

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4620-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

D ' 1	Pin Number	Pin	Buffer	
Pin Name	SPDIP, SOIC	Туре	Туре	Description
				PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.
RB0/INT0/FLT0/AN12 RB0 INT0 FLT0 AN12	21	I/O 	TTL ST ST Analog	Digital I/O. External interrupt 0. PWM Fault input for CCP1. Analog input 12.
RB1/INT1/AN10 RB1 INT1 AN10	22	I/O I I	TTL ST Analog	Digital I/O. External interrupt 1. Analog input 10.
RB2/INT2/AN8 RB2 INT2 AN8	23	I/O I I	TTL ST Analog	Digital I/O. External interrupt 2. Analog input 8.
RB3/AN9/CCP2 RB3 AN9 CCP2 ⁽¹⁾	24	I/O I I/O	TTL Analog ST	Digital I/O. Analog input 9. Capture 2 input/Compare 2 output/PWM2 output.
RB4/KBI0/AN11 RB4 KBI0 AN11	25	I/O I I	TTL TTL Analog	Digital I/O. Interrupt-on-change pin. Analog input 11.
RB5/KBI1/PGM RB5 KBI1 PGM	26	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. Low-Voltage ICSP™ Programming enable pin.
RB6/KBI2/PGC RB6 KBI2 PGC	27	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming clock pin.
RB7/KBI3/PGD RB7 KBI3 PGD	28	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.
Legend: TTL = TTL co ST = Schmit O = Output Note 1: Default assign	t Trigger inpu	t with CN		CMOS = CMOS compatible input or output els I = Input P = Power P2MX Configuration bit is set.

TABLE 1-2: PIC18F2525/2620 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.

R/W-0	R/W-1	R/W-0	R/W-0	R ⁽¹⁾	R-0	R/W-0	R/W-0						
IDLEN	IRCF2	IRCF1	IRCF0	OSTS	IOFS	SCS1	SCS0						
bit 7	·					•	bit (
Legend:													
R = Reada		W = Writable			nented bit, rea								
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	nown						
bit 7	IDI EN: Idle F	nahle hit											
	IDLEN: Idle Enable bit 1 = Device enters Idle mode on SLEEP instruction												
		0 = Device enters Sleep mode on SLEEP instruction											
bit 6-4	IRCF2:IRCF0	: Internal Osci	llator Frequen	cy Select bits									
		111 = 8 MHz (INTOSC drives clock directly)											
	110 = 4 MHz												
	101 = 2 MHz $100 = 1 \text{ MHz}^{(3)}$												
	011 = 500 kH												
	010 = 250 kHz												
	001 = 125 kHz												
		000 = 31 kHz (from either INTOSC/256 or INTRC directly) ⁽²⁾ OSTS: Oscillator Start-up Timer Time-out Status bit ⁽¹⁾											
bit 3													
	 1 = Oscillator Start-up Timer (OST) time-out has expired; primary oscillator is running 0 = Oscillator Start-up Timer (OST) time-out is running; primary oscillator is not ready 												
bit 2		C Frequency S		, p	innary ocomate	i le liet leady							
		frequency is st											
	0 = INTOSC frequency is not stable												
bit 1-0	SCS1:SCS0:	System Clock	Select bits										
	1x = Internal oscillator block												
		ary (Timer1) os	cillator										
	00 = Primary	oscillator											
Note 1:	Reset state deper	nds on state of	the IESO Cor	figuration bit.									
	Source selected b	-		-									
3:	Default output fre	quency of INT	OSC on Reset										

REGISTER 2-2: OSCCON: OSCILLATOR CONTROL REGISTER

5.4 Data Addressing Modes

Note: The execution of some instructions in the core PIC18 instruction set are changed when the PIC18 extended instruction set is enabled. See Section 5.5 "Data Memory and the Extended Instruction Set" for more information.

The data memory space can be addressed in several ways. For most instructions, the addressing mode is fixed. Other instructions may use up to three modes, depending on which operands are used and whether or not the extended instruction set is enabled.

The addressing modes are:

- Inherent
- Literal
- Direct
- Indirect

An additional addressing mode, Indexed Literal Offset, is available when the extended instruction set is enabled (XINST Configuration bit = 1). Its operation is discussed in greater detail in **Section 5.5.1 "Indexed Addressing with Literal Offset**".

5.4.1 INHERENT AND LITERAL ADDRESSING

Many PIC18 control instructions do not need any argument at all; they either perform an operation that globally affects the device or they operate implicitly on one register. This addressing mode is known as Inherent Addressing. Examples include SLEEP, RESET and DAW.

Other instructions work in a similar way but require an additional explicit argument in the opcode. This is known as Literal Addressing mode because they require some literal value as an argument. Examples include ADDLW and MOVLW, which respectively, add or move a literal value to the W register. Other examples include CALL and GOTO, which include a 20-bit program memory address.

