

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K × 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4525-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Number	Pin	Buffer	Description
	SPDIP, SOIC	Туре	Туре	Description
				PORTA is a bidirectional I/O port.
RA0/AN0 RA0 AN0	2	I/O I	TTL Analog	Digital I/O. Analog input 0.
RA1/AN1 RA1 AN1	3	I/O I	TTL Analog	Digital I/O. Analog input 1.
RA2/AN2/VREF-/CVREF RA2 AN2 VREF- CVREF	4	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog input 2. A/D reference voltage (low) input. Comparator reference voltage output.
RA3/AN3/VREF+ RA3 AN3 VREF+	5	I/O I I	TTL Analog Analog	Digital I/O. Analog input 3. A/D reference voltage (high) input.
RA4/T0CKI/C1OUT RA4 T0CKI C1OUT	6	I/O I O	ST ST	Digital I/O. Timer0 external clock input. Comparator 1 output.
RA5/AN4/SS/HLVDIN/ C2OUT RA5 AN4 SS HLVDIN C2OUT	7	I/O 0	TTL Analog TTL Analog —	Digital I/O. Analog input 4. SPI slave select input. High/Low-Voltage Detect input. Comparator 2 output.
RA6				See the OSC2/CLKO/RA6 pin.
RA7				See the OSC1/CLKI/RA7 pin.
Legend: TTL = TTL co	mpatible inpu	t		CMOS = CMOS compatible input or output
ST = Schmit O = Output	t Trigger inpu	t with CI	MOS lev	els I = Input P = Power

TABLE 1-2: PIC18F2525/2620 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.

Din Nome	Pin Number			Pin	Buffer	Description
	PDIP	QFN	TQFP	Туре	Туре	Description
						PORTE is a bidirectional I/O port.
RE0/RD/AN5	8	25	25			
RE0				I/O	ST	Digital I/O.
RD				I	TTL	Read control for Parallel Slave Port
						(see also WR and CS pins).
AN5				I	Analog	Analog input 5.
RE1/WR/AN6	9	26	26			
RE1				I/O	ST	Digital I/O.
WR				I	TTL	Write control for Parallel Slave Port
						(see CS and RD pins).
AN6				I	Analog	Analog input 6.
RE2/CS/AN7	10	27	27			
RE2				I/O	ST	Digital I/O.
CS				I	TTL	Chip select control for Parallel Slave Port
						(see related \overline{RD} and \overline{WR}).
AN7				I	Analog	Analog input 7.
RE3	—					See MCLR/VPP/RE3 pin.
Vss	12, 31	6, 30,	6, 29	Р		Ground reference for logic and I/O pins.
		31				
Vdd	11, 32	7, 8,	7, 28	Р		Positive supply for logic and I/O pins.
		28, 29				
NC	_	13	12,13,	_	_	No connect.
			33, 34			
Legend: TTL = TTL c	ompatib	le input			C	MOS = CMOS compatible input or output
ST = Schm	itt Triaa	er innut	with CN	IOS lev	iels I	= Input

TABLE 1-3: PIC18F4525/4620 PINOUT I/O DESCRIPTIONS (CONTINUED)

O = Output

= Power

Р

Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.

3: For the QFN package, it is recommended that the bottom pad be connected to Vss.

2.4 RC Oscillator

For timing insensitive applications, the "RC" and "RCIO" device options offer additional cost savings. The actual oscillator frequency is a function of several factors:

- supply voltage
- values of the external resistor (REXT) and capacitor (CEXT)
- operating temperature

Given the same device, operating voltage and temperature and component values, there will also be unit-to-unit frequency variations. These are due to factors such as:

- normal manufacturing variation
- difference in lead frame capacitance between package types (especially for low CEXT values)
- variations within the tolerance of limits of REXT and CEXT

In the RC Oscillator mode, the oscillator frequency divided by 4 is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic. Figure 2-5 shows how the R/C combination is connected.

The RCIO Oscillator mode (Figure 2-6) functions like the RC mode, except that the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6).

2.5 PLL Frequency Multiplier

A Phase Locked Loop (PLL) circuit is provided as an option for users who wish to use a lower frequency oscillator circuit or to clock the device up to its highest rated frequency from a crystal oscillator. This may be useful for customers who are concerned with EMI due to high-frequency crystals or users who require higher clock speeds from an internal oscillator.

2.5.1 HSPLL OSCILLATOR MODE

The HSPLL mode makes use of the HS Oscillator mode for frequencies up to 10 MHz. A PLL then multiplies the oscillator output frequency by 4 to produce an internal clock frequency up to 40 MHz. The PLLEN bit is not available in this oscillator mode.

The PLL is only available to the crystal oscillator when the FOSC3:FOSC0 Configuration bits are programmed for HSPLL mode (= 0110).

2.5.2 PLL AND INTOSC

The PLL is also available to the internal oscillator block in selected oscillator modes. In this configuration, the PLL is enabled in software and generates a clock output of up to 32 MHz. The operation of INTOSC with the PLL is described in **Section 2.6.4 "PLL in INTOSC Modes**".

3.4.1 PRI_IDLE MODE

This mode is unique among the three low-power Idle modes, in that it does not disable the primary device clock. For timing sensitive applications, this allows for the fastest resumption of device operation with its more accurate primary clock source, since the clock source does not have to "warm-up" or transition from another oscillator.

PRI_IDLE mode is entered from PRI_RUN mode by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, set IDLEN first, then clear the SCS bits and execute SLEEP. Although the CPU is disabled, the peripherals continue to be clocked from the primary clock source specified by the FOSC3:FOSC0 Configuration bits. The OSTS bit remains set (see Figure 3-7).

When a wake event occurs, the CPU is clocked from the primary clock source. A delay of interval TCSD is required between the wake event and when code execution starts. This is required to allow the CPU to become ready to execute instructions. After the wakeup, the OSTS bit remains set. The IDLEN and SCS bits are not affected by the wake-up (see Figure 3-8).

3.4.2 SEC_IDLE MODE

In SEC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the Timer1 oscillator. This mode is entered from SEC_RUN by

setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, set the IDLEN bit first, then set the SCS1:SCS0 bits to '01' and execute SLEEP. When the clock source is switched to the Timer1 oscillator, the primary oscillator is shut down, the OSTS bit is cleared and the T1RUN bit is set.

When a wake event occurs, the peripherals continue to be clocked from the Timer1 oscillator. After an interval of TCSD following the wake event, the CPU begins executing code being clocked by the Timer1 oscillator. The IDLEN and SCS bits are not affected by the wake-up; the Timer1 oscillator continues to run (see Figure 3-8).

Note: The Timer1 oscillator should already be running prior to entering SEC_IDLE mode. If the T1OSCEN bit is not set when the SLEEP instruction is executed, the SLEEP instruction will be ignored and entry to SEC_IDLE mode will not occur. If the Timer1 oscillator is enabled but not yet running, peripheral clocks will be delayed until the oscillator has started. In such situations, initial oscillator operation is far from stable and unpredictable operation may result.

FIGURE 3-7: TRANSITION TIMING FOR ENTRY TO IDLE MODE

FIGURE 4-7: TIME-OUT SEQUENCE ON POR W/PLL ENABLED (MCLR TIED TO VDD)

7.0 FLASH PROGRAM MEMORY

The Flash program memory is readable, writable and erasable during normal operation over the entire VDD range.

A read from program memory is executed on one byte at a time. A write to program memory is executed on blocks of 64 bytes at a time. Program memory is erased in blocks of 64 bytes at a time. A bulk erase operation may not be issued from user code.

Writing or erasing program memory will cease instruction fetches until the operation is complete. The program memory cannot be accessed during the write or erase, therefore, code cannot execute. An internal programming timer terminates program memory writes and erases.

A value written to program memory does not need to be a valid instruction. Executing a program memory location that forms an invalid instruction results in a NOP.

7.1 Table Reads and Table Writes

In order to read and write program memory, there are two operations that allow the processor to move bytes between the program memory space and the data RAM:

- Table Read (TBLRD)
- Table Write (TBLWT)

The program memory space is 16 bits wide, while the data RAM space is 8 bits wide. Table reads and table writes move data between these two memory spaces through an 8-bit register (TABLAT).

Table read operations retrieve data from program memory and place it into the data RAM space. Figure 7-1 shows the operation of a table read with program memory and data RAM.

Table write operations store data from the data memory space into holding registers in program memory. The procedure to write the contents of the holding registers into program memory is detailed in **Section 7.5** "**Writing to Flash Program Memory**". Figure 7-2 shows the operation of a table write with program memory and data RAM.

Table operations work with byte entities. A table block containing data, rather than program instructions, is not required to be word aligned. Therefore, a table block can start and end at any byte address. If a table write is being used to write executable code into program memory, program instructions will need to be word-aligned.

FIGURE 7-1: TABLE READ OPERATION

R/W-1	R/W-1	R/W-1	R/W-1	U-0	R/W-1	U-0	R/W-1
RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
bit 7 bit 6 bit 5	RBPU: PORT 1 = All PORT 0 = PORTB p INTEDG0: Ex 1 = Interrupt INTEDG1: Ex 1 = Interrupt 0 = Interrupt 0 = Interrupt	B Pull-up Enal B pull-ups are pull-ups are ena ternal Interrupt on rising edge on falling edge ternal Interrupt on rising edge on falling edge	ole bit disabled abled by individ 0 Edge Selec 1 Edge Selec	dual port latch v t bit t bit	/alues		
bit 4	INTEDG2: Ex 1 = Interrupt 0 = Interrupt	tternal Interrupt on rising edge on falling edge	2 Edge Selec	t bit			
bit 3	Unimplemen	ted: Read as '	י'				
bit 2	TMR0IP: TMR0 Overflow Interrupt Priority bit 1 = High priority 0 = Low priority						
bit 1	Unimplemen	ted: Read as '	י'				
bit 0	RBIP: RB Por	rt Change Inter	rupt Priority bit	t			
	1 = High prio 0 = Low prior	rity ity					

REGISTER 10-2: INTCON2: INTERRUPT CONTROL REGISTER 2

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	49
RCON	IPEN	SBOREN ⁽¹⁾	_	RI	TO	PD	POR	BOR	48
PIR1	PSPIF ⁽²⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	52
PIE1	PSPIE ⁽²⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	52
IPR1	PSPIP ⁽²⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	52
PIR2	OSCFIF	CMIF	—	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	52
PIE2	OSCFIE	CMIE	—	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	52
IPR2	OSCFIP	CMIP	—	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	52
TRISB	PORTB Data Direction Control Register								52
TRISC	PORTC Data Direction Control Register								52
TMR1L	Timer1 Register Low Byte								50
TMR1H	Timer1 Re	gister High By	te						50
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	50
TMR3H	Timer3 Re	gister High By	te						51
TMR3L	Timer3 Re	gister Low Byt	te						51
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	51
CCPR1L	Capture/Compare/PWM Register 1 Low Byte							51	
CCPR1H	Capture/Compare/PWM Register 1 High Byte							51	
CCP1CON	P1M1 ⁽²⁾	P1M0 ⁽²⁾	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	51
CCPR2L	L Capture/Compare/PWM Register 2 Low Byte							51	
CCPR2H	Capture/Co	ompare/PWM	Register 2	High Byte					51
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	51

TARI F 15-3.	REGISTERS ASSOCIATED	WITH CAPTURE	COMPARE	TIMER1 AND 1	TIMERS

Legend: — = unimplemented, read as '0'. Shaded cells are not used by Capture/Compare, Timer1 or Timer3.

Note 1: The SBOREN bit is only available when the BOREN1:BOREN0 Configuration bits = 01; otherwise, it is disabled and reads as '0'. See Section 4.4 "Brown-out Reset (BOR)".

2: These bits are unimplemented on 28-pin devices and read as '0'.

17.3.2 OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON1<5:0> and SSPSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)

The MSSP consists of a transmit/receive shift register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready. Once the 8 bits of data have been received, that byte is moved to the SSPBUF register. Then, the Buffer Full detect bit, BF (SSPSTAT<0>) and the interrupt flag bit, SSPIF, are set. This double-buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored and the write collision detect bit, WCOL

(SSPCON1<7>), will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully.

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. The Buffer Full bit, BF (SSPSTAT<0>), indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 17-1 shows the loading of the SSPBUF (SSPSR) for data transmission.

The SSPSR is not directly readable or writable and can only be accessed by addressing the SSPBUF register. Additionally, the MSSP status register (SSPSTAT) indicates the various status conditions.

Note:	The SSPBUF register cannot be used with					
	read-modify-write	instructions	such	as		
	BCF, BTFSC and COMF, etc.					

Note: To avoid lost data in Master mode, a read of the SSPBUF must be performed to clear the Buffer Full (BF) detect bit (SSPSTAT<0>) between each transmission.

EXAMPLE 17-1: LOADING THE SSPBUF (SSPSR) REGISTER

LOOP	BTFSS BRA MOVF	SSPSTAT, BF LOOP SSPBUF, W	<pre>;Has data been received (transmit complete)? ;No ;WREG reg = contents of SSPBUF</pre>
	MOVWF	RXDATA	;Save in user RAM, if data is meaningful
	MOVF MOVWF	TXDATA, W SSPBUF	;W reg = contents of TXDATA ;New data to xmit

NOTES:

NOTES:

REGISTER 23-4:	CONFIG3H: CONFIGURATION REGISTER 3 HIGH ((BYTE ADDRESS 300005h)
----------------	---	------------------------

R/P-1	U-0	U-0	U-0	U-0	R/P-0	R/P-1	R/P-1	
MCLRE	_	_	—	_	LPT1OSC	PBADEN	CCP2MX	
bit 7		L				I	bit 0	
Legend:								
R = Readable	bit	P = Programm	nable bit	U = Unimpler	mented bit, read	as '0'		
-n = Value whe	en device is unp	programmed		u = Unchang	ed from program	nmed state		
bit 7	MCLRE: MCL	R Pin Enable I	oit					
	$1 = \overline{MCLR}$ pin	enabled; RE <u>3</u>	input pin disa	bled				
	0 = RE3 input	pin enabled; N	ICLR disable	d				
bit 6-3	Unimplemen	ted: Read as '	כ'					
bit 2	LPT1OSC: Lo	ow-Power Time	r1 Oscillator E	Enable bit				
	1 = Timer1 co	onfigured for lov	v-power opera	ation				
	0 = Timer1 co	nfigured for hig	gher power op	eration				
bit 1	PBADEN: PC	RTB A/D Enat	ole bit					
	(Affects ADCON1 Reset state. ADCON1 controls PORTB<4:0> pin configuration.)							
	1 = PORTB<4:0> pins are configured as analog input channels on Reset							
	0 = PORTB<4:0> pins are configured as digital I/O on Reset							
bit 0	CCP2MX: CCP2 MUX bit							
	1 = CCP2 input/output is multiplexed with RC1							
	0 = CCP2 inp	ut/output is mu	Itiplexed with	RB3				

REGISTER 23-5: CONFIG4L: CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS 300006h)

R/P-1	R/P-0	U-0	U-0	U-0	R/P-1	U-0	R/P-1
DEBUG	XINST	—	—	—	LVP	—	STVREN
bit 7							bit 0

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unp	programmed	u = Unchanged from programmed state

bit 7	DEBUG: Background Debugger Enable bit
	 1 = Background debugger disabled, RB6 and RB7 configured as general purpose I/O pins 0 = Background debugger enabled, RB6 and RB7 are dedicated to In-Circuit Debug
bit 6	XINST: Extended Instruction Set Enable bit
	1 = Instruction set extension and Indexed Addressing mode enabled0 = Instruction set extension and Indexed Addressing mode disabled (Legacy mode)
bit 5-3	Unimplemented: Read as '0'
bit 2	LVP: Single-Supply ICSP™ Enable bit
	1 = Single-Supply ICSP enabled
	0 = Single-Supply ICSP disabled
bit 1	Unimplemented: Read as '0'
bit 0	STVREN: Stack Full/Underflow Reset Enable bit 1 = Stack full/underflow will cause Reset
	0 = Stack full/underflow will not cause Reset

Г

23.4 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the microcontroller to continue operation in the event of an external oscillator failure by automatically switching the device clock to the internal oscillator block. The FSCM function is enabled by setting the FCMEN Configuration bit.

