

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4525-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R/W-0	R/W-1	R/W-0	R/W-0	R ⁽¹⁾	R-0	R/W-0	R/W-0		
IDLEN	IRCF2	IRCF1	IRCF0	OSTS	IOFS	SCS1	SCS0		
bit 7							bit 0		
Legend:									
R = Read	able bit	W = Writable	bit U = Unimplemented bit, read as '0'						
-n = Value	Iue at POR'1' = Bit is set'0' = Bit is cleared $x = Bit$ is unknown					nown			
bit 7	IDLEN: Idle E	Enable bit							
	1 = Device e	nters Idle mode	on SLEEP in	struction					
	0 = Device e	nters Sleep mo	de on SLEEP	instruction					
bit 6-4	IRCF2:IRCF0	: Internal Osci	llator Frequence	cy Select bits					
	111 = 8 MHz	(INTOSC drive	es clock directl	y)					
	110 = 4 MHz 101 - 2 MHz								
	100 = 1 MHz	(3)							
	011 = 500 k⊢	lz							
	010 = 250 kH	lz							
	001 = 125 KH	1Z , (from either IN	ITOSC/256 or	INTRC directly) (2)				
hit 3		ator Start-up Ti	mer Time-out 9	Status bit(1))				
DIL 5	1 - Oscillator	r Start-up Time	r (OST) time-out	out has expired.	primary oscil	lator is running			
	0 = Oscillator	r Start-up Time	r (OST) time-c	out is running; p	rimary oscillat	tor is not ready			
bit 2	IOFS: INTOS	C Frequency S	stable bit	0.1					
	1 = INTOSC	frequency is st	able						
	0 = INTOSC	frequency is n	ot stable						
bit 1-0	SCS1:SCS0:	System Clock	Select bits						
	1x = Internal	oscillator block							
	01 = Seconda	ary (Timer1) os	cillator						
	00 = Primary	oscillator							
Note 1:	Reset state depe	nds on state of	the IESO Con	figuration bit.					
2:	Source selected I	by the INTSRC	bit (OSCTUN	E<7>), see text					
3:	Default output fre	Default output frequency of INTOSC on Reset.							

REGISTER 2-2: OSCCON: OSCILLATOR CONTROL REGISTER

5.3.2 ACCESS BANK

While the use of the BSR with an embedded 8-bit address allows users to address the entire range of data memory, it also means that the user must always ensure that the correct bank is selected. Otherwise, data may be read from or written to the wrong location. This can be disastrous if a GPR is the intended target of an operation, but an SFR is written to instead. Verifying and/or changing the BSR for each read or write to data memory can become very inefficient.

To streamline access for the most commonly used data memory locations, the data memory is configured with an Access Bank, which allows users to access a mapped block of memory without specifying a BSR. The Access Bank consists of the first 128 bytes of memory (00h-7Fh) in Bank 0 and the last 128 bytes of memory (80h-FFh) in Block 15. The lower half is known as the "Access RAM" and is composed of GPRs. This upper half is also where the device's SFRs are mapped. These two areas are mapped contiguously in the Access Bank and can be addressed in a linear fashion by an 8-bit address (Figure 5-5).

The Access Bank is used by core PIC18 instructions that include the Access RAM bit (the 'a' parameter in the instruction). When 'a' is equal to '1', the instruction uses the BSR and the 8-bit address included in the opcode for the data memory address. When 'a' is '0',

however, the instruction is forced to use the Access Bank address map; the current value of the BSR is ignored entirely.

Using this "forced" addressing allows the instruction to operate on a data address in a single cycle, without updating the BSR first. For 8-bit addresses of 80h and above, this means that users can evaluate and operate on SFRs more efficiently. The Access RAM below 80h is a good place for data values that the user might need to access rapidly, such as immediate computational results or common program variables. Access RAM also allows for faster and more code efficient context saving and switching of variables.

The mapping of the Access Bank is slightly different when the extended instruction set is enabled (XINST Configuration bit = 1). This is discussed in more detail in Section 5.5.3 "Mapping the Access Bank in Indexed Literal Offset Addressing Mode".

5.3.3 GENERAL PURPOSE REGISTER FILE

PIC18 devices may have banked memory in the GPR area. This is data RAM, which is available for use by all instructions. GPRs start at the bottom of Bank 0 (address 000h) and grow upwards towards the bottom of the SFR area. GPRs are not initialized by a Power-on Reset and are unchanged on all other Resets.

5.3.4 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. SFRs start at the top of data memory (FFFh) and extend downward to occupy the top half of Bank 15 (F80h to FFFh). A list of these registers is given in Table 5-1 and Table 5-2. The SFRs can be classified into two sets: those associated with the "core" device functionality (ALU, Resets and interrupts) and those related to the peripheral functions. The reset and interrupt registers are described in their respective chapters, while the ALU's STATUS register is described later in this section. Registers related to the operation of a peripheral feature are described in the chapter for that peripheral.

The SFRs are typically distributed among the peripherals whose functions they control. Unused SFR locations are unimplemented and read as '0's.

Address	Name	Address	Name	Address	Name	Address	Name
FFFh	TOSU	FDFh	INDF2 ⁽¹⁾	FBFh	CCPR1H	F9Fh	IPR1
FFEh	TOSH	FDEh	POSTINC2 ⁽¹⁾	FBEh	CCPR1L	F9Eh	PIR1
FFDh	TOSL	FDDh	POSTDEC2 ⁽¹⁾	FBDh	CCP1CON	F9Dh	PIE1
FFCh	STKPTR	FDCh	PREINC2 ⁽¹⁾	FBCh	CCPR2H	F9Ch	(2)
FFBh	PCLATU	FDBh	PLUSW2 ⁽¹⁾	FBBh	CCPR2L	F9Bh	OSCTUNE
FFAh	PCLATH	FDAh	FSR2H	FBAh	CCP2CON	F9Ah	(2)
FF9h	PCL	FD9h	FSR2L	FB9h	(2)	F99h	(2)
FF8h	TBLPTRU	FD8h	STATUS	FB8h	BAUDCON	F98h	(2)
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	PWM1CON ⁽³⁾	F97h	(2)
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	ECCP1AS ⁽³⁾	F96h	TRISE ⁽³⁾
FF5h	TABLAT	FD5h	TOCON	FB5h	CVRCON	F95h	TRISD ⁽³⁾
FF4h	PRODH	FD4h	(2)	FB4h	CMCON	F94h	TRISC
FF3h	PRODL	FD3h	OSCCON	FB3h	TMR3H	F93h	TRISB
FF2h	INTCON	FD2h	HLVDCON	FB2h	TMR3L	F92h	TRISA
FF1h	INTCON2	FD1h	WDTCON	FB1h	T3CON	F91h	(2)
FF0h	INTCON3	FD0h	RCON	FB0h	SPBRGH	F90h	(2)
FEFh	INDF0 ⁽¹⁾	FCFh	TMR1H	FAFh	SPBRG	F8Fh	(2)
FEEh	POSTINC0 ⁽¹⁾	FCEh	TMR1L	FAEh	RCREG	F8Eh	(2)
FEDh	POSTDEC0 ⁽¹⁾	FCDh	T1CON	FADh	TXREG	F8Dh	LATE ⁽³⁾
FECh	PREINC0 ⁽¹⁾	FCCh	TMR2	FACh	TXSTA	F8Ch	LATD ⁽³⁾
FEBh	PLUSW0 ⁽¹⁾	FCBh	PR2	FABh	RCSTA	F8Bh	LATC
FEAh	FSR0H	FCAh	T2CON	FAAh	EEADRH	F8Ah	LATB
FE9h	FSR0L	FC9h	SSPBUF	FA9h	EEADR	F89h	LATA
FE8h	WREG	FC8h	SSPADD	FA8h	EEDATA	F88h	(2)
FE7h	INDF1 ⁽¹⁾	FC7h	SSPSTAT	FA7h	EECON2 ⁽¹⁾	F87h	(2)
FE6h	POSTINC1 ⁽¹⁾	FC6h	SSPCON1	FA6h	EECON1	F86h	(2)
FE5h	POSTDEC1 ⁽¹⁾	FC5h	SSPCON2	FA5h	(2)	F85h	(2)
FE4h	PREINC1 ⁽¹⁾	FC4h	ADRESH	FA4h	(2)	F84h	PORTE ⁽³⁾
FE3h	PLUSW1 ⁽¹⁾	FC3h	ADRESL	FA3h	(2)	F83h	PORTD ⁽³⁾
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	PORTC
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB
FE0h	BSR	FC0h	ADCON2	FA0h	PIE2	F80h	PORTA

