

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2525-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.6 Reset State of Registers

Most registers are unaffected by a Reset. Their status is unknown on POR and unchanged by all other Resets. The other registers are forced to a "Reset state" depending on the type of Reset that occurred.

Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register, RI, TO, PD, POR and BOR, are set or cleared differently in different Reset situations, as indicated in Table 4-3. These bits are used in software to determine the nature of the Reset. Table 4-4 describes the Reset states for all of the Special Function Registers. These are categorized by Power-on and Brown-out Resets, Master Clear and WDT Resets and WDT wake-ups.

Condition	Program		RCC	STKPTR Register					
Condition	Counter	SBOREN	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	1	1	1	1	0	0	0	0
RESET Instruction	0000h	u (2)	0	u	u	u	u	u	u
Brown-out Reset	0000h	u (2)	1	1	1	u	0	u	u
MCLR during power-managed Run Modes	0000h	u (2)	u	1	u	u	u	u	u
MCLR during power-managed Idle modes and Sleep mode	0000h	u (2)	u	1	0	u	u	u	u
WDT time-out during full power or power-managed Run mode	0000h	u (2)	u	0	u	u	u	u	u
MCLR during full-power execution	0000h	u (2)	u	u	u	u	u	u	u
Stack Full Reset (STVREN = 1)	0000h	u (2)	u	u	u	u	u	1	u
Stack Underflow Reset (STVREN = 1)	0000h	_ປ (2)	u	u	u	u	u	u	1
Stack Underflow Error (not an actual Reset, STVREN = 0)	0000h	_ປ (2)	u	u	u	u	u	u	1
WDT time-out during power-managed Idle or Sleep modes	PC + 2	u (2)	u	0	0	u	u	u	u
Interrupt exit from power-managed modes	PC + 2 ⁽¹⁾	ս (2)	u	u	0	u	u	u	u

TABLE 4-3:STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION
FOR RCON REGISTER

Legend: u = unchanged

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (008h or 0018h).

2: Reset state is '1' for POR and unchanged for all other Resets when software BOR is enabled (BOREN1:BOREN0 Configuration bits = 01 and SBOREN = 1); otherwise, the Reset state is '0'.

EXAMPLE 7-3:	WRITIN	IG TO FL	ASH PROGRA	۹٨	I MEMORY (CONTINUED)
PROGRAM_MEMORY					
	BSF	EECON1,	EEPGD	;	point to Flash program memory
	BCF	EECON1,	CFGS	;	access Flash program memory
	BSF	EECON1,	WREN	;	enable write to memory
	BCF	INTCON,	GIE	;	disable interrupts
	MOVLW	55h			
Required	MOVWF	EECON2		;	write 55h
Sequence	MOVLW	0AAh			
	MOVWF	EECON2		;	write OAAh
	BSF	EECON1,	WR	;	start program (CPU stall)
	BSF	INTCON,	GIE	;	re-enable interrupts
	BCF	EECON1,	WREN	;	disable write to memory

7.5.2 WRITE VERIFY

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

7.5.3 UNEXPECTED TERMINATION OF WRITE OPERATION

If a write is terminated by an unplanned event, such as loss of power or an unexpected Reset, the memory location just programmed should be verified and reprogrammed if needed. If the write operation is interrupted by a MCLR Reset or a WDT Time-out Reset during normal operation, the user can check the WRERR bit and rewrite the location(s) as needed.

7.5.4 PROTECTION AGAINST SPURIOUS WRITES

To protect against spurious writes to Flash program memory, the write initiate sequence must also be followed. See **Section 23.0** "**Special Features of the CPU**" for more detail.

7.6 Flash Program Operation During Code Protection

See Section 23.5 "Program Verification and Code Protection" for details on code protection of Flash program memory.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
TBLPTRU		— — bit 21 Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)							49
TBPLTRH	H Program Memory Table Pointer High Byte (TBLPTR<15:8>)							49	
TBLPTRL	. Program Memory Table Pointer Low Byte (TBLPTR<7:0>)							49	
TABLAT	Program Memory Table Latch							49	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49
EECON2	EEPROM Control Register 2 (not a physical register)						51		
EECON1	EEPGD	CFGS	—	FREE	WRERR	WREN	WR	RD	51
IPR2	OSCFIP	CMIP	—	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	52
PIR2	OSCFIF	CMIF	_	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	52
PIE2	OSCFIE	CMIE	_	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	52

 TABLE 7-2:
 REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY

Legend: — = unimplemented, read as '0'. Shaded cells are not used during Flash/EEPROM access.

