		PLS[2:0]=000 (rising edge)	2.1	2.18	2.26		
		PLS[2:0]=000 (falling edge)	2	2.08	2.16		
		PLS[2:0]=001 (rising edge)	2.19	2.28	2.37		
		PLS[2:0]=001 (falling edge)	2.09	2.18	2.27		
		PLS[2:0]=010 (rising edge)	2.28	2.38	2.48		
		PLS[2:0]=010 (falling edge)	2.18	2.28	2.38		
		PLS[2:0]=011 (rising edge)	2.38	2.48	2.58		
V _{PVD}	Programmable voltage detector level selection	PLS[2:0]=011 (falling edge)	2.28	2.38	2.48	V	
		PLS[2:0]=100 (rising edge)	2.47	2.58	2.69		
		PLS[2:0]=100 (falling edge)	2.37	2.48	2.59		
		PLS[2:0]=101 (rising edge)	2.57	2.68	2.79		
		PLS[2:0]=101 (falling edge)	2.47	2.58	2.69		
		PLS[2:0]=110 (rising edge)	2.66	2.78	2.9		
		PLS[2:0]=110 (falling edge)	2.56	2.68	2.8		
		PLS[2:0]=111 (rising edge)	2.76	2.88	3		
		PLS[2:0]=111 (falling edge)	2.66	2.78	2.9		
V _{PVDhyst} ⁽²⁾	PVD hysteresis	-	-	100	-	mV	
V	Power on/power down	Falling edge	1.8 ⁽¹⁾	1.88	1.96	v	
V POR/PDR	reset threshold	Rising edge	1.84	1.92	2.0		
V _{PDRhyst} ⁽²⁾	PDR hysteresis	-	-	40	-	mV	
t _{RSTTEMPO} ⁽²⁾	Reset temporization	-	1.5	2.5	4.5	ms	

Table 10. Embedded reset and	power control block characteristics
------------------------------	-------------------------------------

1. The product behavior is guaranteed by design down to the minimum $V_{\text{POR/PDR}}$ value.

2. Guaranteed by design, not tested in production.

P	eripheral	Typical consumption at 25 °C	Unit
	DMA1	15.97	
AHB (up to 36 MHz)	CRC	1.67	
	BusMatrix ⁽¹⁾	8.33	
	APB1-Bridge	7.22	
	TIM2	33.33	
	TIM3	33.61	
	USART2	12.78	
APB1 (up to 18 MHz)	I2C1	10.83	
	WWDG	3.33	
	PWR	1.94	
	BKP	2.78	μΑνινιπΖ
	IWDG	1.39	
	APB2-Bridge	3.33	
	GPIO A	7.50	
	GPIO B	6.81	
	GPIO C	7.22	
	GPIO D	6.94	
	SPI1	4.86	
	USART1	12.78	
	ADC1 ⁽²⁾	15.54]

Table 18. Peripheral current consumption

1. The BusMatrix is automatically active when at least one master is ON. (CPU, DMA1).

Specific conditions for measuring ADC current consumption: f_{HCLK} = 28 MHz, f_{APB1} = f_{HCLK}, f_{APB2} = f_{HCLK}, f_{ADCCLK} = f_{APB2} / 2. When ADON bit in the ADC_CR2 register is set to 1, a current consumption of analog part equal to 0.7 mA must be added.

5.3.6 External clock source characteristics

High-speed external user clock generated from an external source

The characteristics given in *Table 19* result from tests performed using an high-speed external clock source, and under the ambient temperature and supply voltage conditions summarized in *Table 8*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	16	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
С	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 Ω	-	30	-	pF
i ₂	HSE driving current	V_{DD} = 3.3 V, V_{IN} = V_{SS} with 30 pF load	-	-	1	mA
9 _m	Oscillator transconductance	Startup	25	-	-	mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	2	-	ms

 Table 21. HSE 4-16 MHz oscillator characteristics⁽¹⁾⁽²⁾

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Based on characterization, not tested in production.

 The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.

 t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 20*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} . Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website *www.st.com*.

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 22*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization

5.3.11 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Symbol	Ratings	Conditions		Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \ ^{\circ}C$ conforming to JESD22-A114	2	2000	
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25 \ ^{\circ}C$ conforming to ANSI/ESD STM5.3.1	II	500	V

Table 30.	ESD	absolute	maximum	ratings
-----------	-----	----------	---------	---------

1. Based on characterization results, not tested in production.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78 IC latch-up standard.

Table 31. Electrical sensitivities

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +85 \text{ °C conforming to JESD78A}$	II level A

5.3.12 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibilty to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation).

The test results are given in *Table 32*

			-)	
		Functional s		
Symbol	Description	Negative injection	Positive injection	Unit
	Injected current on OSC_IN32, OSC_OUT32, PA4, PA5, PC13	-0	+0	
I _{INJ}	Injected current on all FT pins	-5	+0	mA
	Injected current on any other pin	-5	+5	

Table 32. I/O current injection susceptibility

SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 40* are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 8*.

Refer to Section 5.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions	Min	Max	Unit
f _{SCK}	SPI clock froquency	Master mode	0	18	MHz
1/t _{c(SCK)}	SFI Clock liequency	Slave mode	0	18	
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C = 30 pF		8	
t _{su(NSS)} ⁽¹⁾	NSS setup time	Slave mode	4 t _{PCLK}	-	
t _{h(NSS)} ⁽¹⁾	NSS hold time	Slave mode	73	-	
t _{w(SCKH)} (1) t _{w(SCKL)} (1)	SCK high and low time	Master mode, f _{PCLK} = 36 MHz, presc = 4	50	60	
t _{su(MI)} ⁽¹⁾	Data input setup time Master mode	SPI	1	-	
t _{su(SI)} ⁽¹⁾	Data input setup time Slave mode	-	1	-	
t _{h(MI)} ⁽¹⁾	Data input hold time Master mode	SPI	1	-	
t _{h(SI)} ⁽¹⁾	Data input hold time Slave mode	-	3	-	
$t_{2}(SO)^{(1)(2)}$	Data output access time	Slave mode, f _{PCLK} = 36 MHz, presc = 4	0	55	ns
u(00)		Slave mode, f _{PCLK} = 24 MHz 0		4 t _{PCLK}	
t _{dis(SO)} ⁽¹⁾⁽³⁾	Data output disable time	Slave mode	10		
t _{v(SO)} ⁽¹⁾	Data output valid time	Slave mode (after enable edge)	-	25	
t _{v(MO)} ⁽¹⁾	Data output valid time	Master mode (after enable edge)	-	3	
t _{h(SO)} ⁽¹⁾		Slave mode (after enable edge)	25	-	
t _{h(MO)} ⁽¹⁾	Data output hold time	Master mode (after enable edge)	4	-	

1. Based on characterization, not tested in production.

2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z

Symbol	Parameter	Test conditions	Тур	Max ⁽⁴⁾	Unit
ET	Total unadjusted error	unadjusted error $f_{PCLK2} = 28 \text{ MHz},$ t error $f_{ADC} = 14 \text{ MHz}, \text{ R}_{AIN} < 10 \text{ k}\Omega$ error $V_{DDA} = 2.4 \text{ V to } 3.6 \text{ V}$ ential linearity errorMeasurements made after ADC calibration	±2	±5	
EO	Offset error		±1.5	±2.5	
EG	Gain error		±1.5	±3	LSB
ED	Differential linearity error		±1	±2	
EL	EL Integral linearity error		±1.5	±3	

Table 44. ADC accuracy^{(1) (2) (3)}

1. ADC DC accuracy values are measured after internal calibration.

2. Better performance could be achieved in restricted V_{DD} , frequency and temperature ranges.

3. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 5.3.12 does not affect the ADC accuracy.

4. Based on characterization, not tested in production.

Figure 32. ADC accuracy characteristics

5.3.18 Temperature sensor characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	4.0	4.3	4.6	mV/°C
V ₂₅ ⁽¹⁾	Voltage at 25°C	1.34	1.43	1.52	V
t _{START} ⁽²⁾	Startup time	4	-	10	μs
T _{S_temp} ⁽³⁾⁽²⁾	ADC sampling time when reading the temperature	-	-	17.1	μs

Table 45. TS characteristics

1. Guaranteed by characterization, not tested in production.

2. Guaranteed by design, not tested in production.

3. Shortest sampling time can be determined in the application by multiple iterations.

Figure 36. VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

6.4 LQFP48 package information

SEATING PLANE A2 ŨŦŨŦŨŦŨŦĬĦŮŸŨŦŨŦŨŦŨŦŎŹ F 0.25 mm GAUGE PLANE ĸ D A1 D1 L1 D3 24 37 Œ b **CHE** <u>ш</u> ш Ē ----------€ 48 13 PIN 1 IDENTIFICATION 1 12 e 5B_ME_V2

1. Drawing is not to scale.

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min Typ		Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
с	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031

Table 48. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

