

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4525t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	7
2.0	Oscillator Configurations	23
3.0	Power-Managed Modes	33
4.0	Reset	41
5.0	Memory Organization	53
6.0	Data EEPROM Memory	73
7.0	Flash Program Memory	79
8.0	8 x 8 Hardware Multiplier	89
9.0	I/O Ports	91
10.0	Interrupts	109
11.0	Timer0 Module	123
12.0	Timer1 Module	127
13.0	Timer2 Module	133
14.0	Timer3 Module	135
15.0	Capture/Compare/PWM (CCP) Modules	139
16.0	Enhanced Capture/Compare/PWM (ECCP) Module	147
17.0	Master Synchronous Serial Port (MSSP) Module	161
18.0	Enhanced Universal Synchronous Receiver Transmitter (EUSART)	201
19.0	10-Bit Analog-to-Digital Converter (A/D) Module	223
20.0	Comparator Module	233
21.0	Comparator Voltage Reference Module	239
22.0	High/Low-Voltage Detect (HLVD)	243
23.0	Special Features of the CPU	249
24.0	Instruction Set Summary	267
25.0	Development Support	317
26.0	Electrical Characteristics	321
27.0	DC and AC Characteristics Graphs and Tables	361
28.0	Packaging Information	383
Appe	ndix A: Revision History	393
Appe	ndix B: Device Differences	394
Appe	ndix C: Conversion Considerations	395
Appe	ndix D: Migration from Baseline to Enhanced Devices	395
Appe	ndix E: Migration from Mid-Range TO Enhanced Devices	396
Appe	ndix F: Migration from High-End to Enhanced Devices	396
Index		397
The N	/icrochip Web Site	407
Custo	mer Change Notification Service	407
Custo	omer Support	407
Read	er Response	408
PIC1	3F2525/2620/4525/4620 Product Identification System	409

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

- PIC18F2525 PIC18LF2525
- PIC18F2620 PIC18LF2620
- PIC18F4525 PIC18LF4525
- PIC18F4620 PIC18LF4620

This family offers the advantages of all PIC18 microcontrollers – namely, high computational performance at an economical price – with the addition of high-endurance, Enhanced Flash program memory. On top of these features, the PIC18F2525/2620/4525/4620 family introduces design enhancements that make these microcontrollers a logical choice for many high-performance, power sensitive applications.

1.1 New Core Features

1.1.1 nanoWatt TECHNOLOGY

All of the devices in the PIC18F2525/2620/4525/4620 family incorporate a range of features that can significantly reduce power consumption during operation. Key items include:

- Alternate Run Modes: By clocking the controller from the Timer1 source or the internal oscillator block, power consumption during code execution can be reduced by as much as 90%.
- **Multiple Idle Modes:** The controller can also run with its CPU core disabled but the peripherals still active. In these states, power consumption can be reduced even further, to as little as 4%, of normal operation requirements.
- **On-the-Fly Mode Switching:** The powermanaged modes are invoked by user code during operation, allowing the user to incorporate power-saving ideas into their application's software design.
- Low Consumption in Key Modules: The power requirements for both Timer1 and the Watchdog Timer are minimized. See Section 26.0 "Electrical Characteristics" for values.

1.1.2 MULTIPLE OSCILLATOR OPTIONS AND FEATURES

All of the devices in the PIC18F2525/2620/4525/4620 family offer ten different oscillator options, allowing users a wide range of choices in developing application hardware. These include:

- Four Crystal modes, using crystals or ceramic resonators
- Two External Clock modes, offering the option of using two pins (oscillator input and a divide-by-4 clock output) or one pin (oscillator input, with the second pin reassigned as general I/O)
- Two External RC Oscillator modes with the same pin options as the External Clock modes
- An internal oscillator block which provides an 8 MHz clock and an INTRC source (approximately 31 kHz), as well as a range of 6 user-selectable clock frequencies, between 125 kHz to 4 MHz, for a total of 8 clock frequencies. This option frees the two oscillator pins for use as additional general purpose I/O.
- A Phase Lock Loop (PLL) frequency multiplier, available to both the High-Speed Crystal and Internal Oscillator modes, which allows clock speeds of up to 40 MHz. Used with the internal oscillator, the PLL gives users a complete selection of clock speeds, from 31 kHz to 32 MHz – all without using an external crystal or clock circuit.