Pin	Function	TRIS Setting	I/O	I/O Type	Description
RA0/AN0	RA0	0	0	DIG	LATA<0> data output; not affected by analog input.
		1	Ι	TTL	PORTA<0> data input; disabled when analog input enabled.
	AN0	1	I	ANA	A/D input channel 0 and Comparator C1- input. Default input configuration on POR; does not affect digital output.
RA1/AN1	RA1	0	0	DIG	LATA<1> data output; not affected by analog input.
		1	-	TTL	PORTA<1> data input; disabled when analog input enabled.
	AN1	1	Ι	ANA	A/D input channel 1 and Comparator C2- input. Default input configuration on POR; does not affect digital output.
RA2/AN2/ Vref-/CVref	RA2	0	0	DIG	LATA<2> data output; not affected by analog input. Disabled when CVREF output enabled.
		1	Ι	TTL	PORTA<2> data input. Disabled when analog functions enabled; disabled when CVREF output enabled.
	AN2	1	Ι	ANA	A/D input channel 2 and Comparator C2+ input. Default input configuration on POR; not affected by analog output.
	VREF-	1	Ι	ANA	A/D and comparator voltage reference low input.
	CVREF	x	0	ANA	Comparator voltage reference output. Enabling this feature disables digital I/O.
RA3/AN3/VREF+	RA3	0	0	DIG	LATA<3> data output; not affected by analog input.
		1	Ι	TTL	PORTA<3> data input; disabled when analog input enabled.
	AN3	1	Ι	ANA	A/D input channel 3 and Comparator C1+ input. Default input configuration on POR.
	VREF+	1	Ι	ANA	A/D and comparator voltage reference high input.
RA4/T0CKI/C1OUT	RA4	0	0	DIG	LATA<4> data output.
		1	Ι	ST	PORTA<4> data input; default configuration on POR.
	T0CKI	1	Ι	ST	Timer0 clock input.
	C1OUT	0	0	DIG	Comparator 1 output; takes priority over port data.
RA5/AN4/SS/	RA5	0	0	DIG	LATA<5> data output; not affected by analog input.
HLVDIN/C2OUT		1	Ι	TTL	PORTA<5> data input; disabled when analog input enabled.
	AN4	1	Ι	ANA	A/D input channel 4. Default configuration on POR.
	SS	1	Ι	TTL	Slave Select input for MSSP module.
	HLVDIN	1	Ι	ANA	High/Low-Voltage Detect external trip point input.
	C2OUT	0	0	DIG	Comparator 2 output; takes priority over port data.
OSC2/CLKO/RA6	RA6	0	0	DIG	LATA<6> data output. Enabled in RCIO, INTIO2 and ECIO modes only.
		1	Ι	TTL	PORTA<6> data input. Enabled in RCIO, INTIO2 and ECIO modes only.
	OSC2	x	0	ANA	Main oscillator feedback output connection (XT, HS and LP modes).
	CLKO	x	0	DIG	System cycle clock output (Fosc/4) in RC, INTIO1 and EC Oscillator modes.
OSC1/CLKI/RA7	RA7	0	0	DIG	LATA<7> data output. Disabled in external oscillator modes.
		1	Ι	TTL	PORTA<7> data input. Disabled in external oscillator modes.
	OSC1	x	Ι	ANA	Main oscillator input connection.
	CLKI	x	Ι	ANA	Main clock input connection.

TABLE 9-1: PORTA I/O SUMMARY

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

REGISTER 10-3: INTCON3: INTERRUPT CONTROL REGISTER 3

R/W-1	R/W-1	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
INT2IP	P INT1IP	_	INT2IE	INT1IE	—	INT2IF	INT1IF
bit 7							bit C
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
1		-					
Dit /		External Interr	upt Priority bit				
	$\perp = Hign prid0 = Low prid$	rity					
bit 6	INT1IP: INT1	External Interr	upt Priority bit				
	1 = High prio	rity	, ,				
	0 = Low prior	rity					
bit 5	Unimplemen	ted: Read as '	כי				
bit 4	INT2IE: INT2	External Interr	upt Enable bit				
	1 = Enables	the INT2 extern	nal interrupt				
	0 = Disables	the INT2 extern	nal interrupt				
bit 3	INT1IE: INT1	External Interr	upt Enable bit				
	1 = Enables	the INT1 extern	nal interrupt				
bit 2	Unimplemen	ted: Read as '	na interrupt o'				
bit 1	INT2IF: INT2	External Interru	upt Flag bit				
	$1 = \text{The INT}_2$	external interr	upt occurred (must be cleared	d in software)		
	0 = The INT2	2 external interr	upt did not occ	cur	,		
bit 0	INT1IF: INT1	External Interru	upt Flag bit				
	1 = The INT	external interr	upt occurred (must be cleared	d in software)		
	0 = The INT	external interr	upt did not occ	cur			
Note:	Interrupt flag bits	are set when a	an interrupt co	ndition occurs.	regardless of	the state of its	corresponding
	enable bit or the	global interrupt	enable bit. Us	er software sho	uld ensure the	appropriate int	errupt flag bit
	are clear prior to	enabling an inte	errupt. This fea	ature allows for	software pollir	ng.	