5.4.2 DIRECT ADDRESSING

Direct Addressing specifies all or part of the source and/or destination address of the operation within the opcode itself. The options are specified by the arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and byteoriented instructions use some version of Direct Addressing by default. All of these instructions include some 8-bit literal address as their Least Significant Byte. This address specifies either a register address in one of the banks of data RAM (Section 5.3.3 "General Purpose Register File") or a location in the Access Bank (Section 5.3.2 "Access Bank") as the data source for the instruction. The Access RAM bit, 'a', determines how the address is interpreted. When 'a' is '1', the contents of the BSR (Section 5.3.1 "Bank Select Register (BSR)") are used with the address to determine the complete 12-bit address of the register. When 'a' is '0', the address is interpreted as being a register in the Access Bank. Addressing that uses the Access RAM is sometimes also known as Direct Forced Addressing mode.

A few instructions, such as MOVFF, include the entire 12-bit address (either source or destination) in their opcodes. In these cases, the BSR is ignored entirely.

The destination of the operation's results is determined by the destination bit, 'd'. When 'd' is '1', the results are stored back in the source register, overwriting its original contents. When 'd' is '0', the results are stored in the W register. Instructions without the 'd' argument have a destination that is implicit in the instruction; their destination is either the target register being operated on or the W register.

5.4.3 INDIRECT ADDRESSING

Indirect Addressing allows the user to access a location in data memory without giving a fixed address in the instruction. This is done by using File Select Registers (FSRs) as pointers to the locations to be read or written to. Since the FSRs are themselves located in RAM as Special Function Registers, they can also be directly manipulated under program control. This makes FSRs very useful in implementing data structures, such as tables and arrays in data memory.

The registers for Indirect Addressing are also implemented with Indirect File Operands (INDFs) that permit automatic manipulation of the pointer value with auto-incrementing, auto-decrementing or offsetting with another value. This allows for efficient code, using loops, such as the example of clearing an entire RAM bank in Example 5-5.

EXAMPLE 5-5: HOW TO CLEAR RAM (BANK 1) USING INDIRECT ADDRESSING

	LFSR	FSR0, 100h	;	
NEXT	CLRF	POSTINC0		Clear INDF
			;	register then
			;	inc pointer
	BTFSS	FSROH, 1	;	All done with
			;	Bank1?
	BRA	NEXT	;	NO, clear next
CONTINUE	Ξ		;	YES, continue

R/W-1	R/W-1	R/W-1	R/W-1	U-0	R/W-1	U-0	R/W-1			
RBPU	INTEDG0	INTEDG1	INTEDG2	—	TMR0IP	_	RBIP			
bit 7							bit 0			
Legend:										
R = Readable	e bit	nented bit, read	d as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown			
bit 7 RBPU: PORTB Pull-up Enable bit										
 1 = All PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual port latch values 										
bit 6 INTEDG0: External Interrupt 0 Edge Select bit										
	 1 = Interrupt on rising edge 0 = Interrupt on falling edge 									
bit 5	•	ternal Interrupt	1 Edge Selec	t bit						
		on rising edge on falling edge	C C							
bit 4	INTEDG2: Ex	ternal Interrupt	2 Edge Selec	t bit						
		on rising edge on falling edge								
bit 3		ted: Read as ')'							
bit 2	•	R0 Overflow Int		bit						
	1 = High prio									
	0 = Low prior	rity								
bit 1	Unimplemen	ted: Read as ')'							
bit 0	RBIP: RB Po	rt Change Inter	rupt Priority bit	:						
	1 = High prio	rity								
	0 = Low prior	ritv								

REGISTER 10-2: INTCON2: INTERRUPT CONTROL REGISTER 2

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

12.0 TIMER1 MODULE

The Timer1 timer/counter module incorporates these features:

- Software selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR1H and TMR1L)
- Selectable clock source (internal or external) with device clock or Timer1 oscillator internal options
- Interrupt-on-overflow
- Reset on CCP Special Event Trigger
- Device clock status flag (T1RUN)

A simplified block diagram of the Timer1 module is shown in Figure 12-1. A block diagram of the module's operation in Read/Write mode is shown in Figure 12-2.

The module incorporates its own low-power oscillator to provide an additional clocking option. The Timer1 oscillator can also be used as a low-power clock source for the microcontroller in power-managed operation.

Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components and code overhead.

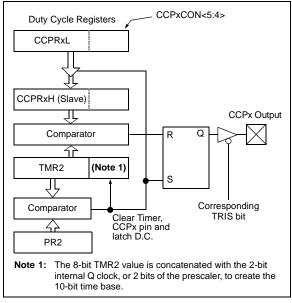
Timer1 is controlled through the T1CON Control register (Register 12-1). It also contains the Timer1 Oscillator Enable bit (T1OSCEN). Timer1 can be enabled or disabled by setting or clearing control bit, TMR1ON (T1CON<0>).

R/W-0	D R-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	
RD16	16 T1RUN T1CKPS1 T1CKPS0		T1OSCEN	T1SYNC	TMR1CS	TMR10N	
bit 7							bit 0

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

Legend:				
R = Readabl	le bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at	t POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	RD16: 16-	Bit Read/Write Mode Enab	le bit	
		-	ner1 in one 16-bit operation ner1 in two 8-bit operations	
bit 6	T1RUN: Ti	mer1 System Clock Status	bit	
		e clock is derived from Time e clock is derived from ano		
bit 5-4	11 = 1:8 P 10 = 1:4 P 01 = 1:2 P	T1CKPS0: Timer1 Input C rescale value rescale value rescale value rescale value rescale value	lock Prescale Select bits	
bit 3	1 = Timer1 0 = Timer1	: Timer1 Oscillator Enable oscillator is enabled oscillator is shut off tor inverter and feedback r	bit esistor are turned off to elimina	ate power drain.
bit 2	T1SYNC: When TMF	•	t Synchronization Select bit	
	1 = Do not	synchronize external clock	< input	
	<u>When TMF</u> This bit is i		iternal clock when TMR1CS =	0.
bit 1	1 = Extern	Timer1 Clock Source Sele al clock from pin RC0/T1C al clock (Fosc/4)	ct bit DSO/T13CKI (on the rising edg	e)
bit 0	TMR1ON: 1 = Enable 0 = Stops			

15.4 PWM Mode


In Pulse-Width Modulation (PWM) mode, the CCPx pin produces up to a 10-bit resolution PWM output. Since the CCP2 pin is multiplexed with a PORTB or PORTC data latch, the appropriate TRIS bit must be cleared to make the CCP2 pin an output.

Note:	Clearing the CCP2CON register will force the RB3 or RC1 output latch (depending on device configuration) to the default low
	level. This is not the PORTB or PORTC I/O
	data latch.

Figure 15-3 shows a simplified block diagram of the CCP module in PWM mode.

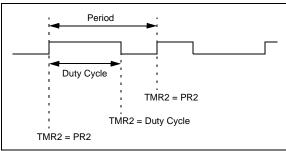

For a step-by-step procedure on how to set up the CCP module for PWM operation, see **Section 15.4.4** "Setup for PWM Operation".

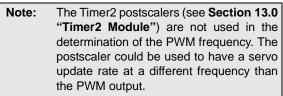
FIGURE 15-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 15-4) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

FIGURE 15-4: PWM OUTPUT

15.4.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:


EQUATION 15-1:

 $PWM Period = [(PR2) + 1] \bullet 4 \bullet TOSC \bullet$ (TMR2 Prescale Value)

PWM frequency is defined as 1/[PWM period].

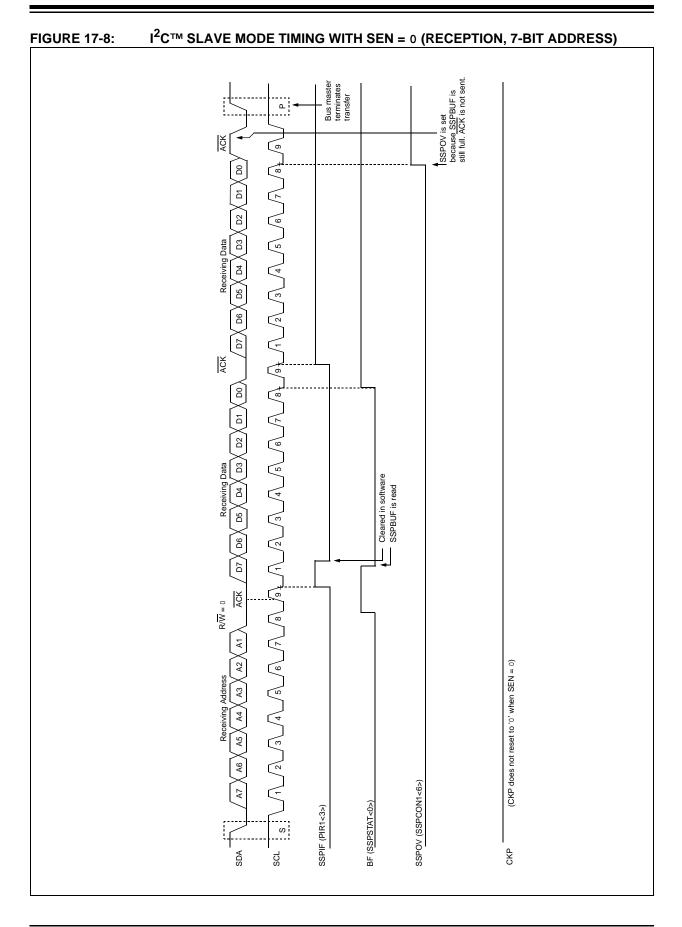
When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

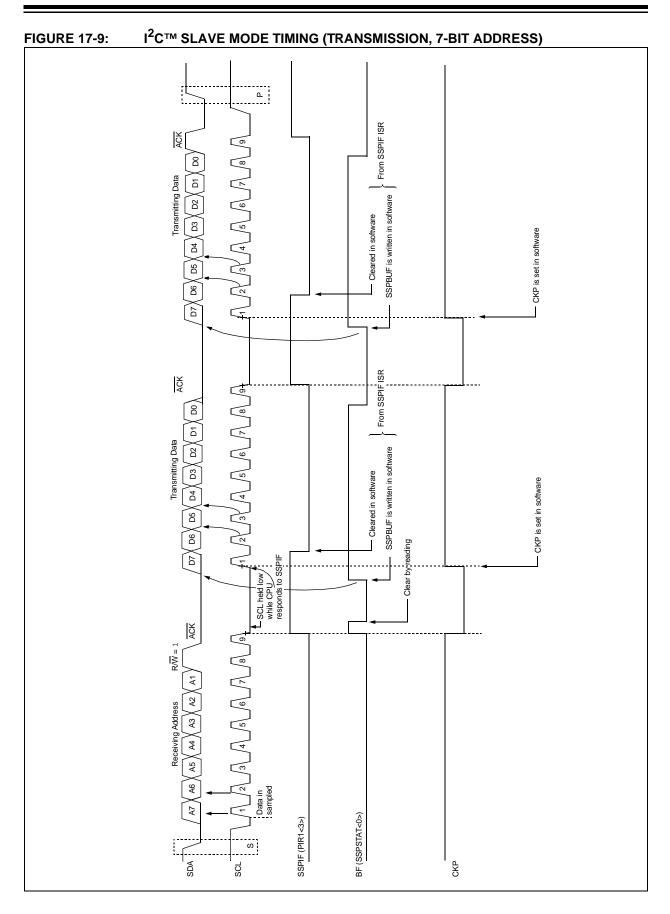
- TMR2 is cleared
- The CCPx pin is set (exception: if PWM duty cycle = 0%, the CCPx pin will not be set)
- The PWM duty cycle is latched from CCPRxL into CCPRxH

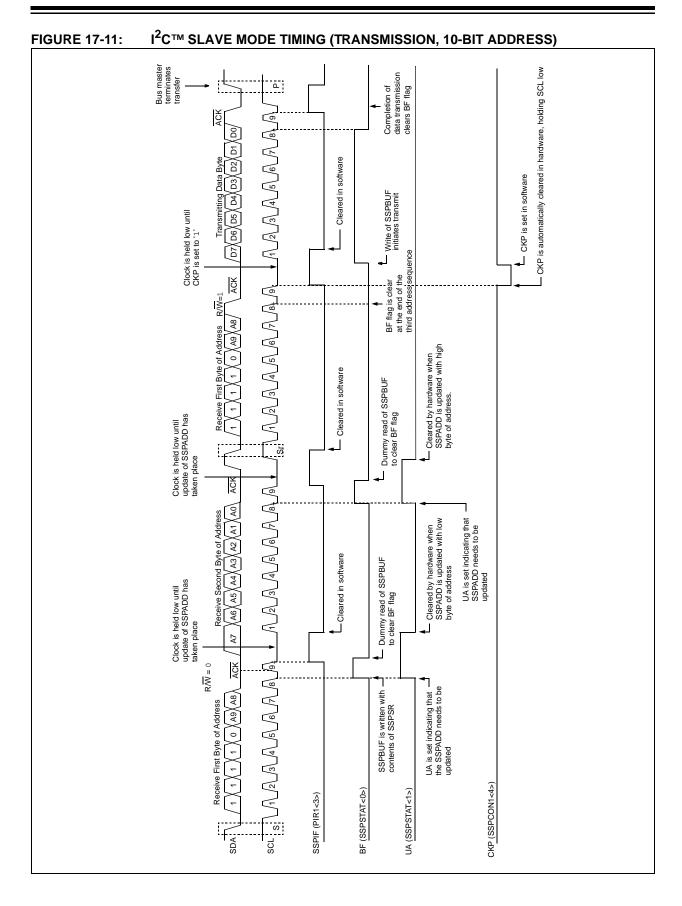
15.4.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPRxL register and to the CCPxCON<5:4> bits. Up to 10-bit resolution is available. The CCPRxL contains the eight MSbs and the CCPxCON<5:4> contains the two LSbs. This 10-bit value is represented by CCPRxL:CCPxCON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

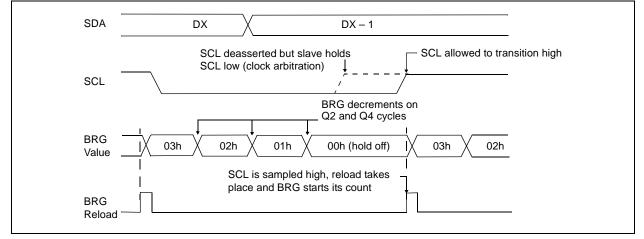
EQUATION 15-2:


```
PWM Duty Cycle = (CCPRxL:CCPxCON<5:4>) •
Tosc • (TMR2 Prescale Value)
```


CCPRxL and CCPxCON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR2H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPRxH is a read-only register.


R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
WCOL	SSPOV	SSPEN ⁽¹⁾	CKP	SSPM3	SSPM2	SSPM1	SSPM0				
bit 7							bit				
Lonondi											
Legend:			.,								
R = Readabl		W = Writable k	Dit	-	nented bit, read						
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 7	WCOL: Write	e Collision Detec	t bit								
	In Master Tra										
		to the SSPBUF				nditions were i	not valid for				
		sion to be starte	d (must be cl	eared in softwa	re)						
	0 = No collis										
	In Slave Tran	PBUF register is	written while	it is still transm	itting the previo	ous word (mus	t he cleared i				
	software				intering the provide						
	0 = No collis	ion									
		ode (Master or S	<u>Slave modes)</u>	<u>:</u>							
	This is a "dor	n't care" bit.									
bit 6		eive Overflow Ir	dicator bit								
	In Receive m										
	 1 = A byte is received while the SSPBUF register is still holding the previous byte (must be cleared in software) 										
	0 = No overf	/									
	In Transmit n	node:									
		n't care" bit in Tra	ansmit mode.								
bit 5	SSPEN: Mas	ster Synchronous	s Serial Port E	Enable bit ⁽¹⁾							
	1 = Enables the serial port and configures the SDA and SCL pins as the serial port pins										
	0 = Disables	serial port and c	onfigures the	se pins as I/O p	oort pins						
bit 4	CKP: SCK R	elease Control b	oit								
	In Slave mode:										
	1 = Releases clock										
	0 = Holds clock low (clock stretch), used to ensure data setup time										
	In Master mode: Unused in this mode.										
					(0)						
bit 3-0	SSPM3:SSP	M0: Master Svn	chronous Ser	ial Port Mode S	elect bits ⁽²⁾						
bit 3-0		M0: Master Syn Slave mode, 10-b				enabled					
bit 3-0	$1111 = I^2 C S$ $1110 = I^2 C S$	Slave mode, 10-b Slave mode, 7-bi	oit address wi t address with	th Start and Ston Start and Stop	p bit interrupts bit interrupts e						
bit 3-0	$1111 = I^2CS$ $1110 = I^2CS$ $1011 = I^2CF$	Slave mode, 10-b Slave mode, 7-bi Firmware Contro	oit address wi t address with lled Master m	th Start and Sto Start and Stop ode (Slave Idle)	p bit interrupts bit interrupts e)						
bit 3-0	$1111 = I^{2}C S$ $1110 = I^{2}C S$ $1011 = I^{2}C F$ $1000 = I^{2}C N$	Blave mode, 10-b Blave mode, 7-bi Firmware Contro Master mode, clo	bit address wi t address with lled Master m lock = FOSC/(4	th Start and Sto Start and Stop ode (Slave Idle)	p bit interrupts bit interrupts e)						
bit 3-0	$1111 = I^{2}C S$ $1110 = I^{2}C S$ $1011 = I^{2}C F$ $1000 = I^{2}C N$ $0111 = I^{2}C S$	Slave mode, 10-b Slave mode, 7-bi Firmware Contro	bit address wi t address with lled Master m lock = Fosc/(4 bit address	th Start and Sto Start and Stop ode (Slave Idle)	p bit interrupts bit interrupts e)						

REGISTER 17-4: SSPCON1: MSSP CONTROL REGISTER 1 (I²C[™] MODE)

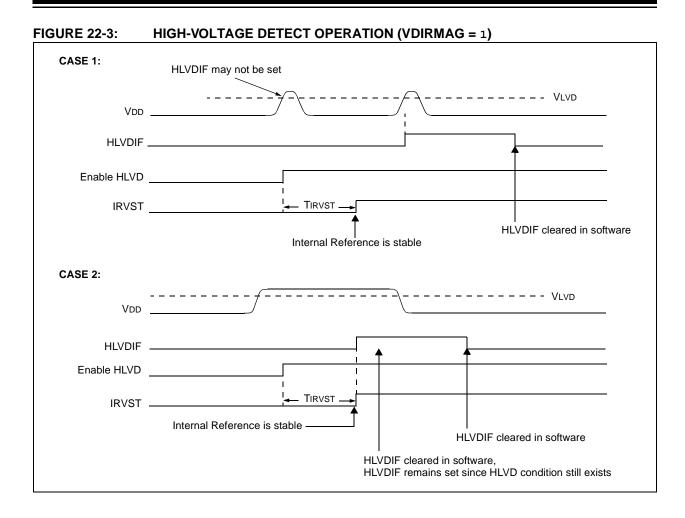


17.4.7.1 Clock Arbitration

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, deasserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the

SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 17-18).

					SYNC	= 0, BRGH	l = 0, BRO	G16 = 0				
BAUD	Fosc	= 40.000) MHz	Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz		
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	—	_	_		_	_	_		_	_	_	_
1.2	—	—	—	1.221	1.73	255	1.202	0.16	129	1.201	-0.16	103
2.4	2.441	1.73	255	2.404	0.16	129	2.404	0.16	64	2.403	-0.16	51
9.6	9.615	0.16	64	9.766	1.73	31	9.766	1.73	15	9.615	-0.16	12
19.2	19.531	1.73	31	19.531	1.73	15	19.531	1.73	7	_	_	_
57.6	56.818	-1.36	10	62.500	8.51	4	52.083	-9.58	2	—	_	_
115.2	125.000	8.51	4	104.167	-9.58	2	78.125	-32.18	1	_	—	—

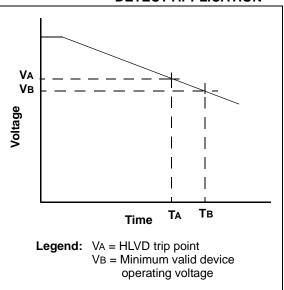

TABLE 18-3: BAUD RATES FOR ASYNCHRONOUS MODES

		SYNC = 0, BRGH = 0, BRG16 = 0												
BAUD RATE	Fos	c = 4.000	MHz	Fos	c = 2.000	MHz	Fos	c = 1.000	MHz					
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)					
0.3	0.300	0.16	207	0.300	-0.16	103	0.300	-0.16	51					
1.2	1.202	0.16	51	1.201	-0.16	25	1.201	-0.16	12					
2.4	2.404	0.16	25	2.403	-0.16	12	_	_	—					
9.6	8.929	-6.99	6	_	_	—	_	_	—					
19.2	20.833	8.51	2	—	_	_	—	—	—					
57.6	62.500	8.51	0	—	_	_	—	—	—					
115.2	62.500	-45.75	0	—	—	—	—	—	—					

					SYNC	= 0, BRGH	l = 1, BRG	16 = 0				
BAUD	Fosc	= 40.000) MHz	Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz		
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	_	_	—	_	_	_	_	_	_		_	_
1.2	—	_	—	—	—	_	—		_	—	—	—
2.4	—	_	—	—	_	_	2.441	1.73	255	2.403	-0.16	207
9.6	9.766	1.73	255	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	_

	SYNC = 0, BRGH = 1, BRG16 = 0								
BAUD	Fosc = 4.000 MHz			Fosc = 2.000 MHz			Fosc = 1.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	_		_	_	_	_	0.300	-0.16	207
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25
9.6	9.615	0.16	25	9.615	-0.16	12	—	—	—
19.2	19.231	0.16	12	_	_	—	_	_	—
57.6	62.500	8.51	3	—	—	—	—	—	—
115.2	125.000	8.51	1	_	—	—	—	—	—

© 2008 Microchip Technology Inc.


22.5 Applications

In many applications, the ability to detect a drop below or rise above a particular threshold is desirable. For example, the HLVD module could be periodically enabled to detect a Universal Serial Bus (USB) attach or detach. This assumes the device is powered by a lower voltage source than the USB when detached. An attach would indicate a high-voltage detect from, for example, 3.3V to 5V (the voltage on USB) and vice versa for a detach. This feature could save a design a few extra components and an attach signal (input pin).

For general battery applications, Figure 22-4 shows a possible voltage curve. Over time, the device voltage decreases. When the device voltage reaches voltage VA, the HLVD logic generates an interrupt at time TA. The interrupt could cause the execution of an ISR, which would allow the application to perform "house-keeping tasks" and perform a controlled shutdown before the device voltage exits the valid operating range at TB. The HLVD, thus, would give the application a time window, represented by the difference between TA and TB, to safely exit.

TYPICAL LOW-VOLTAGE DETECT APPLICATION

22.6 Operation During Sleep

When enabled, the HLVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the HLVDIF bit will be set and the device will wake-up from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

22.7 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the HLVD module to be turned off.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
HLVDCON	VDIRMAG	_	IRVST	HLVDEN	HLVDL3	HLVDL2	HLVDL1	HLVDL0	50
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49
PIR2	OSCFIF	CMIF	—	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	52
PIE2	OSCFIE	CMIE	—	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	52
IPR2	OSCFIP	CMIP		EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	52

TABLE 22-1: REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the HLVD module.

24.0 INSTRUCTION SET SUMMARY

PIC18F2525/2620/4525/4620 devices incorporate the standard set of 75 PIC18 core instructions, as well as an extended set of 8 new instructions, for the optimization of code that is recursive or that utilizes a software stack. The extended set is discussed later in this section.

24.1 Standard Instruction Set

The standard PIC18 instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from these PIC MCU instruction sets. Most instructions are a single program memory word (16 bits), but there are four instructions that require two program memory locations.

Each single-word instruction is a 16-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- Byte-oriented operations
- **Bit-oriented** operations
- Literal operations
- Control operations

The PIC18 instruction set summary in Table 24-2 lists **byte-oriented**, **bit-oriented**, **literal** and **control** operations. Table 24-1 shows the opcode field descriptions.

Most byte-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The destination of the result (specified by 'd')
- 3. The accessed memory (specified by 'a')

The file register designator 'f' specifies which file register is to be used by the instruction. The destination designator 'd' specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the WREG register. If 'd' is one, the result is placed in the file register specified in the instruction.

All bit-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator 'b' selects the number of the bit affected by the operation, while the file register designator 'f' represents the number of the file in which the bit is located. The **literal** instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '—')

The **control** instructions may use some of the following operands:

- A program memory address (specified by 'n')
- The mode of the CALL or RETURN instructions (specified by 's')
- The mode of the table read and table write instructions (specified by 'm')
- No operand required (specified by '—')

All instructions are a single word, except for four double-word instructions. These instructions were made double-word to contain the required information in 32 bits. In the second word, the 4 MSbs are '1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP.

The double-word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two-word branch instructions (if true) would take 3 μ s.

Figure 24-1 shows the general formats that the instructions can have. All examples use the convention 'nnh' to represent a hexadecimal number.

The instruction set summary, shown in Table 24-2, lists the standard instructions recognized by the Microchip MPASM[™] Assembler.

Section 24.1.1 "Standard Instruction Set" provides a description of each instruction.

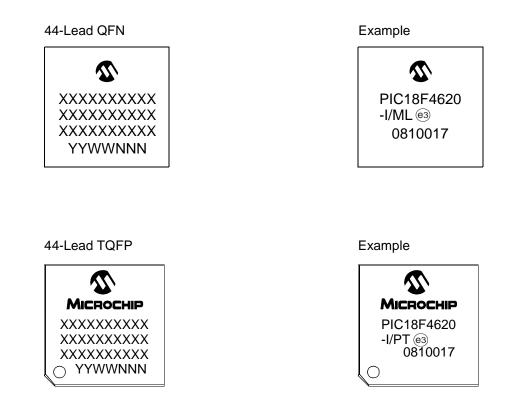
Byte-oriented file register operations	Example Instruction
15 10 9 8 7 0	
OPCODE d a f (FILE #)	ADDWF MYREG, W, B
$ d = 0 \ \text{for result destination to be WREG register} \\ d = 1 \ \text{for result destination to be file register (f)} \\ a = 0 \ \text{to force Access Bank} \\ a = 1 \ \text{for BSR to select bank} \\ f = 8-bit \ \text{file register address} $	
Byte to Byte move operations (2-word)	
<u>15 12 11 0</u>	
OPCODE f (Source FILE #)	MOVFF MYREG1, MYREG2
<u>15 12 11 0</u>	
1111 f (Destination FILE #)	
f = 12-bit file register address	
Bit-oriented file register operations	
15 1211 987 0	
OPCODE b (BIT #) a f (FILE #)	BSF MYREG, bit, B
 b = 3-bit position of bit in file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address 	
Literal operations	
15 8 7 0	
OPCODE k (literal)	MOVLW 7Fh
k = 8-bit immediate value	
Control operations	
CALL, GOTO and Branch operations	
15 8 7 0	
OPCODE n<7:0> (literal)	GOTO Label
15 12 11 0	
1111 n<19:8> (literal)	
n = 20-bit immediate value	
15 8 7 0	
OPCODE S n<7:0> (literal)	CALL MYFUNC
15 12 11 0	
1111 n<19:8> (literal)	
S = Fast bit	
15 11 10 0	
OPCODE n<10:0> (literal)	BRA MYFUNC
	-
15 8 7 0 OPCODE n<7:0> (literal)	BC MYFUNC

ANDWF	AND W w	ith f				
Syntax:	ANDWF	f {,d {,a}}				
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	d ∈ [0,1]				
Operation:	(W) .AND. ((f) \rightarrow dest				
Status Affected:	N, Z					
Encoding:	0001	01da ff	ff ffff			
Description:	register 'f'. I in W. If 'd' is in register 'f If 'a' is '0', t If 'a' is '1', t GPR bank. If 'a' is '0' a set is enabl in Indexed mode when Section 24 Bit-Oriente	s '1', the result '' (default). he Access Ba he BSR is use nd the extend	result is stored is stored back is stored back ink is selected. d to select the ed instruction ction operates Addressing Fh). See iented and s in Indexed			
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	Q4			
Decode	Read register 'f'	Process Data	Write to destination			
Example: Before Instruc	ANDWF	REG, 0, 0				
W REG After Instructio	= 17h = C2h on					
W REG	= 02h = C2h					

BC		Branch if	Carry					
Synta	ax:	BC n	BC n					
Oper	ands:	-128 ≤ n ≤	127					
Oper	ation:	if Carry bit	is '1',					
		(PC) + 2 +	$2n \rightarrow PC$;				
Statu	is Affected:	None						
Enco	oding:	1110	0010	nnnn	nnnn			
Desc	ription:	will branch The 2's cor added to th incremente instruction, PC + 2 + 2	If the Carry bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.					
Words:		1	1					
Cycle	es:	1(2)	1(2)					
Q C If Ju	ycle Activity: imp:							
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'n'	Proce Dat		rite to PC			
	No	No	No		No			
	operation	operation	opera	tion o	peration			
If No	o Jump:	00	0.0		0 4			
	Q1	Q2 Read literal	Q3 Proce		Q4 No			
	Decode	read literal	Dat		peration			
			Dat					
Example:		HERE	BC	5				
	Before Instruc PC After Instructio If Carry PC If Carry PC	= ac on = 1; = ac = 0;	ldress (1 ldress (1 ldress (1	HERE + 1	12) 2)			

24.2.5 SPECIAL CONSIDERATIONS WITH MICROCHIP MPLAB[®] IDE TOOLS

The latest versions of Microchip's software tools have been designed to fully support the extended instruction set of the PIC18F2525/2620/4525/4620 family of devices. This includes the MPLAB C18 C compiler, MPASM assembly language and MPLAB Integrated Development Environment (IDE).


When selecting a target device for software development, MPLAB IDE will automatically set default Configuration bits for that device. The default setting for the XINST Configuration bit is '0', disabling the extended instruction set and Indexed Literal Offset Addressing mode. For proper execution of applications developed to take advantage of the extended instruction set, XINST must be set during programming.

To develop software for the extended instruction set, the user must enable support for the instructions and the Indexed Addressing mode in their language tool(s). Depending on the environment being used, this may be done in several ways:

- A menu option, or dialog box within the environment, that allows the user to configure the language tool and its settings for the project
- A command line option
- · A directive in the source code

These options vary between different compilers, assemblers and development environments. Users are encouraged to review the documentation accompanying their development systems for the appropriate information.

28.1 Package Marking Information (Continued)

SLEEP	302
SUBFWB	302
SUBLW	303
SUBWF	303
SUBWFB	304
SWAPF	304
TBLRD	305
TBLWT	306
TSTFSZ	307
XORLW	307
XORWF	308
INTCON Registers	111–113
Inter-Integrated Circuit. See I ² C.	
Internal Oscillator Block	
Adjustment	
INTIO Modes	
INTOSC Frequency Drift	
INTOSC Output Frequency	
OSCTUNE Register	
PLL in INTOSC Modes	
Internal RC Oscillator	
Use with WDT	258
Internet Address	-
Interrupt Sources	
A/D Conversion Complete	
Capture Complete (CCP)	141
Compare Complete (CCP)	142
Interrupt-on-Change (RB7:RB4)	
INTx Pin	
PORTB, Interrupt-on-Change	
TMR0	
TMR0 Overflow	
TMR1 Overflow	
TMR2 to PR2 Match (PWM)	
TMR3 Overflow	
Interrupts	109
Interrupts, Flag Bits	
Interrupt-on-Change (RB7:RB4)	
Flag (RBIF Bit)	94
INTOSC, INTRC. See Internal Oscillator Block.	
IORLW	
IORWF	
IPR Registers	118
L	

_FSR	1
ow-Voltage ICSP Programming. See Single-Supply	
ICSP Programming	

Μ

Master Clear (MCLR)	43
Master Synchronous Serial Port (MSSP). See MSSP.	
Memory Organization	53
Data Memory	59
Program Memory	53
Memory Programming Requirements	337
Microchip Internet Web Site	407
Migration from Baseline to Enhanced Devices	395
Migration from High-End to Enhanced Devices	396
Migration from Mid-Range to Enhanced Devices	396
MOVF	291
MOVFF	292
MOVLB	292
MOVLW	293
MOVSF	311
MOVSS	312

MOVWF	203
MPLAB ASM30 Assembler, Linker, Librarian	
MPLAB ICD 2 In-Circuit Debugger	
MPLAB ICE 2000 High-Performance Universal	319
5	240
In-Circuit Emulator	319
MPLAB Integrated Development	~ 1 -
Environment Software	
MPLAB PM3 Device Programmer	
MPLAB REAL ICE In-Circuit Emulator System	319
MPLINK Object Linker/MPLIB Object Librarian	318
MSSP	
ACK Pulse 174,	175
Control Registers (general)	161
I ² C Mode. See I ² C Mode.	
Module Overview	161
SPI Master/Slave Connection	165
SPI Mode. See SPI Mode.	
SSPBUF Register	166
SSPSR Register	
MULLW	
MULWF	
N	

NEGF	
NOP	

0

Oscillator Configuration	23
EC	
ECIO	23
HS	23
HSPLL	23
Internal Oscillator Block	26
INTIO1	23
INTIO2	23
LP	23
RC	23
RCIO	23
XT	23
Oscillator Selection	249
Oscillator Start-up Timer (OST)	31, 45
Oscillator Switching	
Oscillator Transitions	29
Oscillator, Timer1	. 127, 137
Oscillator, Timer3	

Ρ

Packaging Information	
Details	
Marking	
Parallel Slave Port (PSP)	
Associated Registers	
CS (Chip Select)	
PORTD	
RD (Read Input)	
Select (PSPMODE Bit)	
WR (Write Input)	-
PICSTART Plus Development Programmer	
PIE Registers	
Pin Functions	
MCLR/VPP/RE3	
OSC1/CLKI/RA7	
OSC2/CLKO/RA6	
RA0/AN0	
RA1/AN1	
RA2/AN2/VREF-/CVREF	