TABLE 5-1: SPECIAL FUNCTION REGISTER MAP FOR PIC18F2525/2620/4525/4620 DEVICES

Note 1: This is not a physical register.

2: Unimplemented registers are read as '0'.

3: This register is not available on 28-pin devices.

TOSH — — — Top-of-Stack Lupper Byte (TOS-20:16-) 0 0.000 49, 54 TOSH Top-of-Stack Lupp Byte (TOS-15.8-) 0.000 0.000 49, 54 STKPTR STKNUTB	File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
TOSH Top-d-Stack High Byte (TOS-(5.5x)) 0000 0000 49, 54 TOSL Top-d-Stack Lyow Byte (TOS-(7.0x)) SP4 SP3 SP2 SP1 SP0 0.000 49, 54 TOSL TSTKUTK TSTKUNF ¹⁰ — Holding Register for PC-(20:16) 0 0.000 49, 54 PCLATH Holding Register for PC-(7.5x) 0.000 0.000 49, 54 TBLPTRU — bt 21 Program Memory Table Pointer (TBLPTR 0 0.000 49, 54 TBLPTRU — bt 21 Program Memory Table Pointer (TBLPTR 0 0.000 49, 52 TBLPTRU Program Memory Table Pointer Low Byte (TBLPTR	TOSU	— — Top-of-Stack Upper Byte (TOS<20:16>)								0 0000	49, 54
TOSL Top-d-Stack Low Byte (TOS-70-) SP4 SP3 SP2 SP1 SP0 0.00 0.000 49, 54 STKPTR STKFUL ⁽⁶⁾ STKUR ⁽⁶⁾ — — Holding Register for PC-2105 0.000 49, 54 PCLATU — — — Holding Register for PC-2105 0.000 49, 54 PCLATU — — bit 21 Program Memory Table Pointer High Byte (TBLPTR 0.000 49, 54 TBLFTRU — — bit 21 Program Memory Table Pointer Low Byte (TBLPTR 0.000 49, 62 TBLFTRU Program Memory Table Pointer Low Byte (TBLPTR . 0.000 0.000 49, 62 TBLPTRU Program Memory Table Pointer Low Byte 0.000 0.000 49, 62 TRDCON GleGIGH PROBL INTEDG INTEDG2 . TMROIF INTOF RBP 1111 -1. 49, 112 INTCON GleGIGH PROBL INTEDG2 . TMROIF INT2F INT1	TOSH	Top-of-Stack	High Byte (TC) S<15:8>)						0000 0000	49, 54
STKFUL STKUL STKUL <t< td=""><td>TOSL</td><td>Top-of-Stack</td><td>Low Byte (TO</td><td>S<7:0>)</td><td></td><td></td><td></td><td></td><td></td><td>0000 0000</td><td>49, 54</td></t<>	TOSL	Top-of-Stack	Low Byte (TO	S<7:0>)						0000 0000	49, 54
PCLATH Holding Register for PC<15.3→	STKPTR	STKFUL ⁽⁶⁾	STKUNF ⁽⁶⁾		SP4	SP3	SP2	SP1	SP0	00-0 0000	49, 55
PCLATH Holding Register for PC<15:8> 0000 0000 49, 54 PCL PC Low Byte (PC<7:0> 0000 0000 49, 52 TBLPTRU Program Memory Table Pointer High Byte (TBLPTR<15:8>) 0000 0000 49, 82 TBLPTRU Program Memory Table Pointer Low Byte (TBLPTR<15:8>) 0000 0000 49, 82 TBLPTRU Program Memory Table Pointer Low Byte (TBLPTR<15:8)	PCLATU	—	_	_	Holding Regi	ster for PC<20):16>			0 0000	49, 54
PCL Decl Low Byte (PC-7:0>/// Dot 21 Program Memory Table Pointer High Byte (TBLPTR<15:8>) 0000 0000 49, 62 TBLPTRN Program Memory Table Pointer Ligh Byte (TBLPTR<15:8>) 0000 0000 49, 62 TBLPTRN Program Memory Table Pointer Low Byte (TBLPTR<15:8>) 0000 0000 49, 62 TABLAT Program Memory Table Pointer Low Byte (TBLPTR<15:8>) 0000 0000 49, 62 TABLAT Program Memory Table Pointer Low Byte (TBLPTR<15:8>) 0000 0000 49, 62 PRODH Product Register Low Byte xxxx xxxx 49, 89 INTCON GIE/GIEH PEIC/GIEL TMROIE INTDIE RBIE TMROIF INTDIF RBIF 0000 0000 49, 63 INTCON GIE/GIEH PEIC/GIEL TMROIE INTTIE INTOIP RBIF 111 1-0 49, 112 INTCON INTZIP INTTIP INTTIEG INTTIE INTTIE INTTIE N/A 49, 68 POSTINCO Uses contents of FSR0 to address data memory - value of FSR0 not changed (not a physical regi	PCLATH	Holding Regi	ster for PC<15	5:8>						0000 0000	49, 54
TBLPTRIK — ibit 21 Program Memory Table Pointer Upper Byte (TBLPTR<20:16>) 0000000 49, 82 TBLPTRIK Program Memory Table Pointer Like Byte (TBLPTR<15:.8> 0000 0000 49, 82 TABLAT Program Memory Table Pointer Like Byte (TBLPTR<7:.> 0000 0000 49, 82 TABLAT Product Register High Byte USXXXXXXXX 49, 89 PRODH Product Register Like Byte INTRON GIE/GIEH PEIZ/GIE MROIF INTOF RBIF 0000 0000 49, 82 INTCON GIE/GIEH PEIZ/GIE INTRON INTEDG0 INTEDG1 INTEDG2 INTOF RBIF 0000 0000 49, 112 INTCON GIE/GIEH PEIZ/GIE INTRO INTIF INTTIF INT 49, 68 POSTINC0 Uses contents of FSR0 to address data memory -value of FSR0 post-incremented (not a physical register) N/A 49, 68 POSTINC0 Uses contents of FSR0 to address data memory -value of FSR0 post-incremented (not a physical register) N/A 49, 68 PREINC0 Uses contents of FSR0 to address data memory -value of FSR0 post-incremented (not a physical register) N/A 49, 68 <td>PCL</td> <td>PC Low Byte</td> <td>(PC<7:0>)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0000 0000</td> <td>49, 54</td>	PCL	PC Low Byte	(PC<7:0>)							0000 0000	49, 54
TBLPTRN Program Memory Table Pointer Ligh Byte (TBLPTR<15.3c)	TBLPTRU	_	—	bit 21	Program Mer	mory Table Po	inter Upper By	te (TBLPTR<20):16>)	00 0000	49, 82
TBLPTRL Program Memory Table Pointer Low Byte (TBLPTR-7:0>) 0000 0000 49, 82 TABLAT Program Memory Table Lath 0000 0000 49, 82 PRODH Product Register Low Byte xxxxx xxxxx 49, 89 INTCON GIE/GIEH PEIE/GIEL TMROIF RBIP 0000 0000 49, 101 INTCON GIE/GIEH PEIE/GIEL TMROIF INTEIDG INTIC RBIP 0100 0000 49, 111 INTCON GIE/GIEH PEIE/GIEL TMROIF INTIC RBIP 1111 -1 49, 103 INTCON GIE/GIEH PEIE/GIEL TMROIF INTIC INTIC NIA 49, 68 POSTINCO Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register) N/A 49, 68 POSTINCO Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 49, 68 PUSWO Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 49, 68 FSR0H - - Indirect Data Memory Address Pointer 0 Low Byte	TBLPTRH	Program Mer	nory Table Poi	inter High Byte	e (TBLPTR<15	5:8>)				0000 0000	49, 82
TABLAT Program Program Product Register High Byte SXXXX XXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXXXXXX X49, 89 PRODL Orduct Register High Byte INTCON GIE/GIEH PEIEGIEL INTROIP INTOIP RBIP INTOIP RBIP INTIP 49, 89 INTCON GIE/GIEH PEIEGIEL INTEDG0 INTEDG2 — TMROIP RBIP III - 1 49, 112 INTCON INT2IP INT1P — INT2IE INT1IE — INT2IF INT1IF 11.0 0.00 49, 68 POSTINCO Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register) N/A 49, 68 POSTINCO Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 49, 68 POSTINCO Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 49, 68 PLUSW0 Uses contents of FSR0 to address data memory – value of FSR1 pre-incremented (not a physical register) N/A 49, 68 FSR0L Indirect Data Memory Address Pointer 0	TBLPTRL	Program Mer	nory Table Poi	inter Low Byte	(TBLPTR<7:0	D>)				0000 0000	49, 82
PRODH Product Rejeter High Byte xxxx	TABLAT	Program Memory Table Latch 000							0000 0000	49, 82	
PRODL Product Register Low Byte VICE	PRODH	Product Regi	ster High Byte	•						XXXX XXXX	49, 89
INTCON GIE/GIEH PEIE/GIEL TMR0IE INTOE RBIE TMR0IF INTOF RBIF 0000 000x 49, 111 INTCON2 RBPU INTEDG0 INTEDG1 INTEDG2 — TMR0IP — RBIP 1111 - 1 - 1 49, 142 INTCON3 INT2IP INT1IP — INT2IE INT1IE — INT2IF INT1IP 1-0 0-00 49, 113 INTCON3 Uses contents of FSR0 to address data memory - value of FSR0 post-incremented (not a physical register) NA 49, 68 POSTINC0 Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register) NA 49, 68 PREINC0 Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register) NA 49, 68 PLUSW0 Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register) NA 49, 68 FSR0 H —	PRODL	Product Regi	ster Low Byte							xxxx xxxx	49, 89
INTCON2 RBPU INTEDG0 INTEDG1 INTEDG2 — TMR0IP — RBIP 1111 - 1-1 49, 112 INTCON3 INT2IP INT1P — INT2IE INT1IE — INT2IF INT1F 1-0 0-00 49, 113 INDF0 Uses contents of FSR0 to address data memory - value of FSR0 not changed (not a physical register) N/A 49, 68 POSTINC0 Uses contents of FSR0 to address data memory - value of FSR0 post-decremented (not a physical register) N/A 49, 68 POSTDEC0 Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register) N/A 49, 68 PLUSW0 Uses contents of FSR1 to address data memory - value of FSR0 pre-incremented (not a physical register) N/A 49, 68 FSR0L Indirect Data Memory Address Pointer 0 Low Byte xxxx xxxx 49, 68 VMERig Working Register V/A 49, 68 POSTINC1 Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register) N/A 49, 68 POSTINC1 Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register) N	INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	49, 111
INTCON3 INT2IP INT1IP — INT2IE INT1IE — INT2IF INT1IF 11-0 0-00 49, 113 INDF0 Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register) N/A 49, 68 POSTDEC0 Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register) N/A 49, 68 POSTDEC0 Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register) N/A 49, 68 PLUSW0 Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 49, 68 FSR0H — — — Indirect Data Memory Address Pointer 0 High Byte 0000 49, 68 WREG Working Register	INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	—	RBIP	1111 -1-1	49, 112
INDF0 Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register) N/A 49, 68 POSTINC0 Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register) N/A 49, 68 POSTDEC0 Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register) N/A 49, 68 PREINC0 Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 49, 68 PLUSW0 Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 49, 68 FSR0H — — Indirect Data Memory Address Pointer 0 Low Byte 0000 49, 68 WREG Working Register	INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	11-0 0-00	49, 113
POSTINC0 Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register) N/A 49, 68 PREINC0 Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register) N/A 49, 68 PREINC0 Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 49, 68 PLUSW0 Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 49, 68 FSR0H — — Indirect Data Memory Address Pointer 0 Low Byte xxxx xxxxx 49, 68 WREG Working Register	INDF0	Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register)									49, 68
POSTDEC0 Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register) N/A 49,68 PREINC0 Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 49,68 PLUSW0 Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 49,68 FSR0H — — — Indirect Data Memory Address Pointer 0 High Byte 0000 49,68 FSR0L Indirect Data Memory Address Pointer 0 Low Byte xxxx xxxx 49 xxxx xxxx 49 INDF1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register) N/A 49,68 POSTINC1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register) N/A 49,68 POSTDEC1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register) N/A 49,68 PREINC1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register) N/A 49,68 PLUSW1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) N/A 49,68 PLUSW1	POSTINC0	Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register)							N/A	49, 68	
PREINCO Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 49,68 PLUSW0 Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) – value of FSR0 pre-incremented (not a physical register) – N/A N/A 49,68 FSR0H — — — Indirect Data Memory Address Pointer 0 Low Byte >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	POSTDEC0	C0 Uses contents of FSR0 to address data memory - value of FSR0 post-decremented (not a physical register)						N/A	49, 68		
PLUSW0 Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) – value of FSR0 offset by W N/A 49, 68 FSR0H — — — Indirect Data Memory Address Pointer 0 Low Byte xxxx xxxx 49, 68 FSR0L Indirect Data Memory Address Pointer 0 Low Byte xxxx xxxx 49, 68 WREG Working Register xxxx xxxx 49, 68 POSTINC1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register) N/A 49, 68 POSTINC1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register) N/A 49, 68 POSTINC1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register) N/A 49, 68 PREINC1 Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register) N/A 49, 68 PLUSW1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) N/A 49, 68 FSR14 — — — Indirect Data Memory Address Pointer 1 High Byte 0000 50, 68 FSR14 Indirect Data Memory Address Pointer 1 Low Byte xxxx xxxx	PREINC0	Uses content	s of FSR0 to a	address data n	nemory – valu	e of FSR0 pre	-incremented (not a physical r	egister)	N/A	49, 68
FSR0H — — Indirect Data Memory Address Pointer 0 High Byte 0000 49, 68 FSR0L Indirect Data Memory Address Pointer 0 Low Byte xxxx xxxx x49, 68 WREG Working Register xxxx x49, 68 INDF1 Uses contents of FSR1 to address data memory - value of FSR1 not changed (not a physical register) N/A 49, 68 POSTINC1 Uses contents of FSR1 to address data memory - value of FSR1 post-incremented (not a physical register) N/A 49, 68 POSTDEC1 Uses contents of FSR1 to address data memory - value of FSR1 post-incremented (not a physical register) N/A 49, 68 PREINC1 Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register) N/A 49, 68 PLUSM1 Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register) N/A 49, 68 FSR1H — — — Indirect Data Memory Address Pointer 1 High Byte 0000 50, 68 FSR1L Indirect Data Memory Address Pointer 1 High Byte 0000 50, 59 50, 59 INDF2 Uses contents of FSR2 to address data memory - value of FSR2 post-incremented (not a physical register) N/A 50, 68	PLUSW0	Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) – value of FSR0 offset by W					N/A	49, 68			
FSR0L Indirect Data Memory Address Pointer 0 Low Byte xxxx	FSR0H	_	—	—	—	Indirect Data	Memory Addr	ess Pointer 0 H	igh Byte	0000	49, 68
WREG Working Register xxxx 49 INDF1 Uses contents of FSR1 to address data memory - value of FSR1 not changed (not a physical register) N/A 49, 68 POSTINC1 Uses contents of FSR1 to address data memory - value of FSR1 post-incremented (not a physical register) N/A 49, 68 POSTDEC1 Uses contents of FSR1 to address data memory - value of FSR1 post-decremented (not a physical register) N/A 49, 68 PREINC1 Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register) N/A 49, 68 PLUSW1 Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register) N/A 49, 68 FSR1H — — — Indirect Data Memory Address Pointer 1 High Byte 0000 50, 68 FSR1 Indirect Data Memory Address Pointer 1 Low Byte	FSR0L	Indirect Data	Memory Addr	ess Pointer 0	Low Byte					xxxx xxxx	49, 68
INDF1 Uses contents of FSR1 to address data memory – value of FSR1 not changed (not a physical register) N/A 49, 68 POSTINC1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register) N/A 49, 68 POSTDEC1 Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register) N/A 49, 68 PREINC1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) N/A 49, 68 PLUSW1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) – value of FSR1 offset by W N/A 49, 68 FSR1H — — — Indirect Data Memory Address Pointer 1 High Byte 0000 50, 68 FSR1L Indirect Data Memory Address Pointer 1 Low Byte xxxx xxxx 50, 68 88 BSR — — — Bank Select Register 0000 50, 59 INDF2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 50, 68 POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 POSTINC2 Uses contents o	WREG	Working Reg	ister							xxxx xxxx	49
POSTINC1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register) N/A 49, 68 POSTDEC1 Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register) N/A 49, 68 PREINC1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) N/A 49, 68 PLUSW1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) N/A 49, 68 FSR1H — — — Indirect Data Memory Address Pointer 1 High Byte 0000 50, 68 FSR1L Indirect Data Memory Address Pointer 1 Low Byte	INDF1	Uses content	s of FSR1 to a	address data n	nemory – valu	e of FSR1 not	changed (not	a physical regis	ter)	N/A	49, 68
POSTDEC1 Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register) N/A 49, 68 PREINC1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) N/A 49, 68 PLUSW1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) – N/A M/A 49, 68 FSR1H — — — Indirect Data Memory Address Pointer 1 High Byte 0000 50, 68 FSR1L Indirect Data Memory Address Pointer 1 Low Byte xxxx xxxx 50, 68 59 INDF2 Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register) N/A 50, 68 POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 50, 68 POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register) N/A 50, 68 POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 PREINC2 Uses con	POSTINC1	Uses content	s of FSR1 to a	address data n	nemory – valu	e of FSR1 pos	t-incremented	(not a physical	register)	N/A	49, 68
PREINC1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) N/A 49, 68 PLUSW1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) – value of FSR1 offset by W N/A 49, 68 FSR1H — — — Indirect Data Memory Address Pointer 1 High Byte 0000 50, 68 FSR1L Indirect Data Memory Address Pointer 1 Low Byte xxxx xxxx 50, 68 BSR — — — Bank Select Register 0000 50, 59 INDF2 Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register) N/A 50, 68 POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 50, 68 POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register) N/A 50, 68 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 PREINC2 Uses contents of FSR2 to address dat	POSTDEC1	Uses content	s of FSR1 to a	address data n	nemory – valu	e of FSR1 pos	t-decremented	d (not a physica	l register)	N/A	49, 68
PLUSW1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) – N/A 49, 68 FSR1H — — — Indirect Data Memory Address Pointer 1 High Byte 0000 50, 68 FSR1L Indirect Data Memory Address Pointer 1 Low Byte xxxx xxxx 50, 68 BSR — — — Bank Select Register 0000 50, 59 INDF2 Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register) N/A 50, 68 POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 50, 68 POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 50, 68 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 50, 68 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 PLUSW2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented	PREINC1	Uses content	s of FSR1 to a	address data n	nemory – valu	e of FSR1 pre	-incremented (not a physical r	egister)	N/A	49, 68
FSR1H————Indirect Data Memory Address Pointer 1 High Byte 000050, 68FSR1LIndirect Data Memory Address Pointer 1 Low Bytexxxx xxxx50, 68BSR———Bank Select Register 000050, 59INDF2Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register)N/A50, 68POSTINC2Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register)N/A50, 68POSTDEC2Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register)N/A50, 68POSTDEC2Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)N/A50, 68PREINC2Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)N/A50, 68PREINC2Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)N/A50, 68PLUSW2Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)N/A50, 68FSR2H—————Indirect Data Memory Address Pointer 2 High Byte 000050, 68FSR2LIndirect Data Memory Address Pointer 2 Low Byte50, 6850, 68STATUS———NOVZDCCx xxxx50, 66	PLUSW1	Uses content value of FSR	s of FSR1 to a 1 offset by W	address data n	nemory – valu	e of FSR1 pre	-incremented (not a physical r	egister) –	N/A	49, 68
FSR1L Indirect Data Memory Address Pointer 1 Low Byte xxxx 50, 68 BSR — — — Bank Select Register 0000 50, 59 INDF2 Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register) N/A 50, 68 POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 50, 68 POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register) N/A 50, 68 POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register) N/A 50, 68 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 PLUSW2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 FSR2H — — — — Indirect Data Memory Address Pointer 2 High Byte 0000 50, 68 FSR2L Indirect Data Memory Address Pointer 2 Low Byte xxxx xxxx 50, 68 50, 68 50, 68 50, 68 50, 66 50, 68 50, 66 50, 68 <td>FSR1H</td> <td>—</td> <td>—</td> <td>—</td> <td>—</td> <td>Indirect Data</td> <td>Memory Addre</td> <td>ess Pointer 1 H</td> <td>igh Byte</td> <td> 0000</td> <td>50, 68</td>	FSR1H	—	—	—	—	Indirect Data	Memory Addre	ess Pointer 1 H	igh Byte	0000	50, 68
BSR — — — Bank Select Register 0000 50, 59 INDF2 Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register) N/A 50, 68 POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 50, 68 POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 50, 68 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register) N/A 50, 68 PLUSW2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 FSR2H — — — — Indirect Data Memory Address Pointer 2 High Byte 0000 50, 68 FSR2L Indirect Data Memory Address Pointer 2 Low Byte xxxx xxxx 50, 68 50, 68 57ATUS — — — N OV Z DC C x xxxx 50, 66	FSR1L	Indirect Data	Memory Addr	ess Pointer 1	Low Byte					xxxx xxxx	50, 68
INDF2 Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register) N/A 50, 68 POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 50, 68 POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register) N/A 50, 68 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register) N/A 50, 68 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 PLUSW2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) – N/A 50, 68 FSR2H — — — Indirect Data Memory Address Pointer 2 High Byte 0000 50, 68 FSR2L Indirect Data Memory Address Pointer 2 Low Byte xxxx xxxx 50, 68 50, 68 STATUS — — N OV Z DC C x xxxxx 50, 66	BSR	—	—	—	—	Bank Select	Register			0000	50, 59
POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 50, 68 POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register) N/A 50, 68 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 PLUSW2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 FSR2H — — — Indirect Data Memory Address Pointer 2 High Byte 0000 50, 68 FSR2L Indirect Data Memory Address Pointer 2 Low Byte xxxx xxxx 50, 68 57ATUS — — N OV Z DC C x xxxx 50, 66	INDF2	Uses content	s of FSR2 to a	address data n	nemory – valu	e of FSR2 not	changed (not	a physical regis	ter)	N/A	50, 68
POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register) N/A 50, 68 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 PLUSW2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) – value of FSR2 offset by W N/A 50, 68 FSR2H — — — Indirect Data Memory Address Pointer 2 High Byte 0000 50, 68 FSR2L Indirect Data Memory Address Pointer 2 Low Byte xxxx xxxx 50, 68 STATUS — — N OV Z DC C x xxxx 50, 66	POSTINC2	Uses content	s of FSR2 to a	address data n	nemory – valu	e of FSR2 pos	t-incremented	(not a physical	register)	N/A	50, 68
PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 PLUSW2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) – value of FSR2 offset by W N/A 50, 68 FSR2H — — — Indirect Data Memory Address Pointer 2 High Byte 0000 50, 68 FSR2L Indirect Data Memory Address Pointer 2 Low Byte xxxx xxxx 50, 68 STATUS — — N OV Z DC C x xxxx 50, 66	POSTDEC2	Uses content	s of FSR2 to a	address data n	nemory – valu	e of FSR2 pos	t-decremented	d (not a physica	l register)	N/A	50, 68
PLUSW2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) – N/A 50, 68 FSR2H — — — Indirect Data Memory Address Pointer 2 High Byte 0000 50, 68 FSR2L Indirect Data Memory Address Pointer 2 Low Byte	PREINC2	Uses content	s of FSR2 to a	address data n	nemory – valu	e of FSR2 pre	-incremented (not a physical r	egister)	N/A	50, 68
FSR2H — — — Indirect Data Memory Address Pointer 2 High Byte 0000 50, 68 FSR2L Indirect Data Memory Address Pointer 2 Low Byte xxxx xxxx 50, 68 STATUS — — N OV Z DC C x xxxx 50, 66	PLUSW2	Uses content value of FSR	s of FSR2 to a 2 offset by W	address data n	nemory – valu	e of FSR2 pre	-incremented (not a physical r	egister) –	N/A	50, 68
FSR2L Indirect Data Memory Address Pointer 2 Low Byte xxxx xxxx 50, 68 STATUS - - N OV Z DC C	FSR2H	—	_	_	—	Indirect Data	Memory Addr	ess Pointer 2 H	igh Byte	0000	50, 68
STATUS — — — N OV Z DC C	FSR2L	Indirect Data	Memory Addr	ess Pointer 2	Low Byte					XXXX XXXX	50, 68
	STATUS	_	_	_	N	OV	Z	DC	С	x xxxx	50, 66

TABLE 5-2:	REGISTER FILE SUMMARY	PIC18F2525/2620/4525/4620)
-		

Note 1: The SBOREN bit is only available when the BOREN1:BOREN0 Configuration bits = 01; otherwise, it is disabled and reads as '0'. See Section 4.4 "Brown-out Reset (BOR)".

2: These registers and/or bits are not implemented on 28-pin devices and are read as '0'. Reset values are shown for 40/44-pin devices; individual unimplemented bits should be interpreted as '-'.

3: The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as '0'. See Section 2.6.4 "PLL in INTOSC Modes".

4: The RE3 bit is only available when Master Clear Reset is disabled (MCLRE Configuration bit = 0); otherwise, RE3 reads as '0'. This bit is read-only.

5: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

6: Bit 7 and bit 6 are cleared by user software or by a POR.

Pin	Function	TRIS Setting	I/O	l/O Type	Description
RD0/PSP0	RD0	0	0	DIG	LATD<0> data output.
		1	Ι	ST	PORTD<0> data input.
	PSP0	x	0	DIG	PSP read data output (LATD<0>); takes priority over port data.
		x	Ι	TTL	PSP write data input.
RD1/PSP1	RD1	0	0	DIG	LATD<1> data output.
		1	I	ST	PORTD<1> data input.
	PSP1	x	0	DIG	PSP read data output (LATD<1>); takes priority over port data.
		x	I	TTL	PSP write data input.
RD2/PSP2	RD2	0	0	DIG	LATD<2> data output.
		1	Ι	ST	PORTD<2> data input.
	PSP2	x	0	DIG	PSP read data output (LATD<2>); takes priority over port data.
		x	Ι	TTL	PSP write data input.
RD3/PSP3	RD3	0	0	DIG	LATD<3> data output.
		1	Ι	ST	PORTD<3> data input.
	PSP3	x	0	DIG	PSP read data output (LATD<3>); takes priority over port data.
		x	-	TTL	PSP write data input.
RD4/PSP4	RD4	0	0	DIG	LATD<4> data output.
		1	Ι	ST	PORTD<4> data input.
	PSP4	x	0	DIG	PSP read data output (LATD<4>); takes priority over port data.
		x	Ι	TTL	PSP write data input.
RD5/PSP5/P1B	RD5	0	0	DIG	LATD<5> data output.
		1	-	ST	PORTD<5> data input.
	PSP5	x	0	DIG	PSP read data output (LATD<5>); takes priority over port data.
		x	Ι	TTL	PSP write data input.
	P1B	0	0	DIG	ECCP1 Enhanced PWM output, channel B; takes priority over port and PSP data. May be configured for tri-state during Enhanced PWM shutdown events.
RD6/PSP6/P1C	RD6	0	0	DIG	LATD<6> data output.
		1	I	ST	PORTD<6> data input.
	PSP6	x	0	DIG	PSP read data output (LATD<6>); takes priority over port data.
		x	I	TTL	PSP write data input.
	P1C	0	0	DIG	ECCP1 Enhanced PWM output, channel C; takes priority over port and PSP data. May be configured for tri-state during Enhanced PWM shutdown events.
RD7/PSP7/P1D	RD7	0	0	DIG	LATD<7> data output.
		1	I	ST	PORTD<7> data input.
	PSP7	x	0	DIG	PSP read data output (LATD<7>); takes priority over port data.
		x	I	TTL	PSP write data input.
	P1D	0	0	DIG	ECCP1 Enhanced PWM output, channel D; takes priority over port and PSP data. May be configured for tri-state during Enhanced PWM shutdown events.

TABLE 9-7: PORTD I/O SUMMARY

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer;

x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

13.0 TIMER2 MODULE

The Timer2 module timer incorporates the following features:

- 8-bit Timer and Period registers (TMR2 and PR2, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4 and 1:16)
- Software programmable postscaler (1:1 through 1:16)
- Interrupt on TMR2 to PR2 match
- Optional use as the shift clock for the MSSP module

The module is controlled through the T2CON register (Register 13-1), which enables or disables the timer and configures the prescaler and postscaler. Timer2 can be shut off by clearing control bit, TMR2ON (T2CON<2>), to minimize power consumption.

A simplified block diagram of the module is shown in Figure 13-1.

13.1 Timer2 Operation

In normal operation, TMR2 is incremented from 00h on each clock (FOSC/4). A 4-bit counter/prescaler on the clock input gives direct input, divide-by-4 and divide-by-16 prescale options; these are selected by the prescaler control bits, T2CKPS1:T2CKPS0 (T2CON<1:0>). The value of TMR2 is compared to that of the Period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/ postscaler (see Section 13.2 "Timer2 Interrupt").

The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, while the PR2 register initializes at FFh. Both the prescaler and postscaler counters are cleared on the following events:

- a write to the TMR2 register
- a write to the T2CON register
- any device Reset (Power-on Reset, MCLR Reset, Watchdog Timer Reset or Brown-out Reset)

TMR2 is not cleared when T2CON is written.

REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0		
bit 7	•	•					bit 0		
Legend:									
R = Readable bit W = Writable bit			U = Unimplem	nented bit, read	d as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	Iown		
bit 7	Unimplemented: Read as '0'								
bit 6-3	T2OUTPS3:T	20UTPS0: Tim	ner2 Output Po	stscale Select	bits				
	0000 = 1:1 Po	ostscale							
	0001 = 1:2 Po	ostscale							
	•								
	•								
	1111 = 1:16 F	Postscale							
bit 2	TMR2ON: Tin	ner2 On bit							
	1 = Timer2 is	on							
	0 = Timer2 is	off							
bit 1-0	T2CKPS1:T2	CKPS0: Timer	2 Clock Presca	ale Select bits					
	00 = Prescale	eris 1							
	01 = Prescaler is 4								
	$TX = r^{1}escale$	115 10							

NOTES:

REGISTER 17-2: SSPCON1: MSSP CONTROL REGISTER 1 (SPI MODE)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV ⁽¹⁾	SSPEN ⁽²⁾	CKP	SSPM3 ⁽³⁾	SSPM2 ⁽³⁾	SSPM1 ⁽³⁾	SSPM0 ⁽³⁾
bit 7							bit 0

r									
Legend:									
R = Readab	ole bit	W = Writable bit	U = Unimplemented bit	read as '0'					
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					
bit 7	WCOL: W	rite Collision Detect bit							
	1 = The SSPxBUF register is written while it is still transmitting the previous word (must be cleared ir								
	softwa	are) Illinion							
h it C		IIISIUII	:(1)						
DIE		eceive Overnow Indicator bi	[[(.)						
	1 = A new	houe. byte is received while the S	SPBUE register is still holding	the previous data. In case of over-					
	flow, t	he data in SSPSR is lost. C	Verflow can only occur in Sla	we mode. The user must read the					
	SSPB	UF, even if only transmitting	data, to avoid setting overflor	w (must be cleared in software).					
	0 = No ov	erflow							
bit 5	SSPEN: N	laster Synchronous Serial P	ort Enable bit ⁽²⁾						
	1 = Enable	es serial port and configures	SCK, SDO, SDI and SS as s	erial port pins					
	0 = Disabl	es serial port and configures	s these pins as I/O port pins						
bit 4	CKP: Cloc	k Polarity Select bit							
	1 = Idle sta	ate for clock is a high level							
hit 2 0		SPMO: Master Synchronous	Sorial Dart Made Salast hite	3)					
DII 3-0	0101 - S	SFINIU. Master Synchronous	senal Fort Mode Select bits	$\frac{1}{22}$ can be used as $1/0$ pin					
	0101 = SF 0100 = SF	PI Slave mode, $clock = SCK$	pin, <u>SS</u> pin control disabled,	ss can be used as 1/0 pm					
	0011 = SF	PI Master mode, clock = TMI	R2 output/2						
	0010 = SF	PI Master mode, clock = Fos	sc/64						
	0001 = SF	¹ Master mode, clock = Fos	SC/16						
	0000 = SF	'I Master mode, clock = Fos	SC/4						
Note 1:	n Master mod	le, the overflow bit is not set	since each new reception (ar	d transmission) is initiated by					
v	vriting to the S	SSPBUF register.							

- 2: When enabled, these pins must be properly configured as input or output.
- 3: Bit combinations not specifically listed here are either reserved or implemented in I²C[™] mode only.

17.3.5 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 17-2) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI operation is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode. The clock polarity is selected by appropriately programming the CKP bit (SSPCON1<4>). This then, would give waveforms for SPI communication, as shown in Figure 17-3, Figure 17-5 and Figure 17-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 40 MHz) of 10.00 Mbps.

Figure 17-3 shows the waveforms for Master mode. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

FIGURE 17-3: SPI MODE WAVEFORM (MASTER MODE)

REGISTE	ER 17-5: SSPC	ON2: MSSP	CONTROL R	REGISTER 2 ((I ² C™ MODE	E)	
R/W-0) R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
GCEN	ACKSTAT	ACKDT ⁽²⁾	ACKEN ⁽¹⁾	RCEN ⁽¹⁾	PEN ⁽¹⁾	RSEN ⁽¹⁾	SEN ⁽¹⁾
bit 7							bit 0
l egend:							
R = Read	lable bit	W = Writable	hit	U = Unimplen	nented bit read	d as '0'	
-n = Value	e at POR	(1) - Rit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
iii fala				0 2000 000			
bit 7	GCEN: Gene	ral Call Enable	bit (Slave mod	le only)			
	1 = Enables i 0 = General c	nterrupt when a all address dis	a general call a abled.	ddress (0000h)	is received in	the SSPSR	
bit 6	ACKSTAT: A	cknowledge Sta	atus bit (Master	r Transmit mod	e only)		
	1 = Acknowle 0 = Acknowle	dge was not re dge was receiv	ceived from slave	ave			
bit 5	ACKDT: Ackr	nowledge Data	bit (Master Re	ceive mode onl	y) (2)		
	1 = Not Ackno 0 = Acknowle	owledge edge					
bit 4	ACKEN: Ack	nowledge Sequ	ience Enable b	oit (Master Rece	eive mode only	_{/)} (1)	
	1 = Initiates A cleared b 0 = Acknowle	Acknowledge se by hardware. edge sequence	equence on SD	A and SCL pins	and transmit A	ACKDT data bit.	Automatically
bit 3	RCEN: Recei	ive Enable bit (Master mode o	only)(1)			
	1 = Enables F 0 = Receive I	Receive mode f	or I ² C	,			
bit 2	PEN: Stop Co	ondition Enable	bit (Master mo	ode only) ⁽¹⁾			
	1 = Initiates S 0 = Stop cond	Stop condition o dition Idle	n SDA and SC	L pins. Automa	tically cleared	by hardware.	
bit 1	RSEN: Repea	ated Start Cond	lition Enable bi	it (Master mode	only) ⁽¹⁾		
	1 = Initiates I 0 = Repeate	Repeated Start d Start condition	condition on S n Idle	DA and SCL pi	ns. Automatica	ally cleared by h	ardware.
bit 0	SEN: Start Co	ondition Enable	Stretch Enable	e bit ⁽¹⁾			
	<u>In Master mo</u> 1 = Initiates S 0 = Start cond	<u>de:</u> Start condition o dition Idle	n SDA and SC	CL pins. Automa	atically cleared	by hardware.	
	In Slave mod 1 = Clock stre 0 = Clock stre	<u>e:</u> etching is enabl etching is disab	ed for both sla led	ve transmit and	I slave receive	(stretch enable	d)
Note 1:	For bits ACKEN, set (no spooling)	RCEN, PEN, R and the SSPBL	SEN, SEN: If th JF may not be	ne I ² C module is written (or write	s not in the Idle es to the SSPE	e mode, these bi BUF are disable	ts may not be d).

2: Value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.

17.4.17.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user deasserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to 0. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled.

FIGURE 17-29:

If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 17-29). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 17-30.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 17-30: **BUS COLLISION DURING REPEATED START CONDITION (CASE 2)**

The value in the ADRESH:ADRESL registers is not modified for a Power-on Reset. The ADRESH:ADRESL registers will contain unknown data after a Power-on Reset.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see **Section 19.1 "A/D Acquisition Requirements"**. After this acquisition time has elapsed, the A/D conversion can be started. An acquisition time can be programmed to occur between setting the GO/DONE bit and the actual start of the conversion.

The following steps should be followed to perform an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins, voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D acquisition time (ADCON2)
 - Select A/D conversion clock (ADCON2)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set GIE bit
- 3. Wait the required acquisition time (if required).
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0 register)

- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared OR
 - Waiting for the A/D interrupt
- 6. Read A/D Result registers (ADRESH:ADRESL); clear bit ADIF, if required.
- 7. For next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.

FIGURE 19-2: A/D TRANSFER FUNCTION

FIGURE 19-3: ANALOG INPUT MODEL

19.2 Selecting and Configuring Acquisition Time

The ADCON2 register allows the user to select an acquisition time that occurs each time the GO/DONE bit is set. It also gives users the option to use an automatically determined acquisition time.

Acquisition time may be set with the ACQT2:ACQT0 bits (ADCON2<5:3>), which provides a range of 2 to 20 TAD. When the GO/DONE bit is set, the A/D module continues to sample the input for the selected acquisition time, then automatically begins a conversion. Since the acquisition time is programmed, there may be no need to wait for an acquisition time between selecting a channel and setting the GO/DONE bit.

Manual acquisition is selected when ACQT2:ACQT0 = 000. When the GO/DONE bit is set, sampling is stopped and a conversion begins. The user is responsible for ensuring the required acquisition time has passed between selecting the desired input channel and setting the GO/DONE bit. This option is also the default Reset state of the ACQT2:ACQT0 bits and is compatible with devices that do not offer programmable acquisition times.

In either case, when the conversion is completed, the GO/DONE bit is cleared, the ADIF flag is set and the A/D begins sampling the currently selected channel again. If an acquisition time is programmed, there is nothing to indicate if the acquisition time has ended or if the conversion has begun.

19.3 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 11 TAD per 10-bit conversion. The source of the A/D conversion clock is software selectable. There are seven possible options for TAD:

- 2 Tosc
- 4 Tosc
- 8 Tosc
- 16 Tosc
- 32 Tosc
- 64 Tosc
- Internal RC Oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be as short as possible, but greater than the minimum TAD (see parameter 130 for more information).

Table 19-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

AD Clock Sou	irce (TAD)	Maximum Device Frequency			
Operation	ADCS2:ADCS0	PIC18F2X20/4X20	PIC18LF2X20/4X20 ⁽⁴⁾		
2 Tosc	000	2.86 MHz	1.43 kHz		
4 Tosc	100	5.71 MHz	2.86 MHz		
8 Tosc	001	11.43 MHz	5.72 MHz		
16 Tosc	101	22.86 MHz	11.43 MHz		
32 Tosc	010	40.0 MHz	22.86 MHz		
64 Tosc	110	40.0 MHz	22.86 MHz		
RC ⁽³⁾	x11	1.00 MHz ⁽¹⁾	1.00 MHz ⁽²⁾		

TABLE 19-1: TAD vs. DEVICE OPERATING FREQUENCIES

Note 1: The RC source has a typical TAD time of $1.2 \ \mu s$.

2: The RC source has a typical TAD time of 2.5 μ s.

- **3:** For device frequencies above 1 MHz, the device must be in Sleep for the entire conversion or the A/D accuracy may be out of specification.
- 4: Low-power (PIC18LFXXXX) devices only.

REGISTER 23-3: CONFIG2H: CONFIGURATION REGISTER 2 HIGH (BYTE ADDRESS 300003h) U-0 U-0 U-0 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 WDTPS3 WDTPS2 WDTPS0 WDTEN _ ____ ____ WDTPS1 bit 7 bit 0 Legend: R = Readable bit P = Programmable bit U = Unimplemented bit, read as '0' -n = Value when device is unprogrammed u = Unchanged from programmed state bit 7-5 Unimplemented: Read as '0' bit 4-1 WDTPS3:WDTPS0: Watchdog Timer Postscale Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,0961011 = 1:2,048 1010 = 1:1,024 1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2 0000 = 1:1 bit 0 WDTEN: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled (control is placed on the SWDTEN bit)

FIGURE 26-13: EXAMPLE SPI MASTER MODE TIMING (CKE = 0)

TABLE 26-14: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)

Param No.	Symbol	Characteristic	Characteristic			Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SS} \downarrow$ to SCK \downarrow or SCK \uparrow Input		Тсү		ns	
71	TscH	SCK Input High Time	Continuous	1.25 TCY + 30	_	ns	
71A		(Slave mode)	Single Byte	40		ns	(Note 1)
72	TscL	SCK Input Low Time	Continuous	1.25 TCY + 30		ns	
72A		(Slave mode)	Single Byte	40		ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup Time of SDI Data Input t	20	_	ns		
73A	Tb2b	Last Clock Edge of Byte 1 to th of Byte 2	1.5 Tcy + 40	_	ns	(Note 2)	
74	TscH2diL, TscL2diL	Hold Time of SDI Data Input to	SCK Edge	40	_	ns	
75	TdoR	SDO Data Output Rise Time	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX	—	45	ns	VDD = 2.0V
76	TdoF	SDO Data Output Fall Time		_	25	ns	
78	TscR	SCK Output Rise Time	PIC18FXXXX	—	25	ns	
		(Master mode)	PIC18LFXXXX	—	45	ns	VDD = 2.0V
79	TscF	SCK Output Fall Time (Master	mode)		25	ns	
80	TscH2doV,	SDO Data Output Valid after	PIC18FXXXX	_	50	ns	
	TscL2doV	SCK Edge	PIC18LFXXXX		100	ns	VDD = 2.0V

Note 1: Requires the use of Parameter #73A.

2: Only if Parameter #71A and #72A are used.

TABLE 26-22: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE)					
		Clock High to Data Out Valid	PIC18FXXXX	—	40	ns	
			PIC18 LF XXXX	_	100	ns	VDD = 2.0V
121	Tckrf	Clock Out Rise Time and Fall Time (Master mode)	PIC18FXXXX	—	20	ns	
			PIC18 LF XXXX	—	50	ns	VDD = 2.0V
122	Tdtrf	Data Out Rise Time and Fall Time	PIC18FXXXX	—	20	ns	
			PIC18LFXXXX	_	50	ns	VDD = 2.0V

27.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.

FIGURE 27-1: SLEEP MODE

FIGURE 27-17: TYPICAL AND MAXIMUM SEC_RUN CURRENT vs. Vdd ACROSS TEMPERATURE (T10SC IN LOW-POWER MODE)

FIGURE 27-18: TYPICAL AND MAXIMUM SEC_IDLE CURRENT vs. Vdd ACROSS TEMPERATURE (T1OSC IN LOW-POWER MODE)

Full-Bridge PWM Output153
Half-Bridge PWM Output152
High/Low-Voltage Detect Characteristics
High-Voltage Detect Operation (VDIRMAG = 1) 246 $J^{2}O$ Rue Dete
Inc. Bus Data
I^2 C Master Mode (7 or 10-Bit Transmission) 192
I^2 C Master Mode (7-Bit Reception) 193
l^2C Slave Mode (10-Bit Reception, SEN = 0)
I^2C Slave Mode (10-Bit Reception, SEN = 1)
I ² C Slave Mode (10-Bit Transmission)
I^2C Slave Mode (7-Bit Reception, SEN = 0)
I^2 C Slave Mode (7-Bit Reception, SEN = 1)
I ² C Slave Mode (7-Bit Transmission) 177
I ² C Slave Mode General Call Address
Sequence (7 or 10-Bit Address Mode)
I-C Stop Condition Receive or Transmit Mode
Low-voltage Detect Operation (VDIRMAG = 0)245 Master SSB I^{2} C Rue Data
Master SSP I ² C Bus Start/Stop Bits 356
Parallel Slave Port (PIC18F4525/4620)
Parallel Slave Port (PSP) Read
Parallel Slave Port (PSP) Write
PWM Auto-Shutdown ($PRSEN = 0$,
Auto-Restart Disabled)158
PWM Auto-Shutdown (PRSEN = 1,
Auto-Restart Enabled)158
PWM Direction Change
PWM Direction Change at Near
100% Duty Cycle
PWM Output
Ropport Start Condition 100
Repeat Start Condition
Repeat Start Condition
Repeat Start Condition
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up 190 Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, 167
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT)
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 Synchronous Reception (Master Mode, SREN) 219 Suraprocessor 219
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission 218
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, 167 VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCL R Tied to VDD) 47
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, 167 VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Tied to VDD) 47
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD, Case 1) 47
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) 47 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 1) 46 Time-out Sequence on Power-up 46
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) 47 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 1) 46 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2) 46
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD, Case 1) 46 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2) (MCLR Not Tied to VDD, Case 2) 46
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD, Case 1) 46 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2) (MCLR Not Tied to VDD, Case 2) 46 Time-out Sequence on Power-up (MCLR Tied to VDD, Case 2) (MCLR Tied to VDD, VDD Rise < TPWRT)
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD, Case 1) 46 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2) (MCLR Tied to VDD, VDD, Case 2) 46 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise < TPWRT)
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD, Case 1) 46 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2) (MCLR Not Tied to VDD, Case 2) 46 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise < TPWRT)
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD, Case 1) 46 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2) (MCLR Not Tied to VDD, VDD Rise < TPWRT)
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD, Case 1) 46 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2) (MCLR Not Tied to VDD, Case 2) 46 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise < TPWRT)
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD, Case 1) 46 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2) (MCLR Not Tied to VDD, Case 2) 46 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise < TPWRT)
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD, Case 1) 46 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2) (MCLR Not Tied to VDD, Case 2) 46 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise < TPWRT)
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD, Case 1) 46 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 1) (MCLR Not Tied to VDD, Case 2) 46 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise < TPWRT)
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD, Case 1) 46 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2) (MCLR Not Tied to VDD, VDD Rise < TPWRT)
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD, Case 1) 46 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 1) (MCLR Not Tied to VDD, Case 2) 46 Timer0 and Sequence on Power-up (MCLR Not Tied to VDD, VDD Rise < TPWRT)
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD, Case 1) 46 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 1) (MCLR Not Tied to VDD, VDD Rise < TPWRT)

Transition to RC_RUN Mode
Timing Diagrams and Specifications
A/D Conversion Requirements
Capture/Compare/PWM (CCP) Requirements 347
CLKO and I/O Requirements
EUSART Synchronous Receive Requirements 359
EUSART Synchronous Transmission
Requirements
Example SPI Mode Requirements
(Master Mode, CKE = 0) 349
Example SPI Mode Requirements
(Master Mode, CKE = 1) 350
Example SPI Mode Requirements
(Slave Mode, CKE = 0)
Example SPI Mode Requirements
(Slave Mode, CKE = 1)
External Clock Requirements 342
I ² C Bus Data Requirements (Slave Mode)
Master SSP I ² C Bus Data Requirements
Master SSP I ² C Bus Start/Stop Bits
Requirements
Parallel Slave Port Requirements
(PIC18F4525/4620)
PLL Clock
Reset, Watchdog Timer, Oscillator Start-up
Timer, Power-up Timer and Brown-out
Reset Requirements 345
Timer0 and Timer1 External Clock
Requirements 346
Top-of-Stack Access 54
TRISE Register
PSPMODE Bit 100
TSTFSZ
Two-Speed Start-up 249, 260
Two-Word Instructions
Example Cases 58
TXSTA Register
BRGH Bit 205
V
Voltage Deference Specifications 228
voltage Reference Specifications
W
Watchdog Timer (WDT) 249, 258
Associated Registers
Control Register

 During Oscillator Failure
 261

 Programming Considerations
 258

 WCOL
 189, 190, 191, 194

 WCOL Status Flag
 189, 190, 191, 194

 WWW Address
 407

 WWW, On-Line Support
 5

Х

NOTES: