

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2525t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Number	Pin	Buffer	Description
	SPDIP, SOIC	Туре	Туре	Description
				PORTA is a bidirectional I/O port.
RA0/AN0 RA0 AN0	2	I/O I	TTL Analog	Digital I/O. Analog input 0.
RA1/AN1 RA1 AN1	3	I/O I	TTL Analog	Digital I/O. Analog input 1.
RA2/AN2/VREF-/CVREF RA2 AN2 VREF- CVREF	4	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog input 2. A/D reference voltage (low) input. Comparator reference voltage output.
RA3/AN3/VREF+ RA3 AN3 VREF+	5	I/O I I	TTL Analog Analog	Digital I/O. Analog input 3. A/D reference voltage (high) input.
RA4/T0CKI/C1OUT RA4 T0CKI C1OUT	6	I/O I O	ST ST	Digital I/O. Timer0 external clock input. Comparator 1 output.
RA5/AN4/SS/HLVDIN/ C2OUT RA5 AN4 SS HLVDIN C2OUT	7	I/O 0	TTL Analog TTL Analog —	Digital I/O. Analog input 4. SPI slave select input. High/Low-Voltage Detect input. Comparator 2 output.
RA6				See the OSC2/CLKO/RA6 pin.
RA7				See the OSC1/CLKI/RA7 pin.
Legend: TTL = TTL co	mpatible inpu	t		CMOS = CMOS compatible input or output
ST = Schmit O = Output	t Trigger inpu	t with CI	MOS lev	els I = Input P = Power

TABLE 1-2: PIC18F2525/2620 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.

NOTES:

5.1.2.2 Return Stack Pointer (STKPTR)

The STKPTR register (Register 5-1) contains the Stack Pointer value, the STKFUL (Stack Full) status bit and the STKUNF (Stack Underflow) status bits. The value of the Stack Pointer can be 0 through 31. The Stack Pointer increments before values are pushed onto the stack and decrements after values are popped off the stack. On Reset, the Stack Pointer value will be zero. The user may read and write the Stack Pointer value. This feature can be used by a Real-Time Operating System (RTOS) for return stack maintenance.

After the PC is pushed onto the stack 31 times (without popping any values off the stack), the STKFUL bit is set. The STKFUL bit is cleared by software or by a POR.

The action that takes place when the stack becomes full depends on the state of the STVREN (Stack Overflow Reset Enable) Configuration bit. (Refer to **Section 23.1 "Configuration Bits"** for a description of the device Configuration bits.) If STVREN is set (default), the 31st push will push the (PC + 2) value onto the stack, set the STKFUL bit and reset the device. The STKFUL bit will remain set and the Stack Pointer will be set to zero.

If STVREN is cleared, the STKFUL bit will be set on the 31st push and the Stack Pointer will increment to 31. Any additional pushes will not overwrite the 31st push and STKPTR will remain at 31.

When the stack has been popped enough times to unload the stack, the next pop will return a value of zero to the PC and sets the STKUNF bit, while the Stack Pointer remains at zero. The STKUNF bit will remain set until cleared by software or until a POR occurs.

Note:	Returning a value of zero to the PC on an							
	underflow has the effect of vectoring the							
	program to the Reset vector, where the							
	stack conditions can be verified and							
	appropriate actions can be taken. This is							
	not the same as a Reset, as the contents							
	of the SFRs are not affected.							

5.1.2.3 PUSH and POP Instructions

Since the Top-of-Stack is readable and writable, the ability to push values onto the stack and pull values off the stack without disturbing normal program execution is a desirable feature. The PIC18 instruction set includes two instructions, PUSH and POP, that permit the TOS to be manipulated under software control. TOSU, TOSH and TOSL can be modified to place data or a return address on the stack.

The PUSH instruction places the current PC value onto the stack. This increments the Stack Pointer and loads the current PC value onto the stack.

The POP instruction discards the current TOS by decrementing the Stack Pointer. The previous value pushed onto the stack then becomes the TOS value.