REGISTER 10-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OSCFIF	CMIF	—	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	OSCFIF: Osc	illator Fail Inter	rupt Flag bit				<i>.</i>
	1 = Device os 0 = Device cl	ock operating	clock input has	s changed to IN	HOSC (must t	be cleared in so	itware)
bit 6	CMIF: Compa	arator Interrupt	Flag bit				
	1 = Compara 0 = Compara	tor input has cl tor input has n	hanged (must l ot changed	be cleared in se	oftware)		
bit 5	Unimplemen	ted: Read as '	כ'				
bit 4	EEIF: Data El	EPROM/Flash	Write Operatio	n Interrupt Flag	g bit		
	1 = The write 0 = The write	operation is cooperation is n	omplete (must ot complete or	be cleared in s has not been s	oftware) started		
bit 3	BCLIF: Bus C	ollision Interru	pt Flag bit				
	 1 = A bus collision occurred (must be cleared in software) 0 = No bus collision occurred 						
bit 2	HLVDIF: High	/Low-Voltage [Detect Interrup	t Flag bit			
	 1 = A high/low-voltage condition occurred (direction determined by VDIRMAG bit, HLVDCON<7>) 0 = A high/low-voltage condition has not occurred 						DCON<7>)
bit 1	TMR3IF: TMF	R3 Overflow Int	errupt Flag bit				
	1 = TMR3 reg 0 = TMR3 reg	gister overflowe gister did not o	ed (must be cle verflow	eared in softwa	re)		
bit 0	CCP2IF: CCF	2 Interrupt Fla	g bit				
	$\frac{\text{Capture mode}}{1 = \text{A TMR1}}$ $0 = \text{No TMR1}$	<u>e:</u> register capture ⊨register captu	e occurred (mu re occurred	ist be cleared i	n software)		
	Compare mod 1 = A TMR1 0 = No TMR1	<u>te:</u> register compa register comp	re match occu	rred (must be c urred	leared in softw	vare)	
	<u>PWM mode:</u> Unused in this	s mode.					

10.5 RCON Register

The RCON register contains flag bits which are used to determine the cause of the last Reset or wake-up from Idle or Sleep modes. RCON also contains the IPEN bit which enables interrupt priorities.

The operation of the SBOREN bit and the Reset flag bits is discussed in more detail in **Section 4.1 "RCON Register"**.

REGISTER 10-10: RCON: RESET CONTROL REGISTER

R/W-0	R/W-1 ⁽¹⁾	U-0	R/W-1	R-1	R-1	R/W-0 ⁽¹⁾	R/W-0
IPEN	SBOREN	—	RI	TO	PD	POR	BOR
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	IPEN: Interrupt Priority Enable bit
	 1 = Enable priority levels on interrupts
	0 = Disable priority levels on interrupts (PIC16CXXX Compatibility mode)
bit 6	SBOREN: Software BOR Enable bit ⁽¹⁾
	For details of bit operation, see Register 4-1.
bit 5	Unimplemented: Read as '0'
bit 4	RI: RESET Instruction Flag bit
	For details of bit operation, see Register 4-1.
bit 3	TO: Watchdog Timer Time-out Flag bit
	For details of bit operation, see Register 4-1.
bit 2	PD: Power-Down Detection Flag bit
	For details of bit operation, see Register 4-1.
bit 1	POR: Power-on Reset Status bit ⁽¹⁾
	For details of bit operation, see Register 4-1.
bit 0	BOR: Brown-out Reset Status bit
	For details of bit operation, see Register 4-1.

Note 1: Actual Reset values are determined by device configuration and the nature of the device Reset. See Register 4-1 for additional information.

12.3.3 TIMER1 OSCILLATOR LAYOUT CONSIDERATIONS

The Timer1 oscillator circuit draws very little power during operation. Due to the low-power nature of the oscillator, it may also be sensitive to rapidly changing signals in close proximity.

The oscillator circuit, shown in Figure 12-3, should be located as close as possible to the microcontroller. There should be no circuits passing within the oscillator circuit boundaries other than VSS or VDD.

If a high-speed circuit must be located near the oscillator (such as the CCP1 pin in Output Compare or PWM mode, or the primary oscillator using the OSC2 pin), a grounded guard ring around the oscillator circuit, as shown in Figure 12-4, may be helpful when used on a single-sided PCB or in addition to a ground plane.

FIGURE 12-4: OSCILLATOR CIRCUIT WITH GROUNDED GUARD RING

12.4 Timer1 Interrupt

The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The Timer1 interrupt, if enabled, is generated on overflow, which is latched in interrupt flag bit, TMR1IF (PIR1<0>). This interrupt can be enabled or disabled by setting or clearing the Timer1 Interrupt Enable bit, TMR1IE (PIE1<0>).

12.5 Resetting Timer1 Using the CCP Special Event Trigger

If either of the CCP modules is configured to use Timer1 and generate a Special Event Trigger in Compare mode (CCP1M3:CCP1M0 or CCP2M3:CCP2M0 = 1011), this signal will reset Timer1. The trigger from CCP2 will also start an A/D conversion if the A/D module is enabled (see **Section 15.3.4 "Special Event Trigger**" for more information).

The module must be configured as either a timer or a synchronous counter to take advantage of this feature. When used this way, the CCPRH:CCPRL register pair effectively becomes a period register for Timer1.

If Timer1 is running in Asynchronous Counter mode, this Reset operation may not work.

In the event that a write to Timer1 coincides with a Special Event Trigger, the write operation will take precedence.

Note:	The Special Event Triggers from the
	CCP2 module will not set the TMR1IF
	interrupt flag bit (PIR1<0>).

12.6 Using Timer1 as a Real-Time Clock

Adding an external LP oscillator to Timer1 (such as the one described in **Section 12.3 "Timer1 Oscillator"** above) gives users the option to include RTC functionality to their applications. This is accomplished with an inexpensive watch crystal to provide an accurate time base and several lines of application code to calculate the time. When operating in Sleep mode and using a battery or supercapacitor as a power source, it can completely eliminate the need for a separate RTC device and battery backup.

The application code routine, RTCisr, shown in Example 12-1, demonstrates a simple method to increment a counter at one-second intervals using an Interrupt Service Routine. Incrementing the TMR1 register pair to overflow triggers the interrupt and calls the routine, which increments the seconds counter by one; additional counters for minutes and hours are incremented as the previous counter overflow.

Since the register pair is 16 bits wide, counting up to overflow the register directly from a 32.768 kHz clock would take 2 seconds. To force the overflow at the required one-second intervals, it is necessary to preload it. The simplest method is to set the MSb of TMR1H with a BSF instruction. Note that the TMR1L register is never preloaded or altered. Doing so may introduce cumulative errors over many cycles.

For this method to be accurate, Timer1 must operate in Asynchronous mode and the Timer1 overflow interrupt must be enabled (PIE1<0> = 1), as shown in the routine, RTCinit. The Timer1 oscillator must also be enabled and running at all times.

15.3 Compare Mode

In Compare mode, the 16-bit CCPRx register value is constantly compared against either the TMR1 or TMR3 register pair value. When a match occurs, the CCPx pin can be:

- driven high
- driven low
- toggled (high-to-low or low-to-high)
- remain unchanged (that is, reflects the state of the I/O latch)

The action on the pin is based on the value of the mode select bits (CCPxM3:CCPxM0). At the same time, the interrupt flag bit, CCPxIF, is set.

15.3.1 CCP PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the appropriate TRIS bit.

Clearing the CCP2CON register will force
the RB3 or RC1 compare output latch
(depending on device configuration) to the
default low level. This is not the PORTB or
PORTC I/O data latch.

15.3.2 TIMER1/TIMER3 MODE SELECTION

Timer1 and/or Timer3 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

15.3.3 SOFTWARE INTERRUPT MODE

When the Generate Software Interrupt mode is chosen (CCPxM3:CCPxM0 = 1010), the corresponding CCPx pin is not affected. Only a CCP interrupt is generated, if enabled, and the CCPxIE bit is set.

15.3.4 SPECIAL EVENT TRIGGER

Both CCP modules are equipped with a Special Event Trigger. This is an internal hardware signal generated in Compare mode to trigger actions by other modules. The Special Event Trigger is enabled by selecting the Compare Special Event Trigger mode (CCPxM3:CCPxM0 = 1011).

For either CCP module, the Special Event Trigger resets the Timer register pair for whichever timer resource is currently assigned as the module's time base. This allows the CCPRx registers to serve as a programmable Period register for either timer.

The Special Event Trigger for CCP2 can also start an A/D conversion. In order to do this, the A/D converter must already be enabled.

FIGURE 15-2: COMPARE MODE OPERATION BLOCK DIAGRAM

CCP1CON <7:6>	SIGNAL	0 Duty Cycle	 PR2 + 1
00 (Single Output)	P1A Modulated		
	P1A Modulated		
10 (Half-Bridge)	P1B Modulated		
	P1A Active	_ <u> </u>	 1
(Full-Bridge,	P1B Inactive	_ ;	
⁰¹ Forward)	P1C Inactive	- :	
	P1D Modulated		 1 1 1 1
	P1A Inactive		 1 1 1
11 (Full-Bridge,	P1B Modulated		 1 1 1
Reverse)	P1C Active	_ <u>-</u>	
	P1D Inactive	_ '	

FIGURE 16-2: PWM OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)

FIGURE 16-3: PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)

00	(Single Output)	P1A Modulated		1		1
		P1A Modulated				
10	(Half-Bridge)	P1B Modulated		Delay ⁽¹⁾	Delay ⁽¹⁾	
		P1A Active		1 1 +		
0.1	(Full-Bridge,	P1B Inactive		1 1 1		
01	Forward)	P1C Inactive		1 1 1	1 1 1	1 1 1
		P1D Modulated		1		
		P1A Inactive		1 1 1	i i	i
11	(Full-Bridge,	P1B Modulated		1		
	Reverse)	P1C Active		1 1	1 1 1	
		P1D Inactive		1 1 1	 	1 1 1
Rela	ationships:					
• P	eriod = 4 * Tosc * (PR2 + 1) * (TMR2 Pres	cale Val			

17.3.2 OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON1<5:0> and SSPSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)

The MSSP consists of a transmit/receive shift register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready. Once the 8 bits of data have been received, that byte is moved to the SSPBUF register. Then, the Buffer Full detect bit, BF (SSPSTAT<0>) and the interrupt flag bit, SSPIF, are set. This double-buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored and the write collision detect bit, WCOL

(SSPCON1<7>), will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully.

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. The Buffer Full bit, BF (SSPSTAT<0>), indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 17-1 shows the loading of the SSPBUF (SSPSR) for data transmission.

The SSPSR is not directly readable or writable and can only be accessed by addressing the SSPBUF register. Additionally, the MSSP status register (SSPSTAT) indicates the various status conditions.

Note:	The SSPBUF register cannot be used with								
	read-modify-write	instructions	such	as					
	BCF, BTFSC and C	OMF, etc.							

Note: To avoid lost data in Master mode, a read of the SSPBUF must be performed to clear the Buffer Full (BF) detect bit (SSPSTAT<0>) between each transmission.

EXAMPLE 17-1: LOADING THE SSPBUF (SSPSR) REGISTER

LOOP	BTFSS BRA MOVF	SSPSTAT, BF LOOP SSPBUF, W	<pre>;Has data been received (transmit complete)? ;No ;WREG reg = contents of SSPBUF</pre>
	MOVWF	RXDATA	;Save in user RAM, if data is meaningful
	MOVF MOVWF	TXDATA, W SSPBUF	;W reg = contents of TXDATA ;New data to xmit

R/M-0	P/M_0	P/M/-0	P/\/_0	P///_0	P/\\/_0	P/\\/_0	R/M_0		
	SSPOV			SSDM3	SSDM2	SSDM1	SSPM0		
bit 7	33101	SSI LIN.	ON	331 103	551 WZ	33F M T	bit 0		
bit 7							Dit 0		
Legend:									
R = Readable	e bit	W = Writable b	oit	U = Unimplen	nented bit. rea	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 7	WCOL: Write	e Collision Detec	t bit						
	In Master Tra	insmit mode:							
	1 = A write	to the SSPBUF	register was	s attempted wh	ile the I ² C co	nditions were	not valid for a		
	transmis	sion to be starte	d (must be cl	eared in softwa	re)				
	0 = NO COIIIS	ion							
	1 = The SSF	PRUE register is	written while	it is still transm	itting the previ	ous word (mus	t he cleared in		
	software)	written write						
	0 = No collis	ion							
	In Receive m	ode (Master or S	Slave modes)	<u>::</u>					
	This is a "dor	n't care" bit.							
bit 6	SSPOV: Rec	eive Overflow In	dicator bit						
	In Receive m 1 - A byte is	<u>ode:</u> received while t	ha SSDRI IF	rogistor is still b	olding the prev	vious byte (mus	t be cleared in		
	software)	red while the SSPBOF register is still holding the previous byte (must be cleared in						
	0 = No overf	ĺow							
	In Transmit m	node:							
	This is a "dor	n't care" bit in Tra	ansmit mode.						
bit 5	SSPEN: Mas	ter Synchronous	s Serial Port I	Enable bit ⁽¹⁾					
	1 = Enables t	the serial port an	d configures	the SDA and S	CL pins as the	serial port pins	i		
L:1 4		serial port and c	onfigures the	ese pins as i/O p	ort pins				
bit 4	CKP: SCK R	elease Control b	oit						
	1 = Releases	<u>e:</u> clock							
	0 = Holds clo	ck low (clock str	etch), used to	o ensure data se	etup time				
	In Master mo	de:			-				
	Unused in thi	s mode.							
bit 3-0	SSPM3:SSP	M0: Master Syn	chronous Sei	ial Port Mode S	elect bits ⁽²⁾				
	$1111 = I^2 C S$	lave mode, 10-b	oit address wi	th Start and Sto	p bit interrupts	enabled			
	$1110 = I^2 C S$	lave mode, 7-bi	t address with	n Start and Stop	bit interrupts e	enabled			
	1011 = 1 C F $1000 = 1^2 C N$	laster mode, clo	ck = Fosc/(4	* (SSPADD + 1))				
	$0111 = I^2 C S$	lave mode, 10-b	oit address	,	<i>''</i>				
	0110 = I ² C S	lave mode, 7-bi	address						
	Bit combinati	ons not specifica	ally listed here	e are either rese	erved or impler	nented in SPI r	node only.		

REGISTER 17-4: SSPCON1: MSSP CONTROL REGISTER 1 (I²C[™] MODE)

REGISTER 19-2: ADCON1: A/D CONTROL REGISTER 1

U-0	U-0	R/W-0 R/W-0		R/W-0	R/W-q ⁽¹⁾	R/W-q ⁽¹⁾	R/W-q ⁽¹⁾
—	—	– VCFG1 VCFG0 PCFG3		PCFG2	PCFG1	PCFG0	
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-6	Unimplemented:	Read as '0'
	•	

bit 5	VCFG1: Voltage Reference Configuration bit (VREF- source)
	1 = VREF- (AN2)
	0 = Vss
bit 4	VCFG0: Voltage Reference Configuration bit (VREF+ source)
	1 = VREF+ (AN3)
	0 = VDD

bit 3-0 PCFG3:PCFG0: A/D Port Configuration Control bits:

PCFG3: PCFG0	AN12	AN11	AN10	AN9	AN8	AN7 ⁽²⁾	AN6 ⁽²⁾	AN5 ⁽²⁾	AN4	AN3	AN2	AN1	ANO
0000 (1)	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0001	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0010	А	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0011	D	А	Α	Α	Α	Α	Α	Α	А	Α	А	Α	Α
0100	D	D	Α	Α	Α	Α	Α	Α	А	Α	А	Α	Α
0101	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0110	D	D	D	D	Α	Α	Α	Α	А	Α	Α	Α	Α
0111(1)	D	D	D	D	D	А	Α	A	А	А	А	Α	Α
1000	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α
1001	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α
1010	D	D	D	D	D	D	D	D	Α	Α	Α	Α	Α
1011	D	D	D	D	D	D	D	D	D	Α	Α	Α	Α
1100	D	D	D	D	D	D	D	D	D	D	Α	Α	Α
1101	D	D	D	D	D	D	D	D	D	D	D	Α	Α
1110	D	D	D	D	D	D	D	D	D	D	D	D	Α
1111	D	D	D	D	D	D	D	D	D	D	D	D	D
A Apole								<u> </u>					

A = Analog input

D = Digital I/O

Note 1: The POR value of the PCFG bits depends on the value of the PBADEN Configuration bit. When PBADEN = 1, PCFG<2:0> = 000; when PBADEN = 0, PCFG<2:0> = 111.

2: AN5 through AN7 are available only on 40/44-pin devices.

REGISTER 23-3: CONFIG2H: CONFIGURATION REGISTER 2 HIGH (BYTE ADDRESS 300003h) U-0 U-0 U-0 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 WDTPS3 WDTPS2 WDTPS0 WDTEN _ ____ ____ WDTPS1 bit 7 bit 0 Legend: R = Readable bit P = Programmable bit U = Unimplemented bit, read as '0' -n = Value when device is unprogrammed u = Unchanged from programmed state bit 7-5 Unimplemented: Read as '0' bit 4-1 WDTPS3:WDTPS0: Watchdog Timer Postscale Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,0961011 = 1:2,048 1010 = 1:1,024 1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2 0000 = 1:1 bit 0 WDTEN: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled (control is placed on the SWDTEN bit)

REGISTER 23-4:	CONFIG3H: CONFIGURATION REGISTER 3 HIGH ((BYTE ADDRESS 300005h)
----------------	---	------------------------

R/P-1	U-0	U-0	U-0	U-0	R/P-0	R/P-1	R/P-1
MCLRE	_	_	—	_	LPT1OSC	PBADEN	CCP2MX
bit 7		L				I	bit 0
Legend:							
R = Readable	bit	P = Programm	nable bit	U = Unimpler	mented bit, read	as '0'	
-n = Value whe	en device is unp	programmed		u = Unchang	ed from program	nmed state	
bit 7	MCLRE: MCL	R Pin Enable I	oit				
	$1 = \overline{MCLR}$ pin	enabled; RE <u>3</u>	input pin disa	bled			
	0 = RE3 input	pin enabled; N	ICLR disable	d			
bit 6-3	Unimplemen	ted: Read as '	כ'				
bit 2	LPT1OSC: Lo	ow-Power Time	r1 Oscillator E	Enable bit			
	1 = Timer1 co	onfigured for lov	v-power opera	ation			
	0 = Timer1 co	nfigured for hig	gher power op	eration			
bit 1	PBADEN: PC	RTB A/D Enat	ole bit				
	(Affects ADCO	ON1 Reset stat	e. ADCON1 c	ontrols PORT	3<4:0> pin confi	guration.)	
	1 = PORTB<4	1:0> pins are co	onfigured as a	nalog input ch	annels on Rese	t	
	0 = PORTB < 4	4:0> pins are co	onfigured as d	ligital I/O on Re	eset		
bit 0	CCP2MX: CC	P2 MUX bit					
	1 = CCP2 inp	ut/output is mu	ltiplexed with	RC1			
	0 = CCP2 inp	ut/output is mu	Itiplexed with	RB3			

REGISTER 23-5: CONFIG4L: CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS 300006h)

R/P-1	R/P-0	U-0	U-0	U-0	R/P-1	U-0	R/P-1
DEBUG	XINST	—	—	—	LVP	—	STVREN
bit 7							bit 0

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unp	programmed	u = Unchanged from programmed state

bit 7	DEBUG: Background Debugger Enable bit
	 1 = Background debugger disabled, RB6 and RB7 configured as general purpose I/O pins 0 = Background debugger enabled, RB6 and RB7 are dedicated to In-Circuit Debug
bit 6	XINST: Extended Instruction Set Enable bit
	1 = Instruction set extension and Indexed Addressing mode enabled0 = Instruction set extension and Indexed Addressing mode disabled (Legacy mode)
bit 5-3	Unimplemented: Read as '0'
bit 2	LVP: Single-Supply ICSP™ Enable bit
	1 = Single-Supply ICSP enabled
	0 = Single-Supply ICSP disabled
bit 1	Unimplemented: Read as '0'
bit 0	STVREN: Stack Full/Underflow Reset Enable bit
	1 = Stack full/underflow will cause Reset
	0 = Stack full/underflow will not cause Reset

Г

REGISTER 23-6: CONFIG5L: CONFIGURATION REGISTER 5 LOW (BYTE ADDRESS 300008h)

U-0	U-0	U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1
_	—	—	—	CP3 ⁽¹⁾	CP2	CP1	CP0
bit 7							bit 0
Legend:							
R = Readable I	bit	C = Clearable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value whe	n device is unp	programmed		u = Unchange	ed from progran	nmed state	
bit 7-4	Unimplemen	ted: Read as '	כי				
bit 3	CP3: Code Pr	rotection bit ⁽¹⁾					
	1 = Block 3 (0 0 = Block 3 (0	06000-007FFF 06000-007FFF	h) not code-p h) code-prote	orotected ected			
bit 2	CP2: Code Pr	rotection bit					
	1 = Block 2 (0 0 = Block 2 (0	04000-005FFF 04000-005FFF	⁻ h) not code-p ⁻ h) code-prote	orotected ected			
bit 1	CP1: Code Pr	rotection bit					
	1 = Block 1 (0 0 = Block 1 (0	02000-003FFF 02000-003FFF	⁻ h) not code-p ⁻ h) code-prote	orotected ected			
bit 0	CP0: Code Pr	rotection bit					
	1 = Block 0 (0) 0 = Block 0 (0)	000800-001FFF 000800-001FFF	⁻ h) not code-p ⁻ h) code-prote	orotected ected			

Note 1: Unimplemented in PIC18FX525 devices; maintain this bit set.

REGISTER 23-7: CONFIG5H: CONFIGURATION REGISTER 5 HIGH (BYTE ADDRESS 300009h)

R/C-1	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0
CPD	CPB	—	—	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable	bit C = Clear	rable bit U = Unimplem	nented bit, read as '0'
-n = Value wh	en device is unprogramme	ed u = Unchange	ed from programmed state

bit 7	CPD: Data EEPROM Code Protection bit
	1 = Data EEPROM not code-protected
	0 = Data EEPROM code-protected
bit 6	CPB: Boot Block Code Protection bit
	 1 = Boot block (000000-0007FFh) not code-protected 0 = Boot block (000000-0007FFh) code-protected

bit 5-0 Unimplemented: Read as '0'

23.5.1 PROGRAM MEMORY CODE PROTECTION

The program memory may be read to or written from any location using the table read and table write instructions. The device ID may be read with table reads. The Configuration registers may be read and written with the table read and table write instructions.

In normal execution mode, the CPx bits have no direct effect. CPx bits inhibit external reads and writes. A block of user memory may be protected from table writes if the WRTx Configuration bit is '0'. The EBTRx bits control table reads. For a block of user memory with the EBTRx bit set to '0', a table read instruction that executes from within that block is allowed to read. A table read instruction that executes from a location outside of that block is not allowed to read and will result in reading '0's. Figures 23-6 through 23-8 illustrate table write and table read protection.

Note: Code protection bits may only be written to a '0' from a '1' state. It is not possible to write a '1' to a bit in the '0' state. Code protection bits are only set to '1' by a full chip erase or block erase function. The full chip erase and block erase functions can only be initiated via ICSP operation or an external programmer.

FIGURE 23-6: TABLE WRITE (WRTx) DISALLOWED

26.2

DC Characteristics: Power-Down and Supply Current PIC18F2525/2620/4525/4620 (Industrial) PIC18LF2525/2620/4525/4620 (Industrial) (Continued)

PIC18LF2 (Indus	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC18F2525/2620/4525/4620 (Industrial, Extended)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param No.	Тур	Max	Units	Conditions				
	Supply Current (IDD) ⁽²⁾							
	PIC18LFX525/X620	13	25	μΑ	-40°C			
		13	22	μA	+25°C	VDD = 2.0V		
		14	25	μΑ	+85°C			
	PIC18LFX525/X620	42	61	μA	-40°C		Essa od III	
		34	46	μΑ	+25°C	VDD = 3.0V	(RC RUN mode	
		28	45	μA	+85°C		INTRC source)	
	All devices	103	160	μΑ	-40°C		,	
		82	130	μA	+25°C	Vpp = 5 0V		
		67	120	μΑ	+85°C	VDD = 3.0V		
	Extended devices only	71	230	μΑ	+125°C			
	PIC18LFX525/X620	320	440	μA	-40°C			
		330	440	μΑ	+25°C	VDD = 2.0V		
		330	440	μA	+85°C			
	PIC18LFX525/X620	630	800	μA	-40°C			
		590	720	μA	+25°C	VDD = 3.0V	FOSC = 1 MHZ	
		570	700	μΑ	+85°C		INTOSC source)	
	All devices	1.2	1.6	mA	-40°C			
		1.0	1.5	mA	+25°C	Vpp = 5.0V		
		1.0	1.5	mA	+85°C	VDD = 3.0V		
	Extended devices only	1.0	1.5	mA	+125°C			

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;
- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0. When operation will always be above -10°C, then the low-power Timer1 oscillator may be selected.
- 4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

TABLE 26-2: COMPARATOR SPECIFICATIONS

Operating Conditions: 3.0V < VDD < 5.5V, -40°C < TA < +85°C (unless otherwise stated).								
Param No.	Sym	Sym Characteristics Min Typ		Мах	Units	Comments		
D300	VIOFF	Input Offset Voltage	—	±5.0	±10	mV		
D301	VICM	Input Common Mode Voltage	0	—	Vdd - 1.5	V		
D302	CMRR	Common Mode Rejection Ratio	55	—	—	dB		
300	TRESP	Response Time ⁽¹⁾	—	150	400	ns	PIC18FXXXX	
300A			_	150	600	ns	PIC18 LF XXXX, VDD = 2.0V	
301	TMC20V	Comparator Mode Change to Output Valid	—	—	10	μS		

Note 1: Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 26-3: VOLTAGE REFERENCE SPECIFICATIONS

Operating Conditions: $3.0V < VDD < 5.5V$, $-40^{\circ}C < TA < +85^{\circ}C$ (unless otherwise stated).								
Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments	
D310	VRES	Resolution	VDD/24	—	VDD/32	LSb		
D311	VRAA	Absolute Accuracy	—	_	1/2	LSb		
D312	VRur	Unit Resistor Value (R)	_	2k	_	Ω		
310	TSET	Settling Time ⁽¹⁾	—	_	10	μS		

Note 1: Settling time measured while CVRR = 1 and CVR3:CVR0 transitions from '0000' to '1111'.