Besides its availability as a clock source, the internal oscillator block provides a stable reference source that gives the family additional features for robust operation:

- Fail-Safe Clock Monitor: This option constantly monitors the main clock source against a reference signal provided by the internal oscillator. If a clock failure occurs, the controller is switched to the internal oscillator block, allowing for continued low-speed operation or a safe application shutdown.
- **Two-Speed Start-up:** This option allows the internal oscillator to serve as the clock source from Power-on Reset, or wake-up from Sleep mode, until the primary clock source is available.

REGISTER 2-1: OSCTUNE: OSCILLATOR TUNING REGISTER

R/W-0	R/W-0 ⁽¹⁾	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INTSRC	PLLEN ⁽¹⁾	—	TUN4	TUN3	TUN2	TUN1	TUNO
bit 7 bit 0							

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7	 INTSRC: Internal Oscillator Low-Frequency Source Select bit 1 = 31.25 kHz device clock derived from 8 MHz INTOSC source (divide-by-256 enabled) 0 = 31 kHz device clock derived directly from INTRC internal oscillator 					
bit 6	PLLEN: Frequency Multiplier PLL for INTOSC Enable bit ⁽¹⁾ 1 = PLL enabled for INTOSC (4 MHz and 8 MHz only) 0 = PLL disabled					
bit 5	Unimplemented: Read as '0'					
bit 4-0	TUN4:TUN0: Frequency Tuning bits					
	011111 = Maximum frequency					
	• •					
	• •					
	000001					
	000000 = Center frequency. Oscillator module is running at the calibrated frequency.					
	111111					
	• •					
	• •					
	100000 = Minimum frequency					

Note 1: Available only in certain oscillator configurations; otherwise, this bit is unavailable and reads as '0'. See Section 2.6.4 "PLL in INTOSC Modes" for details.

2.6.5.1 Compensating with the EUSART

An adjustment may be required when the EUSART begins to generate framing errors or receives data with errors while in Asynchronous mode. Framing errors indicate that the device clock frequency is too high; to adjust for this, decrement the value in OSCTUNE to reduce the clock frequency. On the other hand, errors in data may suggest that the clock speed is too low; to compensate, increment OSCTUNE to increase the clock frequency.

2.6.5.2 Compensating with the Timers

This technique compares device clock speed to some reference clock. Two timers may be used; one timer is clocked by the peripheral clock, while the other is clocked by a fixed reference source, such as the Timer1 oscillator.

Both timers are cleared, but the timer clocked by the reference generates interrupts. When an interrupt occurs, the internally clocked timer is read and both timers are cleared. If the internally clocked timer value is greater than expected, then the internal oscillator block is running too fast. To adjust for this, decrement the OSCTUNE register.

2.6.5.3 Compensating with the CCP Module in Capture Mode

A CCP module can use free-running Timer1 (or Timer3), clocked by the internal oscillator block and an external event with a known period (i.e., AC power frequency). The time of the first event is captured in the CCPRxH:CCPRxL registers and is recorded for use later. When the second event causes a capture, the time of the first event is subtracted from the time of the second event. Since the period of the external event is known, the time difference between events can be calculated.

If the measured time is much greater than the calculated time, the internal oscillator block is running too fast; to compensate, decrement the OSCTUNE register. If the measured time is much less than the calculated time, the internal oscillator block is running too slow; to compensate, increment the OSCTUNE register.

^{© 2008} Microchip Technology Inc.

3.2.3 RC_RUN MODE

In RC_RUN mode, the CPU and peripherals are clocked from the internal oscillator block using the INTOSC multiplexer. In this mode, the primary clock is shut down. When using the INTRC source, this mode provides the best power conservation of all the Run modes, while still executing code. It works well for user applications which are not highly timing sensitive or do not require high-speed clocks at all times.

If the primary clock source is the internal oscillator block (either INTRC or INTOSC), there are no distinguishable differences between PRI_RUN and RC_RUN modes during execution. However, a clock switch delay will occur during entry to and exit from RC_RUN mode. Therefore, if the primary clock source is the internal oscillator block, the use of RC_RUN mode is not recommended. This mode is entered by setting the SCS1 bit to '1'. Although it is ignored, it is recommended that the SCS0 bit also be cleared; this is to maintain software compatibility with future devices. When the clock source is switched to the INTOSC multiplexer (see Figure 3-3), the primary oscillator is shut down and the OSTS bit is cleared. The IRCF bits may be modified at any time to immediately change the clock speed.

Note:	Caution should be used when modifying a single IRCF bit. If VDD is less than 3V, it is				
	possible to select a higher clock speed				
	than is supported by the low VDD.				
	Improper device operation may result if				
	the VDD/FOSC specifications are violated.				

9.4 PORTD, TRISD and LATD Registers

Note:	PORTD	is	only	available	on	40/44-pin
	devices.					

PORTD is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISD. Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATD) is also memory mapped. Read-modify-write operations on the LATD register read and write the latched output value for PORTD.

All pins on PORTD are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Three of the PORTD pins are multiplexed with outputs P1B, P1C and P1D of the Enhanced CCP module. The operation of these additional PWM output pins is covered in greater detail in Section 16.0 "Enhanced Capture/Compare/PWM (ECCP) Module".

Note: On a Power-on Reset, these pins are configured as digital inputs.

PORTD can also be configured as an 8-bit wide microprocessor port (Parallel Slave Port) by setting control bit, PSPMODE (TRISE<4>). In this mode, the input buffers are TTL. See **Section 9.6** "**Parallel Slave Port**" for additional information on the Parallel Slave Port (PSP).

Note:	When the Enhanced PWM mode is used				
	with either dual or quad outputs, the PSP				
	functions of PORTD are automatically				
	disabled.				

EXAMPLE 9-4: INITIALIZING PORTD

CLRF	PORTD	; Initialize PORTD by ; clearing output
		; data latches
CLRF	LATD	; Alternate method
		; to clear output
		; data latches
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISD	; Set RD<3:0> as inputs
		; RD<5:4> as outputs
		; RD<7:6> as inputs

15.0 CAPTURE/COMPARE/PWM (CCP) MODULES

PIC18F2525/2620/4525/4620 devices all have two CCP (Capture/Compare/PWM) modules. Each module contains a 16-bit register which can operate as a 16-bit Capture register, a 16-bit Compare register or a PWM Master/Slave Duty Cycle register.

In 28-pin devices, the two standard CCP modules (CCP1 and CCP2) operate as described in this chapter. In 40/44-pin devices, CCP1 is implemented as an Enhanced CCP module with standard Capture and Compare modes and Enhanced PWM modes. The ECCP implementation is discussed in Section 16.0 "Enhanced Capture/Compare/PWM (ECCP) Module". The Capture and Compare operations described in this chapter apply to all standard and Enhanced CCP modules.

Note: Throughout this section and Section 16.0 "Enhanced Capture/Compare/PWM (ECCP) Module", references to the register and bit names for CCP modules are referred to generically by the use of 'x' or 'y' in place of the specific module number. Thus, "CCPxCON" might refer to the control register for CCP1, CCP2 or ECCP1. "CCPxCON" is used throughout these sections to refer to the module control register, regardless of whether the CCP module is a standard or enhanced implementation.

REGISTER 15-1:	CCPxCON: CCPx CONTROL	REGISTER (28-PIN DEVICES)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-6 Unimplemented: Read as '0'

bit 5-4 DCxB1:DCxB0: PWM Duty Cycle bit 1 and bit 0 for CCPx Module Capture mode: Unused. Compare mode: Unused. PWM mode: These bits are the two LSbs (bit 1 and bit 0) of the 10-bit PWM duty cycle. The eight MSbs (DCx9:DCx2) of the duty cycle are found in CCPRxL. bit 3-0 CCPxM3:CCPxM0: CCPx Module Mode Select bits 0000 = Capture/Compare/PWM disabled (resets CCPx module) 0001 = Reserved 0010 = Compare mode, toggle output on match (CCPxIF bit is set) 0011 = Reserved 0100 = Capture mode, every falling edge0101 = Capture mode, every rising edge 0110 = Capture mode, every 4th rising edge 0111 = Capture mode, every 16th rising edge 1000 = Compare mode, initialize CCPx pin low; on compare match, force CCPx pin high (CCPxIF bit is set) 1001 = Compare mode, initialize CCPx pin high; on compare match, force CCPx pin low (CCPxIF bit is set) 1010 = Compare mode, generate software interrupt on compare match (CCPxIF bit is set, CCPx pin reflects I/O state) 1011 = Compare mode, trigger special event; reset timer; CCPx match starts A/D conversion (CCPxIF bit is set) 11xx = PWM mode

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	49
RCON	IPEN	SBOREN ⁽¹⁾	_	RI	TO	PD	POR	BOR	48
PIR1	PSPIF ⁽²⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	52
PIE1	PSPIE ⁽²⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	52
IPR1	PSPIP ⁽²⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	52
PIR2	OSCFIF	CMIF	—	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	52
PIE2	OSCFIE	CMIE	—	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	52
IPR2	OSCFIP	CMIP	—	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	52
TRISB	PORTB Data Direction Control Register								52
TRISC	PORTC Data Direction Control Register							52	
TMR1L	Timer1 Re	gister Low Byt	te						50
TMR1H	Timer1 Re	gister High By	te						50
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	50
TMR3H	Timer3 Re	gister High By	te						51
TMR3L	Timer3 Re	gister Low Byt	te						51
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	51
CCPR1L	Capture/Co	ompare/PWM	Register 1	Low Byte					51
CCPR1H	H Capture/Compare/PWM Register 1 High Byte						51		
CCP1CON	P1M1 ⁽²⁾	P1M0 ⁽²⁾	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	51
CCPR2L	Capture/Compare/PWM Register 2 Low Byte							51	
CCPR2H	Capture/Co	ompare/PWM	Register 2	High Byte					51
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	51

TARI F 15-3.	REGISTERS ASSOCIATED	WITH CAPTURE	COMPARE	TIMER1 AND 1	TIMERS

Legend: — = unimplemented, read as '0'. Shaded cells are not used by Capture/Compare, Timer1 or Timer3.

Note 1: The SBOREN bit is only available when the BOREN1:BOREN0 Configuration bits = 01; otherwise, it is disabled and reads as '0'. See Section 4.4 "Brown-out Reset (BOR)".

2: These bits are unimplemented on 28-pin devices and read as '0'.

FIGURE 18-12: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

TABLE 18-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	52
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	52
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	52
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	51
TXREG	EUSART T	ransmit Reg	ister						51
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	51
BAUDCON	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	51
SPBRGH	SPBRGH EUSART Baud Rate Generator Register High Byte							51	
SPBRG	EUSART E	Baud Rate G	enerator Re	gister Low	Byte				51

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

Note 1: These bits are unimplemented on 28-pin devices and read as '0'.

20.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 20-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this

range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up condition may occur. A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

TABLE 20-1: REGI	STERS ASSOCIATED	WITH COMPARA	ATOR MODULE
------------------	------------------	--------------	--------------------

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	51
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	51
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	52
PIR2	OSCFIF	CMIF	—	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	52
PIE2	OSCFIE	CMIE	—	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	52
IPR2	OSCFIP	CMIP	—	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	52
PORTA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	52
LATA	LATA7 ⁽¹⁾	LATA6 ⁽¹⁾	PORTA Data Latch Register (Read and Write to Data Latch)						52
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	PORTA Da	ORTA Data Direction Control Register					

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the comparator module.

Note 1: PORTA<7:6> and their direction and latch bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

FIGURE 21-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

21.2 Voltage Reference Accuracy/Error

The full range of voltage reference cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 21-1) keep CVREF from approaching the reference source rails. The voltage reference is derived from the reference source; therefore, the CVREF output changes with fluctuations in that source. The tested absolute accuracy of the voltage reference can be found in **Section 26.0 "Electrical Characteristics"**.

21.3 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the CVRCON register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

21.4 Effects of a Reset

A device Reset disables the voltage reference by clearing bit, CVREN (CVRCON<7>). This Reset also disconnects the reference from the RA2 pin by clearing bit, CVROE (CVRCON<6>) and selects the high-voltage range by clearing bit, CVRR (CVRCON<5>). The CVR value select bits are also cleared.

21.5 Connection Considerations

The voltage reference module operates independently of the comparator module. The output of the reference generator may be connected to the RA2 pin if the CVROE bit is set. Enabling the voltage reference output onto RA2 when it is configured as a digital input will increase current consumption. Connecting RA2 as a digital output with CVRSS enabled will also increase current consumption.

The RA2 pin can be used as a simple D/A output with limited drive capability. Due to the limited current drive capability, a buffer must be used on the voltage reference output for external connections to VREF. Figure 21-2 shows an example buffering technique.

22.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

PIC18F2525/2620/4525/4620 devices have a High/Low-Voltage Detect module (HLVD). This is a programmable circuit that allows the user to specify both a device voltage trip point and the direction of change from that point. If the device experiences an excursion past the trip point in that direction, an interrupt flag is set. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt.

The High/Low-Voltage Detect Control register (Register 22-1) completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device.

The block diagram for the HLVD module is shown in Figure 22-1.

REGISTER 22-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

R/W-0	U-0	R-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1
VDIRMAG	—	IRVST	HLVDEN	HLVDL3 ⁽¹⁾	HLVDL2 ⁽¹⁾	HLVDL1 ⁽¹⁾	HLVDL0 ⁽¹⁾
bit 7							bit 0

Legend:							
R = Readable	e bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
h:4 7		altana Direction Manuit	uda Calaat hit				
DIT 7		oltage Direction Magniti					
	1 = Event occ 0 = Event occ	curs when voltage equal curs when voltage equal	s or exceeds trip point (HLVDL s or falls below trip point (HLVD	3:HLDVL0) DL3:HLVDL0)			
bit 6	Unimplemented: Read as '0'						
bit 5	IRVST: Internal Reference Voltage Stable Flag bit						
	1 = Indicates 0 = Indicates range an	that the voltage detect that the voltage detect d the HLVD interrupt sh	logic will generate the interrupt logic will not generate the inte ould not be enabled	flag at the specified voltage range errupt flag at the specified voltage			
bit 4	HLVDEN: Hig	gh/Low-Voltage Detect F	ower Enable bit				
	1 = HLVD en 0 = HLVD dis	abled sabled					
bit 3-0	HLVDL3:HLV	/DL0: Voltage Detection	Limit bits ⁽¹⁾				
	1111 = Exter 1110 = Maxir	nal analog input is used mum setting	(input comes from the HLVDIN	l pin)			
	•						
	•						
	• 0000 = Minim	num settina					
		· · · · · · · · · · · · · · · · · ·					

Note 1: See Table 26-4 in Section 26.0 "Electrical Characteristics" for the specifications.

The module is enabled by setting the HLVDEN bit. Each time that the HLVD module is enabled, the circuitry requires some time to stabilize. The IRVST bit is a read-only bit and is used to indicate when the circuit is stable. The module can only generate an interrupt after the circuit is stable and IRVST is set. The VDIRMAG bit determines the overall operation of the module. When VDIRMAG is cleared, the module monitors for drops in VDD below a predetermined set point. When the bit is set, the module monitors for rises in VDD above the set point.

22.1 Operation

When the HLVD module is enabled, a comparator uses an internally generated reference voltage as the set point. The set point is compared with the trip point, where each node in the resistor divider represents a trip point voltage. The "trip point" voltage is the voltage level at which the device detects a high or low-voltage event, depending on the configuration of the module. When the supply voltage is equal to the trip point, the voltage tapped off of the resistor array is equal to the internal reference voltage generated by the voltage reference module. The comparator then generates an interrupt signal by setting the HLVDIF bit. The trip point voltage is software programmable to any one of 16 values. The trip point is selected by programming the HLVDL3:HLVDL0 bits (HLVDCON<3:0>).

The HLVD module has an additional feature that allows the user to supply the trip voltage to the module from an external source. This mode is enabled when bits HLVDL3:HLVDL0 are set to '1111'. In this state, the comparator input is multiplexed from the external input pin, HLVDIN. This gives users flexibility because it allows them to configure the High/Low-Voltage Detect interrupt to occur at any voltage in the valid operating range.

REGISTER 23-8: CONFIG6L: CONFIGURATION REGISTER 6 LOW (BYTE ADDRESS 30000Ah)

U-0	U-0	U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1
—	—	—	—	WRT3 ⁽¹⁾	WRT2	WRT1	WRT0
bit 7			•				bit 0

Legend:						
R = Readabl	e bit	C = Clearable bit	U = Unimplemented bit, read as '0'			
-n = Value w	hen device is un	programmed	u = Unchanged from programmed state			
bit 7-4 Unimplemented: Read as '0'						
bit 3	bit 3 WRT3: Write Protection bit ⁽¹⁾					
1 = Block 3 (0		006000-007FFFh) not wi	rite-protected			
	0 = Block 3 (006000-007FFFh) write-	protected			
bit 2	WRT2: Write	Protection bit				
	1 = Block 2 (004000-005FFFh) not write-protected				
	0 = Block 2 (004000-005FFFh) write-	protected			
bit 1	WRT1: Write	Protection bit				
	1 = Block 1 (002000-003FFFh) not write-protected					
	0 = Block 1 (002000-003FFFh) write-	protected			
bit 0	WRT0: Write	Protection bit				
	1 = Block 0 (000800-001FFFh) not wi	rite-protected			
	0 = Block 0 (000800-001FFFh) write-	protected			

Note 1: Unimplemented in PIC18FX525 devices; maintain this bit set.

REGISTER 23-9: CONFIG6H: CONFIGURATION REGISTER 6 HIGH (BYTE ADDRESS 30000Bh)

R/C-1	R/C-1	R/C-1	U-0	U-0	U-0	U-0	U-0
WRTD	WRTB	WRTC ⁽¹⁾	—	—	—	—	—
bit 7							bit 0

Legend:		
R = Read	able bit C = Clearable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unprogrammed		u = Unchanged from programmed state
bit 7	WRTD: Data EEPROM Write Protect 1 = Data EEPROM not write-protecte 0 = Data EEPROM write-protected	ion bit d
bit 6 WRTB: Boot Block Write Protection bit		bit
	1 = Boot block (000000-0007FFh) no	t write-protected

0 = Boot block (000000-0007FFh) write-protected

- bit 5 WRTC: Configuration Register Write Protection bit⁽¹⁾
 - 1 = Configuration registers (300000-3000FFh) not write-protected
 - 0 = Configuration registers (300000-3000FFh) write-protected
- bit 4-0 Unimplemented: Read as '0'

Note 1: This bit is read-only in normal execution mode; it can be written only in Program mode.

FIGURE 23-7: EXTERNAL BLOCK TABLE READ (EBTRx) DISALLOWED

FIGURE 23-8: EXTERNAL BLOCK TABLE READ (EBTRx) ALLOWED

TABLE 24-2: PICT8FXXXX INSTRUCTION SET (CONTINUED)									
Mnemonic,		Description	Qualas	16-Bit Instruction Word			Status	Natas	
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BIT-ORIEN	TED OP	ERATIONS							
BCF	f, b, a	Bit Clear f	1	1001	bbba	ffff	ffff	None	1, 2
BSF	f, b, a	Bit Set f	1	1000	bbba	ffff	ffff	None	1, 2
BTFSC	f, b, a	Bit Test f, Skip if Clear	1 (2 or 3)	1011	bbba	ffff	ffff	None	3, 4
BTFSS	f, b, a	Bit Test f, Skip if Set	1 (2 or 3)	1010	bbba	ffff	ffff	None	3, 4
BTG	f, b, a	Bit Toggle f	1	0111	bbba	ffff	ffff	None	1, 2
CONTROL	OPERA	TIONS						•	
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	
BNZ	n	Branch if Not Zero	1 (2)	1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	2	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	n, s	Call Subroutine 1st word	2	1110	110s	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
CLRWDT	—	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
DAW	—	Decimal Adjust WREG	1	0000	0000	0000	0111	С	
GOTO	n	Go to Address 1st word	2	1110	1111	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
NOP	—	No Operation	1	0000	0000	0000	0000	None	
NOP	—	No Operation	1	1111	XXXX	XXXX	XXXX	None	4
POP	—	Pop Top of Return Stack (TOS)	1	0000	0000	0000	0110	None	
PUSH	—	Push Top of Return Stack (TOS)	1	0000	0000	0000	0101	None	
RCALL	n	Relative Call	2	1101	1nnn	nnnn	nnnn	None	
RESET		Software Device Reset	1	0000	0000	1111	1111	All	
RETFIE	S	Return from Interrupt Enable	2	0000	0000	0001	000s	GIE/GIEH, PEIE/GIEL	
RETLW	k	Return with Literal in WREG	2	0000	1100	kkkk	kkkk	None	
RETURN	s	Return from Subroutine	2	0000	0000	0001	001s	None	
SLEEP		Go into Standby mode	1	0000	0000	0000	0011	TO, PD	

TABLE 24-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

ΒZ		Branch if	Branch if Zero						
Syntax:		BZ n	BZ n						
Operands:		-128 ≤ n ≤	127						
Oper	ation:	if Zero bit is (PC) + 2 +	if Zero bit is '1', (PC) + 2 + 2n \rightarrow PC						
Statu	s Affected:	None							
Enco	ding:	1110	0000	nnnn	nnnn				
Description:		If the Zero will branch. The 2's cor added to th have increr instruction, PC + 2 + 2 two-cycle in	If the Zero bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction						
Word	ls:	1	1						
Cycle	es:	1(2)	1(2)						
Q C If Ju	ycle Activity: mp:								
	Q1	Q2	Q3		Q4				
	Decode	Read literal 'n'	Proces Data	ss Wi	ite to PC				
	No	No	No		No				
IC N L	operation	operation	operation	on o	peration				
	O1	02	03		04				
	Decode	Read literal	Proces	ss	No				
	200040	'n'	Data	0	peration				
Example:		HERE	BZ J	ump					
Before Instruct PC After Instruction If Zero PC If Zero PC		tion = ad on	dress (H	ERE)					
		= 1; = ad = 0; = ad	dress (J dress (H	ump) ERE + 2	2)				

CALL	Subroutin	ne Call				
Syntax:	CALL k {,s	s}				
Operands:	$\begin{array}{l} 0 \leq k \leq 104 \\ s \in [0,1] \end{array}$	0 ≤ k ≤ 1048575 s ∈ [0,1]				
Operation:	$\begin{array}{l} (PC) + 4 \rightarrow \\ k \rightarrow PC < 20 \\ \text{if } s = 1, \\ (W) \rightarrow WS, \\ (STATUS) \rightarrow \\ (BSR) \rightarrow B \end{array}$	$\begin{array}{l} (PC) + 4 \rightarrow TOS, \\ k \rightarrow PC < 20:1>; \\ \text{if } s = 1, \\ (W) \rightarrow WS, \\ (STATUS) \rightarrow STATUSS, \\ (BSR) \rightarrow BSRS \end{array}$				
Status Affected:	None					
Encoding: 1st word (k<7:0>) 2nd word(k<19:8>)	1110 1111	110s k ₁₉ kkk	k ₇ k} kkk	ck k	kkkk ₀ kkkk ₈	
Words:	(PC + 4) is stack. If 's' BSR register respective STATUSS a update occ 20-bit value CALL is a 2	pushed of = 1, the V ers are al shadow r and BSR urs (defa e 'k' is loa two-cycle	onto th W, STA so pus registe S. If 's ult). TI ded in e instru	the ref ATUS shed rs, W i' = 0 hen, to P(iction	turn S and into the VS, , no the C<20:1> n.	
words.	2					
Cycles:	2					
	02	03			04	
Decode	Read literal 'k'<7:0>,	PUSH F stac	PC to k	Rea 'k'< Writ	ad literal <19:8>, te to PC	
No operation	No operation	No opera	tion	ор	No eration	
Example:	HERE	CALL	THER	ε,	1	
Before Instruct	tion					
PC After Instructio	= address	6 (HERE)			
PC TOS WS BSRS STATUSS	= address = address = W = BSR S= STATUS	S (THER S (HERE	E) + 4)	I		

GOTO		Unconditional Branch							
Syntax:		GOTO k	GOTO k						
Operand	ls:	$0 \le k \le 10^4$	48575						
Operatio	on:	$k \rightarrow PC<2$	0:1>						
Status A	ffected:	None							
Encodine 1st word 2nd wore	g: l (k<7:0>) d(k<19:8>)	1110 1111	1111 k ₁₉ kkk	k ₇ kkk kkkk	kkkk ₀ kkkk ₈				
Descript		anywhere 2-Mbyte m value 'k' is GOTO is a instruction	anywhere within entire 2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a two-cycle instruction.						
Words:		2	2						
Cycles:		2							
Q Cycle	e Activity:								
	Q1	Q2	Q3	3	Q4				
	Decode	Read literal 'k'<7:0>,	No opera	tion ⁽ k	ead literal (<19:8>, rite to PC				
	No	No	No		No				

Example: GOTO THERE

After Instruction

PC = Address (THERE)

INCF	Incremen	t f					
Syntax:	INCF f{,d	INCF f {,d {,a}}					
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0.1]					
Operation:	(f) + 1 \rightarrow de	est					
Status Affected:	C, DC, N, 0	OV, Z					
Encoding:	0010	10da	ffff	ffff			
	incrementer placed in W placed back If 'a' is '0', ti If 'a' is '1', ti GPR bank. If 'a' is '0' a set is enabl in Indexed I mode when Section 24 Bit-Orienter Literal Offs	d. If 'd' is I If 'd' is ' is in regist he Acces he BSR is nd the ex ed, this in Literal Off ever $f \le 9$.2.3 "Byte d Instruct set Mode	'0', the 1', the r er 'f' (de s Bank is s used to tended astructio set Add 05 (5Fh) e-Orien ctions in " for de"	result is esult is sfault). is selected. o select the instruction in operates lressing . See ted and n Indexed tails.			
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3		Q4			
Decode	Read register 'f'	Proce: Data	ss i d	Write to lestination			
Example: Before Instruc CNT	INCF tion = FFh	CNT, 1	., 0				