When FSCM is enabled, the INTRC oscillator runs at all times to monitor clocks to peripherals and provide a backup clock in the event of a clock failure. Clock monitoring (shown in Figure 23-3) is accomplished by creating a sample clock signal, which is the INTRC output divided by 64. This allows ample time between FSCM sample clocks for a peripheral clock edge to occur. The peripheral device clock and the sample clock are presented as inputs to the Clock Monitor latch (CM). The CM is set on the falling edge of the device clock source, but cleared on the rising edge of the sample clock.

Clock failure is tested for on the falling edge of the sample clock. If a sample clock falling edge occurs while CM is still set, a clock failure has been detected (Figure 23-4). This causes the following:

- the FSCM generates an oscillator fail interrupt by setting bit, OSCFIF (PIR2<7>);
- the device clock source is switched to the internal oscillator block (OSCCON is not updated to show the current clock source – this is the fail-safe condition); and
- the WDT is reset.

During switchover, the postscaler frequency from the internal oscillator block may not be sufficiently stable for timing sensitive applications. In these cases, it may be desirable to select another clock configuration and enter an alternate power-managed mode. This can be done to attempt a partial recovery or execute a controlled shutdown. See Section 3.1.4 "Multiple Sleep Commands" and Section 23.3.1 "Special Considerations for Using Two-Speed Start-up" for more details. To use a higher clock speed on wake-up, the INTOSC or postscaler clock sources can be selected to provide a higher clock speed by setting bits, IRCF2:IRCF0, immediately after Reset. For wake-ups from Sleep, the INTOSC or postscaler clock sources can be selected by setting the IRCF2:IRCF0 bits prior to entering Sleep mode.

The FSCM will detect failures of the primary or secondary clock sources only. If the internal oscillator block fails, no failure would be detected, nor would any action be possible.

23.4.1 FSCM AND THE WATCHDOG TIMER

Both the FSCM and the WDT are clocked by the INTRC oscillator. Since the WDT operates with a separate divider and counter, disabling the WDT has no effect on the operation of the INTRC oscillator when the FSCM is enabled.

As already noted, the clock source is switched to the INTOSC clock when a clock failure is detected. Depending on the frequency selected by the IRCF2:IRCF0 bits, this may mean a substantial change in the speed of code execution. If the WDT is enabled with a small prescale value, a decrease in clock speed allows a WDT time-out to occur and a subsequent device Reset. For this reason, fail-safe clock events also reset the WDT and postscaler, allowing it to start timing from when execution speed was changed and decreasing the likelihood of an erroneous time-out.

23.4.2 EXITING FAIL-SAFE OPERATION

The fail-safe condition is terminated by either a device Reset or by entering a power-managed mode. On Reset, the controller starts the primary clock source specified in Configuration Register 1H (with any required start-up delays that are required for the oscillator mode, such as OST or PLL timer). The INTOSC multiplexer provides the device clock until the primary clock source becomes ready (similar to a Two-Speed Start-up). The clock source is then switched to the primary clock (indicated by the OSTS bit in the OSCCON register becoming set). The Fail-Safe Clock Monitor then resumes monitoring the peripheral clock.

The primary clock source may never become ready during start-up. In this case, operation is clocked by the INTOSC multiplexer. The OSCCON register will remain in its Reset state until a power-managed mode is entered.

POP)	Pop Top of Return Stack						
Synta	ax:	POP						
Oper	ands:	None	None					
Oper	ation:	$(TOS) \rightarrow bi$	(TOS) \rightarrow bit bucket					
Statu	s Affected:	None						
Enco	ding:	0000	0000	000	0	0110		
Desc	ription:	The TOS v stack and is then becom was pushed This instruc- the user to stack to inc	alue is pro- s discard nes the p d onto th ction is pro- properly corporate	ulled o led. Th reviou e retur rovideo mana a soft	ff the s va n sta d to ge th ware	e return DS value lue that ack. enable ne return e stack.		
Word	ls:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q	3		Q4		
	Decode	No operation	POP 1 valu	ros ie	op	No peration		
<u>Exan</u>	nple:	POP GOTO	NEW					
	Before Instruc TOS Stack (1 I	tion evel down)	= (= ()031A2)14332	2h ?h			
	After Instructic TOS PC	'n	= 0 = N)14332 NEW	?h			

PUSH	Push Top	of Ret	urn S	tacl	¢
Syntax:	PUSH				
Operands:	None				
Operation:	$(PC + 2) \rightarrow$	TOS			
Status Affected:	None				
Encoding:	0000	0000	000	0	0101
Description:	The PC + 2 the return s value is pus This instruc software sta then pushin	is push tack. Th shed do tion allo ack by n g it onto	ed onto the prev wn on the the simp modifyir the re	o the ious the s olem ng T(e top of TOS stack. enting a OS and stack.
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q	3		Q4
Decode	PUSH	Ν	0		No
	PC + 2 onto return stack	opera	ation	op	peration
Example:	PUSH				
Before Instruc TOS PC	ction	= =	345Ah 0124h		
After Instructi PC TOS	on	=	0126h 0126h		

SUE	SFSR	Subtrac	t Literal	from F	SR			
Synta	ax:	SUBFSR	f, k					
Oper	ands:	$0 \le k \le 63$	3					
		f ∈ [0, 1,	2]					
Oper	ation:	FSR(f – k	$) \rightarrow FSR($	f)				
Statu	s Affected:	None						
Enco	oding:	1110	1001	ffkk	kkkk			
Desc	ription:	The 6-bit the conter by 'f'.	literal 'k' is nts of the	s subtrac FSR sp	cted from ecified			
Word	ls:	1	1					
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read register 'f'	Proce Data	ess a c	Write to destination			
			•					

Example:	SUBFSR	2,	23h
----------	--------	----	-----

Before Instruction

FSR2	=	03FFh
After Instruct	ion	
FSR2	=	03DCh

SUBULNK	Subt	ract Liter	al fron	n FSR2	and Return
Syntax:	SUBL	JLNK k			
Operands:	$0 \le k$	≤ 63			
Operation:	FSR2	$-k \rightarrow FS$	R2,		
	(TOS)	$) \rightarrow PC$			
Status Affected:	None				
Encoding:	111	.0 10	01	11kk	kkkk
	conte execu The ir execu secon This n the st '11');	nts of the ited by loa istruction ite; a NOP id cycle. nay be tho JBFSR inst it operates	FSR2. ding th takes t is perfe ught of truction s only o	A RETUR ne PC with wo cycle ormed du f as a spe n, where on FSR2	RN is then the TOS. s to uring the ecial case of f = 3 (binary
Words:	1				
Cycles:	2				
Q Cycle Activit	y:				
Q1		Q2		Q3	Q4
Decode	e re	Read egister 'f'	Pro	ocess Data	Write to destinatior
No		No		No	No
Operatio	n C	Deration	One	ration	Operation

Example: SUBULNK 23h

Before Instru	ction	
FSR2	=	03FFh
PC	=	0100h
After Instructi	on	
FSR2	=	03DCh
PC	=	(TOS)

26.2

DC Characteristics: Power-Down and Supply Current PIC18F2525/2620/4525/4620 (Industrial) PIC18LF2525/2620/4525/4620 (Industrial) (Continued)

PIC18LF2525/2620/4525/4620 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
PIC18F25 (Indus	25/2620/4525/4620 trial, Extended)	Standa Operat	ard Ope ing tem	perature	$\begin{array}{llllllllllllllllllllllllllllllllllll$	tions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended				
Param No.	Device	Тур	Max	Units		Conditio	ns			
	Supply Current (IDD) ⁽²⁾									
	PIC18LFX525/X620	13	25	μΑ	-40°C					
		13	22	μA	+25°C	VDD = 2.0V				
		14	25	μΑ	+85°C					
	PIC18LFX525/X620	42	61	μA	-40°C		Essa od III			
		34	46	μΑ	+25°C	VDD = 3.0V	FOSC = 31 KHZ			
		28	45	μA	+85°C		INTRC source)			
	All devices	103	160	μΑ	-40°C					
		82	130	μA	+25°C					
		67	120	μΑ	+85°C	VDD = 5.0V				
	Extended devices only	71	230	μΑ	+125°C					
	PIC18LFX525/X620	320	440	μA	-40°C					
		330	440	μΑ	+25°C	VDD = 2.0V				
		330	440	μA	+85°C					
	PIC18LFX525/X620	630	800	μA	-40°C					
		590	720	μA	+25°C	VDD = 3.0V	FOSC = 1 MHZ			
		570	700	μΑ	+85°C		INTOSC source)			
	All devices	1.2	1.6	mA	-40°C					
		1.0	1.5	mA	+25°C	Vpp = 5.0V				
		1.0	1.5	mA	+85°C	VDD = 3.0V				
	Extended devices only	1.0	1.5	mA	+125°C					

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;
- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0. When operation will always be above -10°C, then the low-power Timer1 oscillator may be selected.
- 4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

FIGURE 26-14: EXAMPLE SPI MASTER MODE TIMING (CKE = 1)

TABLE 26-15: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param. No.	Symbol	Characterist	Min	Max	Units	Conditions	
71	TscH	SCK Input High Time	Continuous	1.25 Tcy + 30	—	ns	
71A		(Slave mode)	Single Byte	40	—	ns	(Note 1)
72	TscL	SCK Input Low Time	Continuous	1.25 TCY + 30	—	ns	
72A		(Slave mode)	Single Byte	40	—	ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup Time of SDI Data Input	20	_	ns		
73A	Tb2b	Last Clock Edge of Byte 1 to the of Byte 2	1.5 Tcy + 40	_	ns	(Note 2)	
74	TscH2diL, TscL2diL	Hold Time of SDI Data Input t	40	—	ns		
75	TdoR	SDO Data Output Rise Time PIC18FXXXX		—	25	ns	
			PIC18LFXXXX		45	ns	VDD = 2.0V
76	TdoF	SDO Data Output Fall Time		—	25	ns	
78	TscR	SCK Output Rise Time	PIC18FXXXX	—	25	ns	
		(Master mode)	PIC18LFXXXX		45	ns	VDD = 2.0V
79	TscF	SCK Output Fall Time (Maste	r mode)	—	25	ns	
80	TscH2doV,	SDO Data Output Valid after	PIC18FXXXX	—	50	ns	
	TscL2doV	SCK Edge	PIC18LFXXXX		100	ns	VDD = 2.0V
81	TdoV2scH, TdoV2scL	SDO Data Output Setup to SO	CK Edge	Тсү		ns	

Note 1: Requires the use of Parameter #73A.

2: Only if Parameter #71A and #72A are used.

Param. No.	Symbol	Charac	teristic	Min	Max	Units	Conditions
100	Тнідн	Clock High Time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
		-	400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
101	TLOW	Clock Low Time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
102	TR	SDA and SCL	100 kHz mode	_	1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾		300	ns	
103	TF	SDA and SCL	100 kHz mode	_	300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾		100	ns	
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	Only relevant for
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms	Repeated Start
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	condition
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	After this period, the first
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms	clock pulse is generated
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	1
106	THD:DAT	Data Input	100 kHz mode	0	—	ns	
		Hold Time	400 kHz mode	0	0.9	ms	1
107	TSU:DAT	Data Input	100 kHz mode	250	_	ns	(Note 2)
		Setup Time	400 kHz mode	100	_	ns	1
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	-	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
109	ΤΑΑ	Output Valid	100 kHz mode	—	3500	ns	
		from Clock	400 kHz mode	—	1000	ns	
			1 MHz mode ⁽¹⁾	—	_	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	_	ms	Time the bus must be free
			400 kHz mode	1.3	—	ms	before a new transmission can start
D102	Св	Bus Capacitive L	oading	_	400	pF	

TABLE 26-21: MASTER SSP I ² C™ BUS DATA REQUIREMEN

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

2: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but parameter 107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, parameter 102 + parameter 107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCL line is released.

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES		
Dimension	n Limits	MIN	NOM	MAX	
Number of Pins	N	40			
Pitch	е	.100 BSC			
Top to Seating Plane	А	-	-	.250	
Molded Package Thickness	A2	.125	-	.195	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	Е	.590	-	.625	
Molded Package Width	E1	.485	-	.580	
Overall Length	D	1.980	-	2.095	
Tip to Seating Plane	L	.115	-	.200	
Lead Thickness	С	.008	-	.015	
Upper Lead Width	b1	.030	-	.070	
Lower Lead Width	b	.014	_	.023	
Overall Row Spacing §	eB	_	_	.700	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B