

in min

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4525-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Dia Nama	Pin Number	Pin	Buffer	r Description	
Pin Name	SPDIP, SOIC	Туре	Туре	Description	
				PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.	
RB0/INT0/FLT0/AN12 RB0 INT0 FLT0 AN12	21	I/O I I	TTL ST ST Analog	Digital I/O. External interrupt 0. PWM Fault input for CCP1. Analog input 12.	
RB1/INT1/AN10 RB1 INT1 AN10	22	I/O I I	TTL ST Analog	Digital I/O. External interrupt 1. Analog input 10.	
RB2/INT2/AN8 RB2 INT2 AN8	23	I/O I I	TTL ST Analog	Digital I/O. External interrupt 2. Analog input 8.	
RB3/AN9/CCP2 RB3 AN9 CCP2 ⁽¹⁾	24	I/O I I/O	TTL Analog ST	Digital I/O. Analog input 9. Capture 2 input/Compare 2 output/PWM2 output.	
RB4/KBI0/AN11 RB4 KBI0 AN11	25	I/O I I	TTL TTL Analog	Digital I/O. Interrupt-on-change pin. Analog input 11.	
RB5/KBI1/PGM RB5 KBI1 PGM	26	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. Low-Voltage ICSP™ Programming enable pin.	
RB6/KBI2/PGC RB6 KBI2 PGC	27	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming clock pin.	
RB7/KBI3/PGD RB7 KBI3 PGD	28	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.	
Legend: TTL = TTL cc ST = Schmit O = Output	mpatible inpu	t t with CN	MOS lev	CMOS = CMOS compatible input or output els I = Input P = Power	

TABLE 1-2: PIC18F2525/2620 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.

3.4.1 PRI_IDLE MODE

This mode is unique among the three low-power Idle modes, in that it does not disable the primary device clock. For timing sensitive applications, this allows for the fastest resumption of device operation with its more accurate primary clock source, since the clock source does not have to "warm-up" or transition from another oscillator.

PRI_IDLE mode is entered from PRI_RUN mode by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, set IDLEN first, then clear the SCS bits and execute SLEEP. Although the CPU is disabled, the peripherals continue to be clocked from the primary clock source specified by the FOSC3:FOSC0 Configuration bits. The OSTS bit remains set (see Figure 3-7).

When a wake event occurs, the CPU is clocked from the primary clock source. A delay of interval TCSD is required between the wake event and when code execution starts. This is required to allow the CPU to become ready to execute instructions. After the wakeup, the OSTS bit remains set. The IDLEN and SCS bits are not affected by the wake-up (see Figure 3-8).

3.4.2 SEC_IDLE MODE

In SEC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the Timer1 oscillator. This mode is entered from SEC_RUN by

setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, set the IDLEN bit first, then set the SCS1:SCS0 bits to '01' and execute SLEEP. When the clock source is switched to the Timer1 oscillator, the primary oscillator is shut down, the OSTS bit is cleared and the T1RUN bit is set.

When a wake event occurs, the peripherals continue to be clocked from the Timer1 oscillator. After an interval of TCSD following the wake event, the CPU begins executing code being clocked by the Timer1 oscillator. The IDLEN and SCS bits are not affected by the wake-up; the Timer1 oscillator continues to run (see Figure 3-8).

Note: The Timer1 oscillator should already be running prior to entering SEC_IDLE mode. If the T1OSCEN bit is not set when the SLEEP instruction is executed, the SLEEP instruction will be ignored and entry to SEC_IDLE mode will not occur. If the Timer1 oscillator is enabled but not yet running, peripheral clocks will be delayed until the oscillator has started. In such situations, initial oscillator operation is far from stable and unpredictable operation may result.

FIGURE 3-7: TRANSITION TIMING FOR ENTRY TO IDLE MODE

EXAMPLE 7-3:	WRITIN	IG TO FL	ASH PROGRA	۹٨	I MEMORY (CONTINUED)
PROGRAM_MEMORY					
	BSF	EECON1,	EEPGD	;	point to Flash program memory
	BCF	EECON1,	CFGS	;	access Flash program memory
	BSF	EECON1,	WREN	;	enable write to memory
	BCF	INTCON,	GIE	;	disable interrupts
	MOVLW	55h			
Required	MOVWF	EECON2		;	write 55h
Sequence	MOVLW	0AAh			
	MOVWF	EECON2		;	write OAAh
	BSF	EECON1,	WR	;	start program (CPU stall)
	BSF	INTCON,	GIE	;	re-enable interrupts
	BCF	EECON1,	WREN	;	disable write to memory

7.5.2 WRITE VERIFY

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

7.5.3 UNEXPECTED TERMINATION OF WRITE OPERATION

If a write is terminated by an unplanned event, such as loss of power or an unexpected Reset, the memory location just programmed should be verified and reprogrammed if needed. If the write operation is interrupted by a MCLR Reset or a WDT Time-out Reset during normal operation, the user can check the WRERR bit and rewrite the location(s) as needed.