REGISTER 5-1: STKPTR: STACK POINTER REGISTER

R/C-0	R/C-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
STKFUL ⁽¹⁾	STKUNF ⁽¹⁾	—	SP4	SP3	SP2	SP1	SP0	
bit 7					•		bit 0	
Legend: C = Clearable only bit			only bit					
R = Readable	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
bit 7	STKFUL: Sta	ick Full Flag bit ⁽	[1]					
	1 = Stack ber	ame full or ove	rflowed					

	0 = Stack has not become full or overflowed
bit 6	STKUNF: Stack Underflow Flag bit ⁽¹⁾
	1 = Stack underflow occurred
bit 5	Unimplemented: Read as '0'
bit 4-0	SP4:SP0: Stack Pointer Location bits

Note 1: Bit 7 and bit 6 are cleared by user software or by a POR.

FIGURE 7-2: TABLE WRITE OPERATION

7.2 Control Registers

Several control registers are used in conjunction with the TBLRD and TBLWT instructions. These include the:

- EECON1 register
- EECON2 register
- TABLAT register
- TBLPTR registers

7.2.1 EECON1 AND EECON2 REGISTERS

The EECON1 register (Register 7-1) is the control register for memory accesses. The EECON2 register is not a physical register; it is used exclusively in the memory write and erase sequences. Reading EECON2 will read all '0's.

The EEPGD control bit determines if the access will be a program or data EEPROM memory access. When clear, any subsequent operations will operate on the data EEPROM memory. When set, any subsequent operations will operate on the program memory.

The CFGS control bit determines if the access will be to the Configuration/Calibration registers or to program memory/data EEPROM memory. When set, subsequent operations will operate on Configuration registers regardless of EEPGD (see Section 23.0 "Special Features of the CPU"). When clear, memory selection access is determined by EEPGD. The FREE bit, when set, will allow a program memory erase operation. When FREE is set, the erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set in hardware when the WR bit is set and cleared when the internal programming timer expires and the write operation is complete.

Note:	During normal operation, the WRERR							
	may read as '1'. This can indicate that a							
	write operation was prematurely termi-							
	nated by a Reset, or a write operation was							
	attempted improperly.							

The WR control bit initiates write operations. The bit cannot be cleared, only set, in software; it is cleared in hardware at the completion of the write operation.

Note: The EEIF interrupt flag bit (PIR2<4>) is set when the write is complete. It must be cleared in software.

OSCFIE							
hit 7	CMIE	—	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE
							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	OSCFIE: Osc	cillator Fail Inter	rupt Enable bi	t			
	1 = Enabled 0 = Disabled						
bit 6	CMIE: Compa	arator Interrupt	Enable bit				
	1 = Enabled 0 = Disabled						
bit 5	Unimplemen	ted: Read as ')'				
bit 4	EEIE: Data E	EPROM/Flash	Write Operatio	on Interrupt Ena	able bit		
	1 = Enabled 0 = Disabled						
bit 3	BCLIE: Bus C	Collision Interru	pt Enable bit				
	1 = Enabled 0 = Disabled						
bit 2	HLVDIE: High	n/Low-Voltage	Detect Interrup	t Enable bit			
	1 = Enabled 0 = Disabled						
bit 1	TMR3IE: TM	R3 Overflow Int	errupt Enable	bit			
	1 = Enabled 0 = Disabled						
bit 0	CCP2IE: CCF	2 Interrupt Ena	able bit				
	1 = Enabled 0 = Disabled						

REGISTER 10-7: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

INDUENENTING A DEAL TIME OF OCK HONIG A TIMEDA INTERDURT OF DVICE

EVAINILE	12-1.	IMPLEMENTING A	REAL-TIME CLOCK USING A TIMERT INTERRUPT SERVICE
RTCinit			
	MOVLW	80h	; Preload TMR1 register pair
	MOVWF	TMR1H	; for 1 second overflow
	CLRF	TMR1L	
	MOVLW	b'00001111'	; Configure for external clock,
	MOVWF	T1CON	; Asynchronous operation, external oscillator
	CLRF	Secs	; Initialize timekeeping registers
	CLRF	mins	;
	MOVLW	.12	
	MOVWF	hours	
	BSF	PIE1, TMR1IE	; Enable Timer1 interrupt
	RETURN	1	
RTCisr			
	BSF	TMR1H, 7	; Preload for 1 sec overflow
	BCF	PIR1, TMR1IF	; Clear interrupt flag
	INCF	secs, F	; Increment seconds
	MOVLW	.59	; 60 seconds elapsed?
	CPFSGI	[secs	
	RETURN	1	; No, done
	CLRF	secs	; Clear seconds
	INCF	mins, F	; Increment minutes
	MOVLW	.59	; 60 minutes elapsed?
	CPFSGI	r mins	
	RETURN	1	; No, done
	CLRF	mins	; clear minutes
	INCF	hours, F	; Increment hours
	MOVLW	.23	; 24 hours elapsed?
	CPFSGI	F hours	
	RETURN	1	; No, done
	CLRF	hours	; Reset hours
	RETURN	1	; Done