Before Instru	uction	
CNT	=	FFh
Z	=	0
С	=	?
DC	=	?
After Instruct	tion	
CNT	=	00h
Z	=	1
С	=	1
DC	=	1

26.2 DC Characteristics: Power-Down and Supply Current PIC18F2525/2620/4525/4620 (Industrial) PIC18LF2525/2620/4525/4620 (Industrial) (Continued)

PIC18LF2	Standa Operat	i rd Ope ing tem	rating C	Conditions (unlet $-40^{\circ}C \le TA$	ess otherwise states $4 \le +85^{\circ}$ C for indust	ted) strial	
PIC18F252 (Indust	Standa Operat	ing tem	rating (perature	$\begin{array}{l} \text{Conditions (unlet $-40^{\circ}C \leq T_{\text{A}}$ $-50^{\circ}C < T_{$	ess otherwise states $A \le +85^{\circ}C$ for indus $A \le +125^{\circ}C$ for extended by the states of the sta	ted) strial ended	
Param No.	Param Device No.		Max	Units		Conditio	ns
	Supply Current (IDD) ⁽²⁾						
	PIC18LFX525/X620	250	350	μA	-40°C		
		260	350	μA	+25°C	VDD = 2.0V	
		250	350	μA	+85°C		
	PIC18LFX525/X620	550	650	μA	-40°C		
		480	640	μA	+25°C	VDD = 3.0V	
		460	600	μA	+85°C		EC oscillator)
	All devices	1.2	1.5	mA	-40°C		
		1.1	1.4	mA	+25°C		
		1.0	1.3	mA	+85°C	VDD = 3.0V	
	Extended devices only	1.0	3.0	mA	+125°C		
	PIC18LFX525/X620	0.72	1.0	mA	-40°C		
		0.74	1.0	mA	+25°C	VDD = 2.0V	
		0.74	1.0	mA	+85°C		
	PIC18LFX525/X620	1.3	1.8	mA	-40°C		
		1.3	1.8	mA	+25°C	VDD = 3.0V	
		1.3	1.8	mA	+85°C		EC oscillator)
	All devices	2.7	4.0	mA	-40°C		,
		2.6	4.0	mA	+25°C		
		2.5	4.0	mA	+85°C	VDD = 3.0V	
	Extended devices only	2.6	5.0	mA	+125°C		
	Extended devices only	8.4	13	mA	+125°C	VDD = 4.2V	Fosc = 25 MHz
		11	16	mA	+125°C	VDD = 5.0V	(PRI_RUN , EC oscillator)
	All devices	15	20	mA	-40°C		
		15	20	mA	+25°C	VDD = 4.2V	
		15	20	mA	+85°C		FOSC = 40 MHZ
	All devices	20	25	mA	-40°C		EC oscillator)
		20	25	mA	+25°C	VDD = 5.0V	
		20	25	mA	+85°C		

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;

- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0. When operation will always be above -10°C, then the low-power Timer1 oscillator may be selected.
- 4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

FIGURE 27-13: TYPICAL AND MAXIMUM IDD ACROSS VDD (RC_RUN MODE, 31 kHz)

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
From	n: Name	
	Company	
	Address	<u>.</u>
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appli	ication (optional):	
Wou	ld you like a reply?YN	
Devi	ce: PIC18F2525/2620/4525/4620	Literature Number: DS39626E
Ques	stions:	
1. \	What are the best features of this docu	iment?
-		
- -		
2. г	now does this document meet your ha	roware and software development needs?
-		
3. E	Do you find the organization of this doo	cument easy to follow? If not, why?
-		
-		
4. V	What additions to the document do you	u think would enhance the structure and subject?
-		
5. \	What deletions from the document cou	ld be made without affecting the overall usefulness?
		Ū.
_		
6. I	s there any incorrect or misleading info	ormation (what and where)?
-		
- 7 L	Low would you improve this desument	2
1. Г		: f
-		
-		