7.5.4 PROTECTION AGAINST SPURIOUS WRITES

To protect against spurious writes to Flash program memory, the write initiate sequence must also be followed. See **Section 23.0** "**Special Features of the CPU**" for more detail.

7.6 Flash Program Operation During Code Protection

See Section 23.5 "Program Verification and Code Protection" for details on code protection of Flash program memory.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page	
TBLPTRU	—		bit 21	Program Me	emory Table I	Pointer Uppe	r Byte (TBLP	TR<20:16>)	49	
TBPLTRH	Program Memory Table Pointer High Byte (TBLPTR<15:8>)									
TBLPTRL	Program M	emory Table	Pointer L	ow Byte (TB.	LPTR<7:0>)			49	
TABLAT	Program M	emory Table	Latch						49	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49	
EECON2	EEPROM C	Control Regis	ster 2 (not	t a physical r	egister)				51	
EECON1	EEPGD	CFGS	—	FREE	WRERR	WREN	WR	RD	51	
IPR2	OSCFIP	CMIP	—	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	52	
PIR2	OSCFIF	CMIF	_	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	52	
PIE2	OSCFIE	CMIE	_	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	52	

 TABLE 7-2:
 REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY

Legend: — = unimplemented, read as '0'. Shaded cells are not used during Flash/EEPROM access.

12.2 Timer1 16-Bit Read/Write Mode

Timer1 can be configured for 16-bit reads and writes (see Figure 12-2). When the RD16 control bit (T1CON<7>) is set, the address for TMR1H is mapped to a buffer register for the high byte of Timer1. A read from TMR1L will load the contents of the high byte of Timer1 into the Timer1 high byte buffer. This provides the user with the ability to accurately read all 16 bits of Timer1 without having to determine whether a read of the high byte, followed by a read of the low byte, has become invalid due to a rollover between reads.

A write to the high byte of Timer1 must also take place through the TMR1H Buffer register. The Timer1 high byte is updated with the contents of TMR1H when a write occurs to TMR1L. This allows a user to write all 16 bits to both the high and low bytes of Timer1 at once.

The high byte of Timer1 is not directly readable or writable in this mode. All reads and writes must take place through the Timer1 High Byte Buffer register. Writes to TMR1H do not clear the Timer1 prescaler. The prescaler is only cleared on writes to TMR1L.

12.3 Timer1 Oscillator

An on-chip crystal oscillator circuit is incorporated between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting the Timer1 Oscillator Enable bit, T1OSCEN (T1CON<3>). The oscillator is a low-power circuit rated for 32 kHz crystals. It will continue to run during all power-managed modes. The circuit for a typical LP oscillator is shown in Figure 12-3. Table 12-1 shows the capacitor selection for the Timer1 oscillator.

The user must provide a software time delay to ensure proper start-up of the Timer1 oscillator.

FIGURE 12-3: EXTERNAL COMPONENTS FOR THE TIMER1 LP OSCILLATOR

TABLE 12-1:CAPACITOR SELECTION FOR
THE TIMER OSCILLATOR

Osc Type	Freq	C1	C2		
LP	32 kHz	27 pF ⁽¹⁾	27 pF ⁽¹⁾		
Note 1:	Microchip sug starting point circuit.	gests these in validating	values as a the oscillator		
2:	Higher capacitance increases the stability of the oscillator but also increases the start-up time.				
3:	Since each res characteristics the resonator appropriate components.	sonator/crysta , the user sh /crystal manu values o	l has its own ould consult ufacturer for f external		
4:	Capacitor valu only.	es are for des	ign guidance		

12.3.1 USING TIMER1 AS A CLOCK SOURCE

The Timer1 oscillator is also available as a clock source in power-managed modes. By setting the clock select bits, SCS1:SCS0 (OSCCON<1:0>), to '01', the device switches to SEC_RUN mode; both the CPU and peripherals are clocked from the Timer1 oscillator. If the IDLEN bit (OSCCON<7>) is cleared and a SLEEP instruction is executed, the device enters SEC_IDLE mode. Additional details are available in **Section 3.0 "Power-Managed Modes"**.

Whenever the Timer1 oscillator is providing the clock source, the Timer1 system clock status flag, T1RUN (T1CON<6>), is set. This can be used to determine the controller's current clocking mode. It can also indicate the clock source being currently used by the Fail-Safe Clock Monitor. If the Clock Monitor is enabled and the Timer1 oscillator fails while providing the clock, polling the T1RUN bit will indicate whether the clock is being provided by the Timer1 oscillator or another source.

12.3.2 LOW-POWER TIMER1 OPTION

The Timer1 oscillator can operate at two distinct levels of power consumption based on device configuration. When the LPT1OSC Configuration bit is set, the Timer1 oscillator operates in a low-power mode. When LPT1OSC is not set, Timer1 operates at a higher power level. Power consumption for a particular mode is relatively constant, regardless of the device's operating mode. The default Timer1 configuration is the higher power mode.

As the low-power Timer1 mode tends to be more sensitive to interference, high noise environments may cause some oscillator instability. The low-power option is, therefore, best suited for low noise applications where power conservation is an important design consideration.

12.3.3 TIMER1 OSCILLATOR LAYOUT CONSIDERATIONS

The Timer1 oscillator circuit draws very little power during operation. Due to the low-power nature of the oscillator, it may also be sensitive to rapidly changing signals in close proximity.

The oscillator circuit, shown in Figure 12-3, should be located as close as possible to the microcontroller. There should be no circuits passing within the oscillator circuit boundaries other than VSS or VDD.

If a high-speed circuit must be located near the oscillator (such as the CCP1 pin in Output Compare or PWM mode, or the primary oscillator using the OSC2 pin), a grounded guard ring around the oscillator circuit, as shown in Figure 12-4, may be helpful when used on a single-sided PCB or in addition to a ground plane.

FIGURE 12-4: OSCILLATOR CIRCUIT WITH GROUNDED GUARD RING

12.4 Timer1 Interrupt

The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The Timer1 interrupt, if enabled, is generated on overflow, which is latched in interrupt flag bit, TMR1IF (PIR1<0>). This interrupt can be enabled or disabled by setting or clearing the Timer1 Interrupt Enable bit, TMR1IE (PIE1<0>).

12.5 Resetting Timer1 Using the CCP Special Event Trigger

If either of the CCP modules is configured to use Timer1 and generate a Special Event Trigger in Compare mode (CCP1M3:CCP1M0 or CCP2M3:CCP2M0 = 1011), this signal will reset Timer1. The trigger from CCP2 will also start an A/D conversion if the A/D module is enabled (see **Section 15.3.4 "Special Event Trigger**" for more information).

The module must be configured as either a timer or a synchronous counter to take advantage of this feature. When used this way, the CCPRH:CCPRL register pair effectively becomes a period register for Timer1.

If Timer1 is running in Asynchronous Counter mode, this Reset operation may not work.

In the event that a write to Timer1 coincides with a Special Event Trigger, the write operation will take precedence.

Note:	The Special Event Triggers from the
	CCP2 module will not set the TMR1IF
	interrupt flag bit (PIR1<0>).

12.6 Using Timer1 as a Real-Time Clock

Adding an external LP oscillator to Timer1 (such as the one described in **Section 12.3 "Timer1 Oscillator"** above) gives users the option to include RTC functionality to their applications. This is accomplished with an inexpensive watch crystal to provide an accurate time base and several lines of application code to calculate the time. When operating in Sleep mode and using a battery or supercapacitor as a power source, it can completely eliminate the need for a separate RTC device and battery backup.

The application code routine, RTCisr, shown in Example 12-1, demonstrates a simple method to increment a counter at one-second intervals using an Interrupt Service Routine. Incrementing the TMR1 register pair to overflow triggers the interrupt and calls the routine, which increments the seconds counter by one; additional counters for minutes and hours are incremented as the previous counter overflow.

Since the register pair is 16 bits wide, counting up to overflow the register directly from a 32.768 kHz clock would take 2 seconds. To force the overflow at the required one-second intervals, it is necessary to preload it. The simplest method is to set the MSb of TMR1H with a BSF instruction. Note that the TMR1L register is never preloaded or altered. Doing so may introduce cumulative errors over many cycles.

For this method to be accurate, Timer1 must operate in Asynchronous mode and the Timer1 overflow interrupt must be enabled (PIE1<0> = 1), as shown in the routine, RTCinit. The Timer1 oscillator must also be enabled and running at all times.

17.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

17.1 Master SSP (MSSP) Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)
 - Full Master mode
 - Slave mode (with general address call)

The I²C interface supports the following modes in hardware:

- Master mode
- Multi-Master mode
- Slave mode

17.2 Control Registers

The MSSP module has three associated registers. These include a status register (SSPSTAT) and two control registers (SSPCON1 and SSPCON2). The use of these registers and their individual Configuration bits differ significantly depending on whether the MSSP module is operated in SPI or I²C mode.

Additional details are provided under the individual sections.

17.3 SPI Mode

The SPI mode allows 8 bits of data to be synchronously transmitted and received simultaneously. All four SPI modes are supported. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO) RC5/SDO
- Serial Data In (SDI) RC4/SDI/SDA
- Serial Clock (SCK) RC3/SCK/SCL

Additionally, a fourth pin may be used when in a Slave mode of operation:

Slave Select (SS) – RA5/AN4/SS/HLVDIN/C2OUT

Figure 17-1 shows the block diagram of the MSSP module when operating in SPI mode.

FIGURE 17-1: MSSP BLOCK DIAGRAM (SPI MODE)

17.4 I²C Mode

The MSSP module in I^2C mode fully implements all master and slave functions (including general call support) and provides interrupts on Start and Stop bits in hardware to determine a free bus (multi-master function). The MSSP module implements the standard mode specifications, as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer:

- Serial clock (SCL) RC3/SCK/SCL
- Serial data (SDA) RC4/SDI/SDA

The user must configure these pins as inputs or outputs through the TRISC<4:3> bits.

FIGURE 17-7: MSSP BLOCK DIAGRAM (I²C™ MODE)

17.4.1 REGISTERS

The MSSP module has six registers for $\mathsf{I}^2\mathsf{C}$ operation. These are:

- MSSP Control Register 1 (SSPCON1)
- MSSP Control Register 2 (SSPCON2)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer Register (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible
- MSSP Address Register (SSPADD)

SSPCON1, SSPCON2 and SSPSTAT are the control and status registers in I^2C mode operation. The SSPCON1 and SSPCON2 registers are readable and writable. The lower 6 bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write.

SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

SSPADD register holds the slave device address when the MSSP is configured in I²C Slave mode. When the MSSP is configured in Master mode, the lower seven bits of SSPADD act as the Baud Rate Generator reload value.

In receive operations, SSPSR and SSPBUF together create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

During transmission, the SSPBUF is not doublebuffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

SSPSTAT: MSSP STATUS REGISTER (I²C[™] MODE) **REGISTER 17-3:** R/W-0 R/W-0 R-0 R-0 R-0 R-0 R-0 R-0 D/A P(1) S(1) R/W(2,3) SMP CKE UA BF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' '0' = Bit is cleared '1' = Bit is set -n = Value at POR x = Bit is unknown bit 7 SMP: Slew Rate Control bit In Master or Slave mode: 1 = Slew rate control disabled for Standard Speed mode (100 kHz) 0 = Slew rate control enabled for High-Speed mode (400 kHz) bit 6 CKE: SMBus Select bit In Master or Slave mode: 1 = Enable SMBus specific inputs 0 = Disable SMBus specific inputs bit 5 D/A: Data/Address bit In Master mode: Reserved. In Slave mode: 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address P: Stop bit⁽¹⁾ bit 4 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last S: Start bit⁽¹⁾ bit 3 1 = Indicates that a Start bit has been detected last 0 = Start bit was not detected last bit 2 R/W: Read/Write Information bit (I²C mode only)^(2,3) In Slave mode: 1 = Read 0 = WriteIn Master mode: 1 = Transmit is in progress 0 = Transmit is not in progress bit 1 UA: Update Address bit (10-Bit Slave mode only) 1 = Indicates that the user needs to update the address in the SSPADD register 0 = Address does not need to be updated BF: Buffer Full Status bit bit 0 In Transmit mode: 1 = SSPBUF is full 0 = SSPBUF is empty In Receive mode: 1 = SSPBUF is full (does not include the \overline{ACK} and Stop bits) 0 = SSPBUF is empty (does not include the ACK and Stop bits) Note 1: This bit is cleared on Reset and when SSPEN is cleared. 2: This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next Start bit, Stop bit or not ACK bit.

3: ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is in Active mode.

17.4.6.1 I²C Master Mode Operation

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

The Baud Rate Generator used for the SPI mode operation is used to set the SCL clock frequency for either 100 kHz, 400 kHz or 1 MHz I²C operation. See **Section 17.4.7 "Baud Rate"** for more detail.

A typical transmit sequence would go as follows:

- 1. The user generates a Start condition by setting the Start Enable bit, SEN (SSPCON2<0>).
- 2. SSPIF is set. The MSSP module will wait the required start time before any other operation takes place.
- 3. The user loads the SSPBUF with the slave address to transmit.
- 4. Address is shifted out the SDA pin until all 8 bits are transmitted.
- 5. The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register.
- 6. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 7. The user loads the SSPBUF with eight bits of data.
- 8. Data is shifted out the SDA pin until all 8 bits are transmitted.
- The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register.
- 10. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 11. The user generates a Stop condition by setting the Stop Enable bit, PEN (SSPCON2<2>).
- 12. Interrupt is generated once the Stop condition is complete.

REGISTER	18-2: RCS	TA: RECEIVE	STATUS A	ND CONTRO	L REGISTER	2	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value a	It POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 7	SPEN: Seria	al Port Enable b	it				
	1 = Serial p 0 = Serial p	ort enabled (cor ort disabled (he	nfigures RX/D ⁻ Id in Reset)	T and TX/CK pi	ns as serial po	rt pins)	
bit 6	RX9: 9-Bit R	eceive Enable	bit				
	1 = Selects 0 = Selects	9-bit reception 8-bit reception					
bit 5	SREN: Sing	le Receive Enal	ole bit				
	Asynchronou Don't care.	us mode:					
	Synchronous 1 = Enables 0 = Disables This bit is cle	s mode – Maste s single receive s single receive eared after rece	<u>er:</u> ption is compl	ete.			
	<u>Synchronou</u> Don't care.	<u>s mode – Slave</u>	• •				
bit 4	CREN: Cont	tinuous Receive	Enable bit				
	Asynchronou 1 = Enables 0 = Disables	<u>us mode:</u> s receiver s receiver					
	Synchronous 1 = Enables 0 = Disables	<u>s mode:</u> s continuous rec s continuous rec	eive until enal	ble bit, CREN, i	s cleared (CRI	EN overrides SR	EN)
bit 3	ADDEN: Ad	dress Detect Er	nable bit				
	<u>Asynchronou</u> 1 = Enables 0 = Disables Asynchronou	<u>us mode 9-Bit (l</u> address detec s address detec us mode 9-Bit (l	<u>RX9 = 1)</u> : tion, enables i tion, all bytes RX9 = 0):	nterrupt and loa are received ar	ads the receive nd ninth bit can	buffer when RS be used as par	SR<8> is set ity bit
	Don't care.	· · · · · · · · · · · · · · · · · · ·					
bit 2	FERR: Fram	ning Error bit					
	1 = Framing 0 = No fram	g error (can be c iing error	cleared by read	ding RCREG re	egister and reco	eiving next valid	byte)
bit 1	OERR: Over	rrun Error bit					
	1 = Overrun 0 = No over	n error (can be c run error	leared by clea	aring bit, CREN)		
bit 0	RX9D: 9th B This can be	Bit of Received I address/data bi	Data t or a parity bi	t and must be c	alculated by us	ser firmware.	

19.8 Use of the CCP2 Trigger

An A/D conversion can be started by the Special Event Trigger of the CCP2 module. This requires that the CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be programmed as '1011' and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D acquisition and conversion and the Timer1 (or Timer3) counter will be reset to zero. Timer1 (or Timer3) is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving ADRESH:ADRESL to the desired location). The appropriate analog input channel must be selected and the minimum acquisition period is either timed by the user, or an appropriate TACQ time selected before the Special Event Trigger sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), the Special Event Trigger will be ignored by the A/D module but will still reset the Timer1 (or Timer3) counter.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	49
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	52
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	52
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	52
PIR2	OSCFIF	CMIF	—	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	52
PIE2	OSCFIE	CMIE	—	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	52
IPR2	OSCFIP	CMIP	—	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	52
ADRESH	A/D Result	Register Hig	gh Byte						51
ADRESL	A/D Result	Register Lo	w Byte						51
ADCON0	_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	51
ADCON1	—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	51
ADCON2	ADFM		ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	51
PORTA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	52
TRISA	TRISA7 ⁽²⁾	TRISA6 ⁽²⁾	PORTA Da	ta Direction (Control Reg	ister			52
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	52
TRISB	PORTB Dat	ta Direction (Control Regi	ister					52
LATB	PORTB Dat	ta Latch Reg	ister (Read	and Write to	Data Latch)				52
PORTE ⁽⁴⁾	_		_	_	RE3 ⁽³⁾	RE2	RE1	RE0	52
TRISE ⁽⁴⁾	IBF	OBF	IBOV	PSPMODE		TRISE2	TRISE1	TRISE0	52
LATE ⁽⁴⁾	_					PORTE Da	ata Latch Re	gister	52

 TABLE 19-2:
 REGISTERS ASSOCIATED WITH A/D OPERATION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These bits are unimplemented on 28-pin devices; always maintain these bits clear.

2: PORTA<7:6> and their direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

3: RE3 port bit is available only as an input pin when the MCLRE Configuration bit is '0'.

4: These registers are not implemented on 28-pin devices.

NOTES:

DAW	Decimal A	djust W Re	gister	DECF		Decremer	nt f	
Syntax:	DAW			Syntax	:	DECF f{,d	{,a}}	
Operands:	None			Operar	nds:	$0 \le f \le 255$		
Operation:	lf [W<3:0> > (W<3:0>) +	> 9] or [DC = 1 6 → W<3:0>;] then,			d ∈ [0,1] a ∈ [0,1]		
	else,			Operat	ion:	$(f) - 1 \rightarrow de$	st	
	(W<3:0>) –	→ W<3:0>;		Status	Affected:	C, DC, N, C	V, Z	
	lf [W<7:4> +	+ DC > 9] or [C	C = 1] then,	Encodi	ng:	0000	01da ff:	Ef ffff
$\begin{array}{l} (W{<}7{:}4{>})+6+DC\rightarrowW{<}7{:}4{>}\ ;\\ else,\\ (W{<}7{:}4{>})+DC\rightarrowW{<}7{:}4{>} \end{array}$ Status Affected: C		Descrip	otion:	Decrement register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default).				
Encoding:	0000	0000 000	0 0111			If 'a' is '0', the lf 'a' is '1', the lf 'a' is '1'	ne Access Bai ne BSR is use	nk is selected. d to select the
Description:	DAW adjusts resulting fro variables (e and produce result.	s the eight-bit m the earlier a ach in packed es a correct pa	value in W, addition of two BCD format) acked BCD			GPR bank. If 'a' is '0' ar set is enable in Indexed L mode when	nd the extended, this instruction Literal Offset A ever $f \le 95$ (5)	ed instruction ction operates Addressing Fh). See
Words:	1					Section 24. Bit-Oriente	2.3 "Byte-Or d Instruction	ented and
Cycles:	1					Literal Offs	et Mode" for	details.
Q Cycle Activity:				Words:		1		
Q1	Q2	Q3	Q4	Cycles	:	1		
Decode	Read register W	Process Data	Write W	Q Cyc	le Activity:			
Example 1:				Г	Q1	Q2	Q3	Q4
	DAW				Decode	Read register 'f'	Process Data	Write to destination
Before Instruc	tion			L		- 3 - 1		
W	= A5h = 0			<u>Examp</u>	le:	DECF C	CNT, 1, 0	
DC	= 0			Be	efore Instruc	ction		
After Instructio	on 				CNT Z	= 01h = 0		
W	= 05h - 1			Af	ter Instructi	_ 0 on		
DC	= 0				ÇNT	= 00h		
Example 2:					Ζ	= 1		
Before Instruc	tion							
W	= CEh = 0							
DC	= 0							
After Instruction	on							
W	= 34h							
DC	= 0							

LFS	R	Load FSF	ર		MOVF		Move f		
Synta	ax:	LFSR f, k			Syntax		MOVF f{	,d {,a}}	
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 409 \end{array}$	5		Operan	ids:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$		
Oper	ation:	$k\toFSRf$					a ∈ [0,1]		
Statu	is Affected:	None			Operati	on:	$f \rightarrow dest$		
Enco	oding:	1110 1111	1110 00 0000 k ₇ k	ff k ₁₁ kkk kk kkkk	Status / Encodi	Affected:	N, Z	00da fi	Eff ffff
Desc	cription:	The 12-bit literal 'k' is loaded into the File Select Register pointed to by 'f'.			Descrip	otion:	The conten a destinatio	ts of register on dependent	f' are moved to upon the
Word	ds:	2					status of 'd'	. If 'd' is '0', t	he result is
Cycle	es:	2					placed in w	k in register 'l	f' (default).
QC	ycle Activity:						Location 'f'	can be anyw	here in the
	Q1	Q2	Q3	Q4			256-byte ba	ank. he Access Br	ank is selected
	Decode	Read literal 'k' MSB	Process Data	Write literal 'k' MSB to FSRfH			If 'a' is '1', the GPR bank. If 'a' is '0' a set is enable	he BSR is us nd the extend	ed to select the ded instruction
	Decode	Read literal 'k' LSB	Process Data	Write literal 'k' to FSRfL			in Indexed I mode when Section 24	Literal Offset ever f ≤ 95 (! 2 3 "Byte-0	Addressing 5Fh). See
<u>Exan</u>	nple:	LFSR 2,	3ABh				Bit-Oriente	ed Instructio set Mode" fo	ns in Indexed r details.
	After Instructio	on – 03	h		Words:		1		
	FSR2L	= 03 = AE	Bh		Cycles:		1		
					Q Cyc	le Activity:			
						Q1	Q2	Q3	Q4
						Decode	Read register 'f'	Process Data	Write W
					Examp	le:	MOVF RI	EG, 0, 0	
					Be	efore Instruc REG	ction = 22	h	
					Af	W ter Instructi REG	= FF on = 22	ĥ	

=

22h

W

c: nds: tion: Affected: ing: ption: ::	MULLW $0 \le k \le 254$ (W) x k \rightarrow None 0000 An unsign out betwee 8-bit literal placed in t pair. PROI W is unch None of th Note that n possible in is possible 1	k 5 PRODH:PRO 1101 kk ed multiplicatio en the contents 1 'k'. The 16-bit he PRODH:PF DH contains th anged. ee Status flags neither Overflo n this operation e but not detect	DL kk kkkk on is carried s of W and the result is RODL register e high byte. are affected. w nor Carry is A Zero result ted.	
nds: tion: Affected: ing: ption:	$0 \le k \le 25$ (W) x k \rightarrow None An unsign out betwee 8-bit literal placed in t pair. PROI W is unch None of th Note that n possible in is possible 1	5 PRODH:PRO 1101 kk ed multiplicatio en the contents I 'k'. The 16-bit the PRODH:PF DH contains th anged. the Status flags neither Overflo this operation e but not detect	DL kk kkkk on is carried s of W and the result is RODL register e high byte. are affected. w nor Carry is A Zero result ted.	
tion: Affected: ing: ption: ::	 (W) x k → None 0000 An unsign out betwee 8-bit literal placed in t pair. PROI W is unchas None of th Note that n possible in is possible 1 	PRODH:PRO	DL kk kkkk on is carried s of W and the result is RODL register e high byte. are affected. w nor Carry is A Zero result ted.	
Affected: ing: ption: ::	None 0000 An unsign out betwee 8-bit literal placed in t pair. PROI W is unch None of th Note that n possible in is possible 1	1101 kk ed multiplicatio en the contents 1 'k'. The 16-bit the PRODH:PF DH contains th anged. the Status flags neither Overflo this operation this operation	kk kkkk on is carried s of W and the result is RODL register e high byte. are affected. w nor Carry is A Zero result ted.	
ing: ption: ::	0000 An unsign out betwee 8-bit literal placed in t pair. PROI W is unch None of th Note that i possible in is possible 1	1101 kk ed multiplicatio en the contents i 'k'. The 16-bit the PRODH:PF DH contains th anged. the Status flags neither Overflo this operation but not detect	kk kkkk on is carried s of W and the result is RODL register e high byte. are affected. w nor Carry is A Zero result ted.	
ption: :: s:	An unsign out betwee 8-bit literal placed in t pair. PROI W is unch None of th Note that n possible ir is possible 1	ed multiplicatic en the contents I 'k'. The 16-bit he PRODH:PF DH contains th anged. le Status flags neither Overflo n this operation e but not detect	on is carried s of W and the result is RODL register e high byte. are affected. w nor Carry is A Zero result ted.	
:: 5:	1 1			
S:	1			
cle Activity:				
Q1	Q2	Q3	Q4	
Decode	Read literal 'k'	Process Data	Write registers PRODH: PRODL	
ole:	MULLW	0C4h		
efore Instruc	tion			
W PRODH PRODL fter Instructio	= E = ? = ?	2h		
W PRODH PRODL	= E = A = 08	2h Dh 8h		
D Se	le: efore Instruc PRODH PRODL ter Instructio W PRODH PRODL	literal 'k' literal 'k' literal 'k' efore Instruction W = E PRODL = ? PRODL = ? ter Instruction W = E PRODH = A PRODH = 0	Iteral 'k' Data literal 'k' Data literal 'k' Data efore Instruction 0C4h W = PRODH = PRODL = V = Etal 'k' Data	Iteral 'k' Data registers PRODH: PRODH: le: MULLW 0C4h efore Instruction W = W = E2h PRODH = PRODL = 'ter Instruction W = E2h PRODL = PRODL = W = E2h PRODL = PRODH = 08h

MULWF	Multiply W with f							
Syntax:	MULWF	f {,a}						
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	0 ≤ f ≤ 255 a ∈ [0,1]						
Operation:	(W) x (f) –	> PRODH:PR	ODL					
Status Affected:	None							
Encoding:	0000	001a ff	ff ffff					
Description:	An unsign out betwee register fill result is st register pa high byte. unchange None of th Note that r possible in result is po If 'a' is '0', selected. I to select th If 'a' is '0' a set is enal operates i Addressin $f \le 95$ (5FF "Byte-Orie Instructio Mode" for	ed multiplication en the contents e location 'f'. T ored in the PR air. PRODH co Both W and 'f d. e Status flags neither Overflo the Status flags in this operation possible but not the Access B f 'a' is '1', the en GPR bank. and the extend oled, this instru- n Indexed Lite g mode when on. See Section ented and Bit ns in Indexed details.	on is carried s of W and the The 16-bit CODH:PRODL intains the are affected. w nor Carry is n. A Zero t detected. ank is BSR is used ded instruction uction ral Offset ever n 24.2.3 -Oriented Literal Offset					
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	Q4					
Decode	Read register 'f'	Process Data	Write registers PRODH: PRODL					
Example:	MILL LUE	DEG 1						
Before Instruc	tion	KEG, I						
W REG PRODH PRODL After Instructio	= C4 = B5 = ? = ?	lh h						
W REG PRODH PRODL	= C4 = B5 = 8A = 94	lh ih h h						

RLNCF	Rotate Left f (No Carry)			
Syntax:	RLNCF	RLNCF f {,d {,a}}		
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]		
Operation:	$(f < n >) \rightarrow d$ $(f < 7 >) \rightarrow d$	$(f < n >) \rightarrow dest < n + 1 >,$ $(f < 7 >) \rightarrow dest < 0 >$		
Status Affected:	N, Z			
Encoding:	0100	01da ff	ff ffff	
	one bit to ti is placed ir stored bac If 'a' is '0', t If 'a' is '1', t GPR bank. If 'a' is '0' a set is enab in Indexed mode when Section 24 Bit-Oriente Literal Off	one bit to the left. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details		
	register f		í 🚽	
Words:	1		J	
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3	Q4	
Decode	Read register 'f'	Process Data	Write to destination	
Example:	RLNCF	REG, 1,	0	
Before Instru REG	Before Instruction REG = 1010 1011 After Instruction			
REG	= 0101 0	111		

RRCF	R	otate R	ight f th	rougł	n Cai	rry
Syntax:	R	RCF f	[,d {,a}}			
Operands:	0 d a	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$				
Operation:	(f⊷ (f∢ (C	$\langle n \rangle \rightarrow d$ $\langle 0 \rangle \rightarrow 0$ $\langle 0 \rangle \rightarrow des$	lest <n 1<br="" –="">), t<7></n>	>,		
Status Affected:	С	, N, Z				
Encoding:		0011	00da	fff	f	ffff
	or fla If If If G If Se B Li	he bit to tag. If 'd' is '1', gister 'f' 'a' is '0', 'a' is '1', PR bank 'a' is '0' a' is '1', PR bank 'a' is '0' at is enab Indexed ode whe ection 24 it-Orient teral Off	he right the result (default). (default). the Access the BSR i . and the explete the BSR i . because the BSR i . and the explete the BSR i . because the BSR i . and the explete the BSR i . because the BSR i . and the explete the BSR i . because the BSR i . because the BSR i . and the explete the BSR i . because the	hrough esult is t is places ss Ban is usec xtende instruc ffset A 95 (5F te-Orie se for con- egister	the (s plac ced b k is s d to se d inst tion o ddres h). S ented s in Ir details f	Carry ed in W. ack in elected. elect the truction perates ising ee and ndexed s.
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1		Q2	Q3	3		Q4
Decode	re	Read gister 'f'	Proce Dat	ess a	Wi dest	rite to tination
Example [.]	1 T	RCF	REG	0, 0		
Before Instru	uction			-, 0		
REG C	=	1110 0	0110			
After Instruct	tion					
KEG W	=	1110	0110			

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimensio	n Limits	MIN	NOM	MAX
Number of Pins	Ν		44	
Pitch	е	0.65 BSC		
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.20 REF	
Overall Width	E		8.00 BSC	
Exposed Pad Width	E2	6.30	6.45	6.80
Overall Length	D		8.00 BSC	
Exposed Pad Length	D2	6.30	6.45	6.80
Contact Width	b	0.25	0.30	0.38
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	К	0.20	-	_

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
From	n: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appli	ication (optional):	
Woul	ld you like a reply?YN	
Devi	ce: PIC18F2525/2620/4525/4620	Literature Number: DS39626E
Ques	stions:	
1. V	What are the best features of this docur	nent?
_		
-		durant and astronaut as a day
2. F	How does this document meet your hard	dware and software development needs?
-		
3. E	Do you find the organization of this docu	ument easy to follow? If not, why?
_		
4. V	What additions to the document do you	think would enhance the structure and subject?
5 V	What deletions from the document could	t be made without affecting the overall usefulness?
0		
_		
6. I:	s there any incorrect or misleading info	rmation (what and where)?
_		
-		
/. F	now would you improve this document?	
_		