TABLE 12-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49	
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	52	
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	52	
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	52	
TMR1L	Timer1 Register Low Byte									
TMR1H	Timer1 Register High Byte									
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	50	

Legend: Shaded cells are not used by the Timer1 module.

Note 1: These bits are unimplemented on 28-pin devices and read as '0'.

EVANDLE 404.

13.0 TIMER2 MODULE

The Timer2 module timer incorporates the following features:

- 8-bit Timer and Period registers (TMR2 and PR2, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4 and 1:16)
- Software programmable postscaler (1:1 through 1:16)
- Interrupt on TMR2 to PR2 match
- Optional use as the shift clock for the MSSP module

The module is controlled through the T2CON register (Register 13-1), which enables or disables the timer and configures the prescaler and postscaler. Timer2 can be shut off by clearing control bit, TMR2ON (T2CON<2>), to minimize power consumption.

A simplified block diagram of the module is shown in Figure 13-1.

13.1 Timer2 Operation

In normal operation, TMR2 is incremented from 00h on each clock (FOSC/4). A 4-bit counter/prescaler on the clock input gives direct input, divide-by-4 and divide-by-16 prescale options; these are selected by the prescaler control bits, T2CKPS1:T2CKPS0 (T2CON<1:0>). The value of TMR2 is compared to that of the Period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/ postscaler (see Section 13.2 "Timer2 Interrupt").

The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, while the PR2 register initializes at FFh. Both the prescaler and postscaler counters are cleared on the following events:

- a write to the TMR2 register
- a write to the T2CON register
- any device Reset (Power-on Reset, MCLR Reset, Watchdog Timer Reset or Brown-out Reset)

TMR2 is not cleared when T2CON is written.

REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0			
bit 7	•	•					bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	Iown			
bit 7	Unimplemented: Read as '0'									
bit 6-3	T2OUTPS3:T	20UTPS0: Tim	ner2 Output Po	stscale Select	bits					
	0000 = 1:1 Po	ostscale								
	0001 = 1:2 Po	ostscale								
	•									
	•									
	1111 = 1:16 F	Postscale								
bit 2	TMR2ON: Tin	ner2 On bit								
	1 = Timer2 is on									
	0 = Timer2 is	off								
bit 1-0	T2CKPS1:T2	CKPS0: Timer	2 Clock Presca	ale Select bits						
	00 = Prescale	eris 1								
	01 = Prescale	eris 4 Aris 16								
	$TX = r^{1}escale$	115 10								

REGISTER 16-3: ECCP1AS: ECCP AUTO-SHUTDOWN CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1 ⁽¹⁾	PSSBD0 ⁽¹⁾				
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 7	ECCPASE: E	CCP Auto-Shu	tdown Event S	tatus bit							
	1 = A shutdov	wn event has o	ccurred; ECCP	outputs are in	shutdown state	Э					
	0 = ECCP ou	tputs are opera	ting								
bit 6-4	ECCPAS2:E0	CCPASO: ECC	P Auto-Shutdo	wn Source Sele	ect bits						
	111 = FLT0 c	or Comparator	or Comparato	or 2							
	110 = FLI0C	or Comparator 2	2								
	101 = FLTOC 100 = FLTOC	Comparator	I								
	011 = Fither Comparator 1 or 2										
	010 = Comparator 2 output										
	001 = Comparator 1 output										
	000 = Auto-s	000 = Auto-shutdown is disabled									
bit 3-2	PSSAC1:PSS	SAC0: Pins A a	nd C Shutdow	n State Control	bits						
	1x = Pins A and C are tri-state (40/44-pin devices);										
	PWM output is tri-state (28-pin devices)										
	01 = Drive Pins A and C to '1'										
h it 1 0											
DIT 1-U	P55BD1:P5	SBDU: Pins B a	ind D Shutdow	n State Control	DIts						
	1x = Pins B a	and D tri-state	(1)								
	01 = Drive P 00 = Drive P	ins B and D to	т 'О'								
			~								

Note 1: Unimplemented on 28-pin devices; bits read as '0'.

REGISTER	18-2: RCS	TA: RECEIVE	STATUS A	ND CONTRO	L REGISTER	2	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value a	It POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 7	SPEN: Seria	al Port Enable b	it				
	1 = Serial p 0 = Serial p	ort enabled (cor ort disabled (he	nfigures RX/D ⁻ Id in Reset)	T and TX/CK pi	ns as serial po	rt pins)	
bit 6	RX9: 9-Bit R	eceive Enable	bit				
	1 = Selects 0 = Selects	9-bit reception 8-bit reception					
bit 5	SREN: Sing	le Receive Enal	ole bit				
	Asynchronou Don't care.	us mode:					
	Synchronous 1 = Enables 0 = Disables This bit is cle	s mode – Maste s single receive s single receive eared after rece	<u>er:</u> ption is compl	ete.			
	<u>Synchronou</u> Don't care.	<u>s mode – Slave</u>	• •				
bit 4	CREN: Cont	tinuous Receive	Enable bit				
	Asynchronou 1 = Enables 0 = Disables	<u>us mode:</u> s receiver s receiver					
	Synchronous 1 = Enables 0 = Disables	<u>s mode:</u> s continuous rec s continuous rec	eive until enal	ble bit, CREN, i	s cleared (CRI	EN overrides SR	EN)
bit 3	ADDEN: Ad	dress Detect Er	nable bit				
	<u>Asynchronou</u> 1 = Enables 0 = Disables Asynchronou	us mode 9-Bit (I address detec s address detec us mode 9-Bit (I	<u>RX9 = 1)</u> : tion, enables i tion, all bytes RX9 = 0):	nterrupt and loa are received ar	ads the receive nd ninth bit can	buffer when RS be used as par	SR<8> is set ity bit
	Don't care.	· · · · · · · · · · · · · · · · · · ·					
bit 2	FERR: Fram	ning Error bit					
	1 = Framing 0 = No fram	g error (can be c iing error	cleared by read	ding RCREG re	egister and reco	eiving next valid	byte)
bit 1	OERR: Over	rrun Error bit					
	1 = Overrun 0 = No over	n error (can be c run error	leared by clea	aring bit, CREN)		
bit 0	RX9D: 9th B This can be	Bit of Received I address/data bi	Data t or a parity bi	t and must be c	alculated by us	ser firmware.	

BAUD RATE (K)	SYNC = 0, BRGH = 0, BRG16 = 0												
	Fosc = 40.000 MHz			Fosc	= 20.000) MHz	Fosc	c = 10.000) MHz	Fos	c = 8.000	MHz	
	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	_	_			_	_	_	_	_	_	_		
1.2	—	—	—	1.221	1.73	255	1.202	0.16	129	1.201	-0.16	103	
2.4	2.441	1.73	255	2.404	0.16	129	2.404	0.16	64	2.403	-0.16	51	
9.6	9.615	0.16	64	9.766	1.73	31	9.766	1.73	15	9.615	-0.16	12	
19.2	19.531	1.73	31	19.531	1.73	15	19.531	1.73	7	—	_	_	
57.6	56.818	-1.36	10	62.500	8.51	4	52.083	-9.58	2	—	_	_	
115.2	125.000	8.51	4	104.167	-9.58	2	78.125	-32.18	1	—	_	_	

TABLE 18-3: BAUD RATES FOR ASYNCHRONOUS MODES

BAUD RATE (K)	SYNC = 0, BRGH = 0, BRG16 = 0											
	Fos	c = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz					
	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)			
0.3	0.300	0.16	207	0.300	-0.16	103	0.300	-0.16	51			
1.2	1.202	0.16	51	1.201	-0.16	25	1.201	-0.16	12			
2.4	2.404	0.16	25	2.403	-0.16	12	—	—	—			
9.6	8.929	-6.99	6	—	—	—	—	—	—			
19.2	20.833	8.51	2	—	_	—	—	_	_			
57.6	62.500	8.51	0	—	_	_	—	_	_			
115.2	62.500	-45.75	0	—	—	—	—	_	—			

	SYNC = 0, BRGH = 1, BRG16 = 0											
BAUD	Fosc = 40.000 MHz			Fosc	= 20.000	0 MHz	Fosc	= 10.000) MHz	Fos	c = 8.000	MHz
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	_	_	_	_	_	_	_	_	_	—	_	_
1.2	—	—	—	—	—	—	—	—	—	—	—	—
2.4	-	_	—	—	_	—	2.441	1.73	255	2.403	-0.16	207
9.6	9.766	1.73	255	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	—	_

	SYNC = 0, BRGH = 1, BRG16 = 0										
BAUD	Fost	c = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz				
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)		
0.3	—	_	_		_	_	0.300	-0.16	207		
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51		
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25		
9.6	9.615	0.16	25	9.615	-0.16	12	—	_	—		
19.2	19.231	0.16	12	—	_	_	—	_	—		
57.6	62.500	8.51	3	—	—	—	—	—	—		
115.2	125.000	8.51	1	_	—	_	_	—	_		

© 2008 Microchip Technology Inc.

			DAVA		D/M/ O	DAMO					
	0-0						R/W-U				
	—	ACQ12	ACQTT	ACQTU	ADC52	ADCST	ADCSU				
Dit 7							Dit U				
Legend:	1.5										
R = Readable	e bit	VV = VVritable	Dit		nented bit, read						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 7	ADFM: A/D F 1 = Right just 0 = Left justif	Result Format S tified ied	elect bit								
bit 6	Unimplemer	Unimplemented: Read as '0'									
bit 5-3	ACQT2:ACQ	ACQT2:ACQT0: A/D Acquisition Time Select bits									
	111 = 20 TAC $110 = 16 TAC$ $101 = 12 TAC$ $100 = 8 TAD$ $011 = 6 TAD$ $010 = 4 TAD$ $001 = 2 TAD$ $000 = 0 TAD$)))									
bit 2-0	ADCS2:ADC 111 = FRC (c 110 = FOSC/4 101 = FOSC/4 011 = FRC (c 010 = FOSC/4 001 = FOSC/4 000 = FOSC/4	S0: A/D Conve lock derived fro 4 16 4 lock derived fro 32 3 2	rsion Clock Se m A/D RC oso m A/D RC oso	elect bits cillator) ⁽¹⁾ cillator) ⁽¹⁾							

REGISTER 19-3: ADCON2: A/D CONTROL REGISTER 2

Note 1: If the A/D FRC clock source is selected, a delay of one TCY (instruction cycle) is added before the A/D clock starts. This allows the SLEEP instruction to be executed before starting a conversion.

19.8 Use of the CCP2 Trigger

An A/D conversion can be started by the Special Event Trigger of the CCP2 module. This requires that the CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be programmed as '1011' and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D acquisition and conversion and the Timer1 (or Timer3) counter will be reset to zero. Timer1 (or Timer3) is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving ADRESH:ADRESL to the desired location). The appropriate analog input channel must be selected and the minimum acquisition period is either timed by the user, or an appropriate TACQ time selected before the Special Event Trigger sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), the Special Event Trigger will be ignored by the A/D module but will still reset the Timer1 (or Timer3) counter.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	49	
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	52	
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	52	
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	52	
PIR2	OSCFIF	CMIF	—	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	52	
PIE2	OSCFIE	CMIE	—	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	52	
IPR2	OSCFIP	CMIP	—	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	52	
ADRESH	SH A/D Result Register High Byte									
ADRESL	L A/D Result Register Low Byte									
ADCON0	_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	51	
ADCON1	_	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	51	
ADCON2	ADFM		ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	51	
PORTA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	52	
TRISA	TRISA7 ⁽²⁾	TRISA6 ⁽²⁾	PORTA Da	ta Direction (Control Reg	ister			52	
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	52	
TRISB	PORTB Dat	ta Direction (Control Regi	ister					52	
LATB	PORTB Dat	ta Latch Reg	ister (Read	and Write to	Data Latch))			52	
PORTE ⁽⁴⁾	—	—	—		RE3 ⁽³⁾	RE2	RE1	RE0	52	
TRISE ⁽⁴⁾	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	52	
LATE ⁽⁴⁾	_					PORTE Da	ata Latch Re	gister	52	

 TABLE 19-2:
 REGISTERS ASSOCIATED WITH A/D OPERATION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These bits are unimplemented on 28-pin devices; always maintain these bits clear.

2: PORTA<7:6> and their direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

3: RE3 port bit is available only as an input pin when the MCLRE Configuration bit is '0'.

4: These registers are not implemented on 28-pin devices.

NOTES:

R/P-0	R/P-0	U-0	U-0	R/P-0	R/P-1	R/P-1	R/P-1		
IESO	FCMEN	—	—	FOSC3	FOSC2	FOSC1	FOSC0		
bit 7				·			bit 0		
Legend:									
R = Readable	e bit	P = Programn	nable bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value wh	nen device is ur	programmed		u = Unchange	ed from program	nmed state			
bit 7	IESO: Interna	l/External Osci	llator Switchov	/er bit					
	1 = Oscillator	Switchover mo	de enabled						
	0 = Oscillator Switchover mode disabled								
bit 6	FCMEN: Fail-Safe Clock Monitor Enable bit								
	1 = Fail-Safe	Clock Monitor	enabled						
	0 = Fail-Safe	Clock Monitor	disabled						
bit 5-4	Unimplemen	ted: Read as '0)'						
bit 3-0	FOSC3:FOSC	: Oscillator S	election bits						
	11xx = Exter	nal RC oscillato	or, CLKO funct	tion on RA6					
	101x = Extern	nal RC oscillato	or, CLKO funct	tion on RA6		D 4 7			
	1001 = Intern	al oscillator bio	CK, CLKO fun	ction on RA6, p		RA/			
	1000 = Interm	nal PC oscillator bit	ock, port function	O(1) O(1) RAO and n on RAG	KA/				
	0110 = HS os	scillator PLL er	habled (Clock	Frequency = 4	(FOSC1)				
	0101 = EC os	scillator, port fu	nction on RA6		(10001)				
	0100 = EC os	scillator, CLKO	function on R/	A6					
	0011 = Exter	nal RC oscillato	or, CLKO funct	tion on RA6					
	0010 = HS os	scillator							
	0001 = XT os	scillator							
	0000 = LP os	cillator							

REGISTER 23-1: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)

GOTO		Unconditional Branch					
Syntax:		GOTO k					
Operand	ls:	$0 \le k \le 10^4$	48575				
Operatio	on:	$k \rightarrow PC<2$	0:1>				
Status A	ffected:	None					
Encoding: 1st word (k<7:0>) 2nd word(k<19:8>)		1110 1111	1111 k ₁₉ kkk	k ₇ kkk kkkk	kkkk ₀ kkkk ₈		
Descript	anywhere within entire 2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a two-cycle instruction.						
Words:		2					
Cycles:		2					
Q Cycle	e Activity:						
	Q1	Q2	Q3	3	Q4		
	Decode	Read literal 'k'<7:0>,	No opera	tion ⁽ k	ead literal (<19:8>, rite to PC		
	No	No	No		No		

Example: GOTO THERE

After Instruction

PC = Address (THERE)

INCF	Incremen	t f				
Syntax:	INCF f{,d	l {,a}}				
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$				
Operation:	(f) + 1 \rightarrow de	est				
Status Affected:	C, DC, N, 0	OV, Z				
Encoding:	0010	10da	ffff	ffff		
	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select th GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operate in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read register 'f'	Proce: Data	ss i d	Write to lestination		
Example: Before Instruc CNT	INCF tion = FFh	CNT, 1	., 0			

Before Instruction								
CNT	=	FFh						
Z	=	0						
С	=	?						
DC	=	?						
After Instruct	tion							
CNT	=	00h						
Z	=	1						
С	=	1						
DC	=	1						

© 2008 Microchip Technology Inc.

FIGURE 27-39: WDT PERIOD vs. VDD ACROSS TEMPERATURE (1:1 POSTSCALER, -40°C TO +125°C)

NOTES: