

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2620-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R/W-0	R/W-1	R/W-0	R/W-0	R ⁽¹⁾	R-0	R/W-0	R/W-0
IDLEN	IRCF2	IRCF1	IRCF0	OSTS	IOFS	SCS1	SCS0
bit 7	·					•	bit (
Legend:							
R = Reada		W = Writable			nented bit, rea		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	nown
bit 7	IDLEN: Idle E	nahle hit					
		nters Idle mod	ON SLEEP in	struction			
		nters Sleep mo					
bit 6-4	IRCF2:IRCF0	: Internal Osci	llator Frequen	cy Select bits			
		(INTOSC drive	es clock directl	y)			
	110 = 4 MHz						
	101 = 2 MHz 100 = 1 MHz	(3)					
	011 = 500 kH						
	010 = 250 k H						
	001 = 125 k H				(2)		
		-		INTRC directly)(2)		
bit 3		ator Start-up Ti					
		•	· ·	out has expired; out is running; p	• •	•	
bit 2		C Frequency S		, p	innary ocomate	i le liet leady	
		frequency is st					
		frequency is n					
bit 1-0	SCS1:SCS0:	System Clock	Select bits				
		oscillator block	-				
		ary (Timer1) os	cillator				
	00 = Primary	oscillator					
Note 1:	Reset state deper	nds on state of	the IESO Cor	figuration bit.			
	Source selected b	-		-			
3:	Default output fre	quency of INT	OSC on Reset				

REGISTER 2-2: OSCCON: OSCILLATOR CONTROL REGISTER

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
TOSU	_	_	_	Top-of-Stack	Upper Byte (T	OS<20:16>)			0 0000	49, 54
TOSH	Top-of-Stack	High Byte (TO	S<15:8>)	•					0000 0000	49, 54
TOSL	Top-of-Stack	Low Byte (TO	S<7:0>)						0000 0000	49, 54
STKPTR	STKFUL ⁽⁶⁾	STKUNF ⁽⁶⁾	—	SP4	SP3	SP2	SP1	SP0	00-0 0000	49, 55
PCLATU	_	_	-	Holding Regi	ister for PC<20	:16>			0 0000	49, 54
PCLATH	Holding Regis	ster for PC<15	:8>						0000 0000	49, 54
PCL	PC Low Byte	(PC<7:0>)							0000 0000	49, 54
TBLPTRU	_	_	bit 21	Program Me	mory Table Poi	nter Upper By	te (TBLPTR<20):16>)	00 0000	49, 82
TBLPTRH	Program Mer	nory Table Poi	nter High Byte	e (TBLPTR<1	5:8>)				0000 0000	49, 82
TBLPTRL	Program Mer	nory Table Poi	nter Low Byte	(TBLPTR<7:	0>)				0000 0000	49, 82
TABLAT	Program Mer	nory Table Lat	ch						0000 0000	49, 82
PRODH	Product Regi	ster High Byte							xxxx xxxx	49, 89
PRODL	Product Regi	ster Low Byte							xxxx xxxx	49, 89
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	49, 111
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP	1111 -1-1	49, 112
INTCON3	INT2IP	INT1IP		INT2IE	INT1IE	-	INT2IF	INT1IF	11-0 0-00	49, 113
INDF0	Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register)							ter)	N/A	49, 68
POSTINC0	U Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register)							register)	N/A	49, 68
POSTDEC0	C0 Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register)						N/A	49, 68		
PREINC0	Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)						N/A	49, 68		
PLUSW0	Uses content value of FSR		ddress data n	nemory – valu	e of FSR0 pre-	incremented (not a physical r	egister) –	N/A	49, 68
FSR0H				—	Indirect Data	Memory Addr	ess Pointer 0 H	igh Byte	0000	49, 68
FSR0L	Indirect Data	Memory Addre	ess Pointer 0	Low Byte					xxxx xxxx	49, 68
WREG	Working Regi	ster							xxxx xxxx	49
INDF1	Uses content	s of FSR1 to a	ddress data n	nemory – valu	e of FSR1 not	changed (not	a physical regis	ter)	N/A	49, 68
POSTINC1	Uses content	s of FSR1 to a	ddress data n	nemory – valu	e of FSR1 pos	t-incremented	(not a physical	register)	N/A	49, 68
POSTDEC1	Uses content	s of FSR1 to a	ddress data n	nemory – valu	e of FSR1 pos	t-decremented	l (not a physica	l register)	N/A	49, 68
PREINC1	Uses content	s of FSR1 to a	ddress data n	nemory – valu	e of FSR1 pre-	incremented (not a physical r	egister)	N/A	49, 68
PLUSW1	Uses content value of FSR		ddress data n	nemory – valu	e of FSR1 pre-	incremented (not a physical r	egister) –	N/A	49, 68
FSR1H	-	—	-	—	Indirect Data	Memory Addr	ess Pointer 1 H	igh Byte	0000	50, 68
FSR1L	Indirect Data	Memory Addre	ess Pointer 1	Low Byte					xxxx xxxx	50, 68
BSR				—	Bank Select I	Register			0000	50, 59
INDF2	Uses content	s of FSR2 to a	ddress data n	nemory – valu	e of FSR2 not	changed (not	a physical regis	ter)	N/A	50, 68
POSTINC2	Uses content	s of FSR2 to a	ddress data n	nemory – valu	e of FSR2 pos	t-incremented	(not a physical	register)	N/A	50, 68
POSTDEC2	Uses content	s of FSR2 to a	ddress data n	nemory – valu	e of FSR2 pos	t-decremented	l (not a physica	l register)	N/A	50, 68
PREINC2	Uses content	s of FSR2 to a	ddress data n	nemory – valu	e of FSR2 pre-	incremented (not a physical r	egister)	N/A	50, 68
PLUSW2	Uses content value of FSR		ddress data n	nemory – valu	e of FSR2 pre-	incremented (not a physical r	egister) –	N/A	50, 68
FSR2H	_	_	_	_	Indirect Data	Memory Addr	ess Pointer 2 H	igh Byte	0000	50, 68
FSR2L	Indirect Data	Memory Addre	ess Pointer 2	Low Byte					XXXX XXXX	50, 68

TABLE 5-2: REGISTER FILE SUMMARY (PIC18F2525/2620/4525/4620)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition**Note 1:**The SBOREN bit is only available when the BOREN1:BOREN0 Configuration bits =

1: The SBOREN bit is only available when the BOREN1:BOREN0 Configuration bits = 01; otherwise, it is disabled and reads as '0'. See Section 4.4 "Brown-out Reset (BOR)".

2: These registers and/or bits are not implemented on 28-pin devices and are read as '0'. Reset values are shown for 40/44-pin devices; individual unimplemented bits should be interpreted as '-'.

3: The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as '0'. See Section 2.6.4 "PLL in INTOSC Modes".

4: The RE3 bit is only available when Master Clear Reset is disabled (MCLRE Configuration bit = 0); otherwise, RE3 reads as '0'. This bit is read-only.

5: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

6: Bit 7 and bit 6 are cleared by user software or by a POR.

16.0 ENHANCED CAPTURE/ COMPARE/PWM (ECCP) MODULE

Note:	The ECCP module is implemented only in
	40/44-pin devices.

In PIC18F4525/4620 devices, CCP1 is implemented as a standard CCP module with Enhanced PWM capabilities. These include the provision for 2 or 4 output channels, user-selectable polarity, dead-band control and automatic shutdown and restart. The Enhanced features are discussed in detail in **Section 16.4** "Enhanced PWM Mode". Capture, Compare and single-output PWM functions of the ECCP module are the same as described for the standard CCP module.

The control register for the Enhanced CCP module is shown in Register 16-1. It differs from the CCPxCON registers in PIC18F2525/2620 devices in that the two Most Significant bits are implemented to control PWM functionality.

REGISTER 16-1: CCP1CON: ECCP CONTROL REGISTER (40/44-PIN DEVICES)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0
bit 7							bit 0

Legend:				
R = Reada	able bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7-6	<u>If CCP1M</u> xx = P1A <u>If CCP1M</u> 00 = Sing 01 = Full- 10 = Half	<u>3:CCP1M2 = 11:</u> le output, P1A modulated; P bridge output forward, P1D n -bridge output, P1A, P1B mo	re input/output; P1B, P1C, P1I 1B, P1C, P1D assigned as por nodulated; P1A active; P1B, P	t pins 1C inactive I; P1C, P1D assigned as port pins
bit 5-4	<u>Capture r</u> Unused. <u>Compare</u> Unused. <u>PWM mo</u>	mode: de:		//Sbs of the duty cycle are found in
bit 3-0	CCP1M3: 0000 = C 0001 = F 0010 = C 0011 = C 0100 = C 0110 = C 1000 = C 1001 = C 1010 = C 1010 = C 1011 = C 1001 = P 1101 = P 1110 = P	Compare mode, toggle output Capture mode Capture mode, every falling ed Capture mode, every rising ed Capture mode, every 4th rising Capture mode, every 16th rising Compare mode, initialize CCP Compare mode, initialize CCP Compare mode, generate soft	esets ECCP module) on match dge lge g edge I pin low; set output on compare I pin low; set output on comp ware interrupt only; CCP1 pin r al event (ECCP resets TMR1 o high; P1B, P1D active-high high; P1B, P1D active-low low; P1B, P1D active-high	everts to I/O state

17.3.6 SLAVE MODE

In Slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched, the SSPIF interrupt flag bit is set.

Before enabling the module in SPI Slave mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCK pin. The Idle state is determined by the CKP bit (SSPCON1<4>).

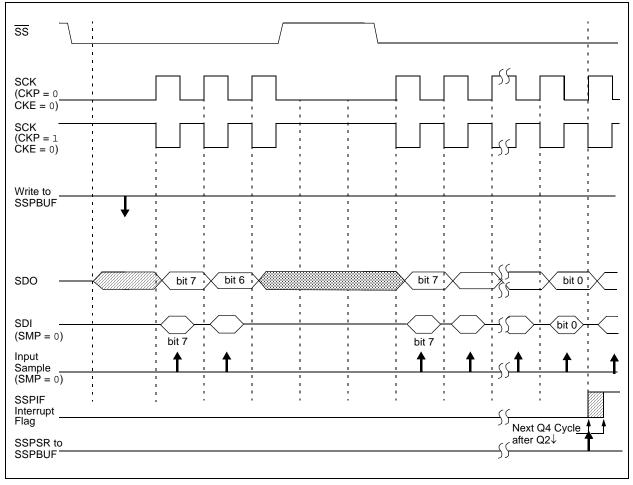
While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. When a byte is received, the device will wake-up from Sleep.

17.3.7 SLAVE SELECT SYNCHRONIZATION

The \overline{SS} pin allows a Synchronous Slave mode. The SPI operation must be in Slave mode with the \overline{SS} pin control enabled (SSPCON1<3:0> = 04h). When the \overline{SS} pin is low, transmission and reception are enabled and the

SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.


Note 1:	When	the SP	l interfa	ace is in Sla	ave mode
	with	SS	pin	control	enabled
	(SSPC	ON1<3	8:0> =	0100), the	SPI mod-
	ule will	reset i	f the S	S pin is set	to VDD.

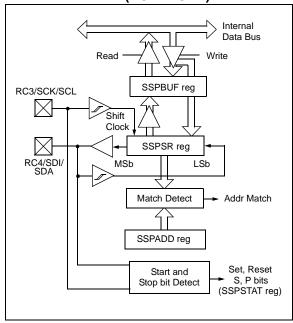
2: If the SPI interface is used in Slave mode with CKE set, then the SS pin control must be enabled.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the \overline{SS} pin to a high level or clearing the SSPEN bit.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver, the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 17-4: SLAVE SYNCHRONIZATION WAVEFORM

17.4 I²C Mode


The MSSP module in I^2C mode fully implements all master and slave functions (including general call support) and provides interrupts on Start and Stop bits in hardware to determine a free bus (multi-master function). The MSSP module implements the standard mode specifications, as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer:

- Serial clock (SCL) RC3/SCK/SCL
- Serial data (SDA) RC4/SDI/SDA

The user must configure these pins as inputs or outputs through the TRISC<4:3> bits.

FIGURE 17-7: MSSP BLOCK DIAGRAM (I²C™ MODE)

17.4.1 REGISTERS

The MSSP module has six registers for $\mathsf{I}^2\mathsf{C}$ operation. These are:

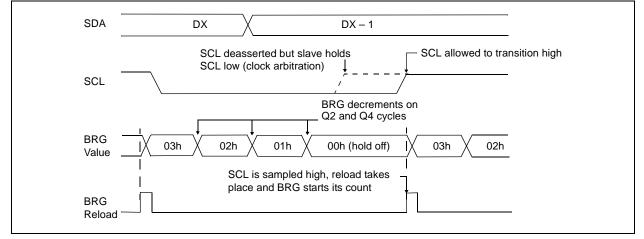
- MSSP Control Register 1 (SSPCON1)
- MSSP Control Register 2 (SSPCON2)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer Register (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible
- MSSP Address Register (SSPADD)

SSPCON1, SSPCON2 and SSPSTAT are the control and status registers in I^2C mode operation. The SSPCON1 and SSPCON2 registers are readable and writable. The lower 6 bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write.

SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

SSPADD register holds the slave device address when the MSSP is configured in I²C Slave mode. When the MSSP is configured in Master mode, the lower seven bits of SSPADD act as the Baud Rate Generator reload value.

In receive operations, SSPSR and SSPBUF together create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.


During transmission, the SSPBUF is not doublebuffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

17.4.7.1 Clock Arbitration

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, deasserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the

SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 17-18).

18.0 ENHANCED UNIVERSAL SYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is one of the two serial I/O modules. (Generically, the USART is also known as a Serial Communications Interface or SCI.) The EUSART can be configured as a full-duplex asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers. It can also be configured as a halfduplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc.

The Enhanced USART module implements additional features, including automatic baud rate detection and calibration, automatic wake-up on Sync Break reception and 12-bit Break character transmit. These make it ideally suited for use in Local Interconnect Network bus (LIN bus) systems.

The EUSART can be configured in the following modes:

- Asynchronous (full duplex) with:
 - Auto-wake-up on character reception
 - Auto-baud calibration
 - 12-bit Break character transmission
- Synchronous Master (half duplex) with selectable clock polarity
- Synchronous Slave (half duplex) with selectable clock polarity

The pins of the Enhanced USART are multiplexed with PORTC. In order to configure RC6/TX/CK and RC7/RX/DT as a USART:

- SPEN bit (RCSTA<7>) must be set (= 1)
- TRISC<7> bit must be set (= 1)
- TRISC<6> bit must be set (= 1)

Note:	The EUSART control will automatically
	reconfigure the pin from input to output as needed.

The operation of the Enhanced USART module is controlled through three registers:

- Transmit Status and Control (TXSTA)
- Receive Status and Control (RCSTA)
- Baud Rate Control (BAUDCON)

These are detailed on the following pages in Register 18-1, Register 18-2 and Register 18-3, respectively.

18.4 EUSART Synchronous Slave Mode

Synchronous Slave mode is entered by clearing bit, CSRC (TXSTA<7>). This mode differs from the Synchronous Master mode in that the shift clock is supplied externally at the CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in any low-power mode.

18.4.1 EUSART SYNCHRONOUS SLAVE TRANSMISSION

The operation of the Synchronous Master and Slave modes is identical, except in the case of the Sleep mode.

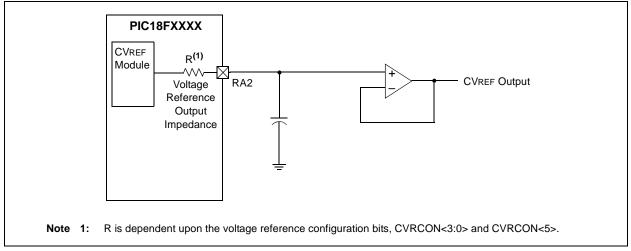
If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in the TXREG register.
- c) Flag bit, TXIF, will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit, TXIF, will now be set.
- e) If enable bit, TXIE, is set, the interrupt will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. Clear bits, CREN and SREN.
- 3. If interrupts are desired, set enable bit, TXIE.
- 4. If 9-bit transmission is desired, set bit, TX9.
- 5. Enable the transmission by setting enable bit, TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 7. Start transmission by loading data to the TXREGx register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	52
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	52
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	52
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	51
TXREG	EUSART T	ransmit Regi	ster						51
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	51
BAUDCON	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	51
SPBRGH EUSART Baud Rate Generator Register High Byte							51		
SPBRG	EUSART B	aud Rate Ge	enerator Re	gister Low I	Byte				51


TABLE 18-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

Note 1: These bits are unimplemented on 28-pin devices and read as '0'.

NOTES:

FIGURE 21-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

TABLE 21-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	51
CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	51
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	PORTA D	ata Directio	on Control R	egister			52

Legend: Shaded cells are not used with the comparator voltage reference.

Note 1: PORTA pins are enabled based on oscillator configuration.

22.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

PIC18F2525/2620/4525/4620 devices have a High/Low-Voltage Detect module (HLVD). This is a programmable circuit that allows the user to specify both a device voltage trip point and the direction of change from that point. If the device experiences an excursion past the trip point in that direction, an interrupt flag is set. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt.

The High/Low-Voltage Detect Control register (Register 22-1) completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device.

The block diagram for the HLVD module is shown in Figure 22-1.

REGISTER 22-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

R/W-0	U-0	R-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1
VDIRMAG	—	IRVST	HLVDEN	HLVDL3 ⁽¹⁾	HLVDL2 ⁽¹⁾	HLVDL1 ⁽¹⁾	HLVDL0 ⁽¹⁾
bit 7							bit 0

Legend:								
R = Reada	able bit	W = Writable bit	U = Unimplemented bit	, read as '0'				
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 7	VDIRMAG	G: Voltage Direction Magnitu	ide Select bit					
	1 = Event	occurs when voltage equals	s or exceeds trip point (HLVDL s or falls below trip point (HLV					
bit 6	Unimplemented: Read as '0'							
bit 5	IRVST: In	ternal Reference Voltage Sta	able Flag bit					
	0 = Indica	•	logic will not generate the inte	flag at the specified voltage range errupt flag at the specified voltage				
bit 4	HLVDEN:	HLVDEN: High/Low-Voltage Detect Power Enable bit						
	1 = HLVE 0 = HLVE							
bit 3-0	HLVDL3:	HLVDL0: Voltage Detection	Limit bits ⁽¹⁾					
		xternal analog input is used aximum setting	(input comes from the HLVDI	N pin)				
	•							
	•							
	• • • • • • •	inimum setting						

Note 1: See Table 26-4 in Section 26.0 "Electrical Characteristics" for the specifications.

The module is enabled by setting the HLVDEN bit. Each time that the HLVD module is enabled, the circuitry requires some time to stabilize. The IRVST bit is a read-only bit and is used to indicate when the circuit is stable. The module can only generate an interrupt after the circuit is stable and IRVST is set. The VDIRMAG bit determines the overall operation of the module. When VDIRMAG is cleared, the module monitors for drops in VDD below a predetermined set point. When the bit is set, the module monitors for rises in VDD above the set point.

REGISTER 23-6: CONFIG5L: CONFIGURATION REGISTER 5 LOW (BYTE ADDRESS 300008h)

					-		
U-0	U-0	U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1
_	—	—	—	CP3 ⁽¹⁾	CP2	CP1	CP0
bit 7							bit 0
Legend:							
R = Readal	ble bit	C = Clearable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value	when device is unp	programmed		u = Unchang	ed from program	nmed state	
bit 7-4		ted: Read as ')'				
bit 3	CP3: Code Pr	rotection bit ⁽¹⁾					
		06000-007FFF	<i>,</i> .				
	0 = Block 3 (0)	06000-007FFF	h) code-prote	ected			
bit 2	CP2: Code Pr	rotection bit					
		04000-005FFF	<i>,</i> .				
		04000-005FFF	h) code-prote	ected			
bit 1	CP1: Code Pr						
	•	02000-003FFF	<i>'</i> .				
		02000-003FFF	n) code-prote	ected			
bit 0	CP0: Code Pr						
		00800-001FFF	<i>,</i> .				
	0 = BIOCK 0 (0)	00800-001FFF	m code-prote	ecieu			

Note 1: Unimplemented in PIC18FX525 devices; maintain this bit set.

REGISTER 23-7: CONFIG5H: CONFIGURATION REGISTER 5 HIGH (BYTE ADDRESS 300009h)

R/C-1	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0
CPD	СРВ	—	—	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	C = Clearable bit	U = Unimplemented bit, read as '0'	
-n = Value when device	is unprogrammed	u = Unchanged from programmed state	

bit 7	CPD: Data EEPROM Code Protection bit
	1 = Data EEPROM not code-protected
	0 = Data EEPROM code-protected
bit 6	CPB: Boot Block Code Protection bit
	1 = Boot block (000000-0007FFh) not code-protected0 = Boot block (000000-0007FFh) code-protected
h :+ r 0	Unimplemented, Dood op (0)

bit 5-0 Unimplemented: Read as '0'

INCI	FSZ	Increment f, Skip if 0						
Synta	ax:	INCFSZ f	INCFSZ f {,d {,a}}					
Oper	ands:	$0 \le f \le 255$ d $\in [0,1]$ a $\in [0,1]$	d ∈ [0,1]					
Oper	ation:	.,	(f) + 1 \rightarrow dest, skip if result = 0					
Statu	is Affected:	None	None					
Enco	oding:	0011	0011 11da ffff ffff					
Desc	sription:	incremented placed in W placed back If the result which is alre and a NOP i it a two-cycl If 'a' is '0', th If 'a' is '1', th GPR bank. If 'a' is '0' an set is enabl in Indexed I mode when Section 24. Bit-Oriente	ts of register 'f d. If 'd' is '0', th '. If 'd' is '1', th k in register 'f' is '0', the next eady fetched, s executed ins le instruction. The Access Bar he BSR is use and the extended ed, this instruct Literal Offset A ever $f \le 95$ (5F 2.3 "Byte-Ori d Instruction set Mode" for	he result is e result is (default). t instruction, is discarded stead, making hk is selected. d to select the ed instruction ction operates addressing Fh). See iented and s in Indexed				
Word	ls.	1						
Cycle	es:		cles if skip and 2-word instruc					
QC	ycle Activity:							
	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Process Data	Write to destination				
lf sk	ip:							
	Q1	Q2	Q3	Q4				
	No	No	No	No				
	operation	operation	operation	operation				
If SK	ip and followed	•		04				
	Q1 No	Q2 No	Q3 No	Q4 No				
	operation	operation	operation	operation				
	No	No	No	No				
	operation	operation	operation operation					
<u>Exan</u>	nple:	HERE I NZERO : ZERO :		IT, 1, 0				
	Before Instruc PC After Instructic	= Address	(HERE)					
	CNT If CNT PC	= CNT + 1 = 0; = Address						
	If CNT PC	≠ 0;	(NZERO)					

INFS	SNZ	Incremer	nt f, Skip if N	lot 0				
Synta	ax:	INFSNZ	INFSNZ f {,d {,a}}					
	ands:	$0 \le f \le 255$	$0 \le f \le 255$					
		d ∈ [0,1] a ∈ [0,1]						
Oper	ation:		(f) + 1 \rightarrow dest,					
		skip if resu	skip if result ≠ 0					
Statu	is Affected:	None						
Enco	oding:	0100	10da ff	ff ffff				
Desc	cription:	The conter	nts of register	f' are				
			ed. If 'd' is '0',					
			V. If 'd' is '1', t k in register 'f					
			t is not '0', the					
		instruction	, which is alrea	ady fetched, is				
			and a NOP is e					
		instead, m	aking it a two-	cycle				
				ink is selected.				
				ed to select the				
		GPR bank	-	la al imateuration.				
				led instruction operates				
			Literal Offset	•				
			never f ≤ 95 (5					
			4.2.3 "Byte-O	riented and				
			set Mode" for					
Word	ds:	1						
Cycle	es:	1(2)	1(2)					
- , -			cycles if skip a	and followed				
		by	y a 2-word ins	truction.				
QC	ycle Activity:							
	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Process Data	Write to destination				
lf sk	in:	register i	Data	destination				
	Q1	Q2	Q3	Q4				
	No	No	No	No				
	operation	operation	operation	operation				
lf sk	ip and followe		_	~ 4				
	Q1 No	Q2 No	Q3	Q4 No				
	operation	operation	No operation	operation				
	No	No	No	No				
	operation	operation	operation	operation				
<u>Exan</u>	nple:	HERE ZERO	INFSNZ RE	G, 1, 0				
		NZERO						
	Before Instruc							
	PC After Instruction		S (HERE)					
	REG	= REG +	1					
	If REG PC	≠ 0; = Addres	S (NZERO)					
	If REG	= 0;						
	PC	= Addres	S (ZERO)					

LFSR	Load FSR			MOVF	Move f		
Syntax:	LFSR f, k			Syntax:	MOVF f {	,d {,a}}	
Operands:	$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 4095 \end{array}$			Operands:	$0 \le f \le 255$ $d \in [0,1]$		
Operation:	$k\toFSRf$			o <i>i</i>	a ∈ [0,1]		
Status Affected:	None			Operation:	$f \rightarrow dest$		
Encoding:		1110 001 0000 k ₇ k	11	Status Affected: Encoding:	N, Z 0101	00da ff:	ff ffff
Description:	The 12-bit lite File Select R			Description:		ts of register 'f	' are moved to upon the
Words:	2					'. If 'd' is '0', th /. If 'd' is '1', th	
Cycles:	2				•	k in register 'f'	
Q Cycle Activity	:					can be anywh	ere in the
Q1	Q2	Q3	Q4		256-byte ba		nk is selected
Decode	Read literal 'k' MSB	Process Data	Write literal 'k' MSB to FSRfH		If 'a' is '0', the Access Bank is sel If 'a' is '1', the BSR is used to sele GPR bank. If 'a' is '0' and the extended instru- set is enabled, this instruction ope		d to select the ed instruction
Decode	Read literal 'k' LSB	Process Data	Write literal 'k' to FSRfL		in Indexed mode wher	Literal Offset A never f ≤ 95 (5 	Addressing Fh). See
Example:	LFSR 2, 3	BABh			Bit-Oriente	ed Instruction set Mode" for	s in Indexed
After Instru FSR2				Words:	1		
FSR2				Cycles:	1		
				Q Cycle Activity:			
				Q1	Q2	Q3	Q4
				Decode	Read register 'f'	Process Data	Write W
				Example:	MOVF R	EG, 0, 0	
				Before Instruc REG W	tion = 22 = FF		
				After Instruction REG	on = 22	h	

=

22h

W

SLEEP	Enter Slo	eep moo	le		SUBFWB
Syntax:	SLEEP				Syntax:
Operands:	None				Operands:
Operation:	$00h \rightarrow WI \\ 0 \rightarrow WDT \\ 1 \rightarrow TO, \\ 0 \rightarrow PD$,	er,		Operation:
Status Affected:	TO, PD				Status Affect
Encoding:	0000	0000	0000	0011	Encoding: Description:
Description:	The Powe cleared. T is set. Wa postscaler The proce with the os	he Time-o tchdog Til are clear ssor is pu	out status mer and i red. ut into Sle	bit (TO) ts	Description.
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3		Q4	_
Decode	No operation	Proce Data		Go to Sleep	
Example:	SLEEP				Words:
Before Instruc					Cycles:
<u>TO</u> = PD =	? ?				Q Cycle Ac
After Instruction TO = PD =	on 1† 0				Q Dec
† If WDT causes v	wake-up, this I	oit is clea	red.		<u>Example 1:</u> Before

	a ∈ [0,1] a ∈ [0,1]		
Operation:		$(\overline{C}) \rightarrow dest$	
Status Affected:	N, OV, C,		
Encoding:	0101	01da ffi	f ffff
Description:		egister 'f' and (
Description.		rom W (2's cor	
	method). I	f 'd' is '0', the re	esult is stored
		is '1', the resu	It is stored in
	register 'f'	the Access Ba	ank is
		If 'a' is '1', the I	
		he GPR bank.	
		and the extend bled, this instru	
		n Indexed Lite	
	Addressin	g mode whene	ever
		n). See Sectio	
	•	ented and Bit- ns in Indexed	
	Mode" for		
Words:	1		
Cycles:	1		
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read	Process	Write to
	register 'f'	Data	destination
Example 1:	SUBFWB	REG, 1, 0	
Before Instruc REG	= 3		
REG W	= 3 = 2		
REG	= 3 = 2 = 1 on		
REG W C After Instructio REG	= 3 = 2 = 1 on = FF		
REG W C After Instructio REG W C	= 3 = 2 = 1 on = FF = 2 = 0		
REG W C After Instructio REG W	= 3 = 2 = 1 on = FF = 2 = 0 = 0	sult is negative	9
REG W C After Instructio REG W C	= 3 = 2 = 1 on = FF = 2 = 0 = 0	sult is negative	9
REG W C After Instructio REG W C Z N <u>Example 2:</u> Before Instruct	= 3 = 2 = 1 = FF = 2 = 0 = 0 = 1 ; re SUBFWB	•	9
REG W C After Instructio REG W C Z N N Example 2:	= 3 = 2 = 1 on = FF = 2 = 0 = 0 = 1 ; re SUBFWB ttion = 2	•	9
REG W C After Instructio REG W C Z N <u>Example 2:</u> Before Instruc REG W C	= 3 = 2 = 1 on = FF = 2 = 0 = 0 = 1 ; re SUBFWB tion = 2 = 5 = 1	•	9
REG W C After Instructio REG W C Z N <u>Example 2:</u> Before Instruct W C After Instructio	= 3 = 2 = 1 on = FF = 2 = 0 = 0 = 1 ; re SUBFWB ttion = 2 = 5 = 1 on	•	9
REG W C After Instruction REG W Example 2: Before Instruct REG W C After Instruction REG W	= 3 = 2 = 1 on = FF = 2 = 0 = 0 = 1 ; re SUBFWB tion = 2 = 5 = 1 on = 2 = 3	•	9
REG W C After Instructio REG W C Example 2: Before Instruct REG W C After Instructio REG	= 3 = 2 = 1 on = FF = 2 = 0 = 0 = 1; re SUBFWB stion = 2 = 5 = 1 on = 2	•	3
REG W C After Instructio REG W Example 2: Before Instruct REG W C After Instructio REG W C After Instructio REG W C N	= 3 = 2 = 1 on = FF = 2 = 0 = 0 = 1 ; re SUBFWB tition = 2 = 5 = 1 on = 2 = 3 = 1 = 0 = 0 ; re	REG, 0, 0	9
REG W C After Instructio REG W C Example 2: Before Instruct REG W C After Instructio REG W C After Instructio REG W C After Instructio REG W C After Instructio	= 3 = 2 = 1 on = FF = 2 = 0 = 0 = 1; re SUBFWB tition = 2 = 3 = 1 = 0 = 0; re SUBFWB	REG, 0, 0	9
REG W C After Instructio REG W Example 2: Before Instruct REG W C After Instructio REG W C After Instructio REG W C N	= 3 = 2 = 1 on = FF = 2 = 0 = 0 = 1; re SUBFWB tition = 2 = 3 = 1 = 0 = 0; re SUBFWB	REG, 0, 0	3
REG W C After Instruction REG W Example 2: Before Instruction REG W C After Instruction REG W C S After Instruction REG W C S Before Instruction REG W C S S Before Instruction REG W	= 3 = 2 = 1 on = FF = 2 = 0 = 0 = 1; re SUBFWB tion = 2 = 3 = 1 = 0; re SUBFWB	REG, 0, 0	3
REG W C After Instructio REG W C Z N Example 2: Before Instructio REG W C After Instructio REG W C Z N Example 3: Before Instructio REG	$ = 3 \\ = 2 \\ = 1 \\ pn \\ = FF \\ = 2 \\ = 0 \\ = 0 \\ = 0 \\ = 1 ; re \\ SUBFWB \\ subfrws \\ = 1 \\ = 0 \\ = 0 ; re \\ SUBFWB \\ subfrws \\ = 1 \\ = 2 \\ = 0$	REG, 0, 0	9
REG W C After Instructio REG W C Example 2: Before Instructio REG W C After Instructio REG W C S Example 3: Before Instructio REG C After Instructio REG C After Instructio	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	REG, 0, 0	3
REG W C After Instruction REG W C Z N Example 2: Before Instruction REG W C After Instruction REG W C S After Instruction REG W C After Instruction REG W C C After Instruction REG W C C After Instruction REG W C C C After Instruction REG W C C C C C C C C C C C C C C C C C C	$ = 3 \\ = 2 \\ = 1 \\ pn \\ = FF \\ = 2 \\ = 0 \\ = 0 \\ = 1 ; re \\ subFwB \\ stion \\ = 2 \\ = 5 \\ = 1 \\ pn \\ = 2 \\ = 3 \\ = 1 \\ = 0 ; re \\ subFwB \\ stion \\ = 1 \\ = 0 \\ subFwB \\ stion \\ = 1 \\ = 0 \\ = 0 \\ = 1 \\ = 0 \\ = 1$	REG, 0, 0	2
REG W C After Instructio REG W C Example 2: Before Instructio REG W C After Instructio REG W C Z N Example 3: Before Instructio REG W C After Instructio REG W C After Instructio	$ = 3 \\ = 2 \\ = 1 \\ pn \\ = FF \\ = 2 \\ = 0 \\ = 0 \\ = 1 ; re \\ subFwB \\ stion \\ = 2 \\ = 5 \\ = 1 \\ pn \\ = 2 \\ = 3 \\ = 1 \\ = 0 ; re \\ subFwB \\ stion \\ = 1 \\ = 0 \\ subFwB \\ stion \\ = 1 \\ = 0 \\ = 0 \\ = 1 \\ = 0 \\ = 1$	REG, 0, 0	3
REG W C After Instructio REG W C Example 2: Before Instructio REG W C After Instructio REG W C Z N Example 3: Before Instructio REG W C After Instructio REG W C Z After Instructio REG C Z	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	REG, 0, 0	9

Subtract f from W with Borrow

SUBFWB f {,d {,a}}

 $\begin{array}{l} 0 \leq f \leq 255 \\ d \, \in \, [0,1] \end{array}$

24.2.5 SPECIAL CONSIDERATIONS WITH MICROCHIP MPLAB[®] IDE TOOLS

The latest versions of Microchip's software tools have been designed to fully support the extended instruction set of the PIC18F2525/2620/4525/4620 family of devices. This includes the MPLAB C18 C compiler, MPASM assembly language and MPLAB Integrated Development Environment (IDE).

When selecting a target device for software development, MPLAB IDE will automatically set default Configuration bits for that device. The default setting for the XINST Configuration bit is '0', disabling the extended instruction set and Indexed Literal Offset Addressing mode. For proper execution of applications developed to take advantage of the extended instruction set, XINST must be set during programming.

To develop software for the extended instruction set, the user must enable support for the instructions and the Indexed Addressing mode in their language tool(s). Depending on the environment being used, this may be done in several ways:

- A menu option, or dialog box within the environment, that allows the user to configure the language tool and its settings for the project
- A command line option
- · A directive in the source code

These options vary between different compilers, assemblers and development environments. Users are encouraged to review the documentation accompanying their development systems for the appropriate information.

25.2 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for all PIC MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

25.3 MPLAB C18 and MPLAB C30 C Compilers

The MPLAB C18 and MPLAB C30 Code Development Systems are complete ANSI C compilers for Microchip's PIC18 and PIC24 families of microcontrollers and the dsPIC30 and dsPIC33 family of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

25.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

25.5 MPLAB ASM30 Assembler, Linker and Librarian

MPLAB ASM30 Assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire dsPIC30F instruction set
- · Support for fixed-point and floating-point data
- · Command line interface
- Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

25.6 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C18 and MPLAB C30 C Compilers, and the MPASM and MPLAB ASM30 Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

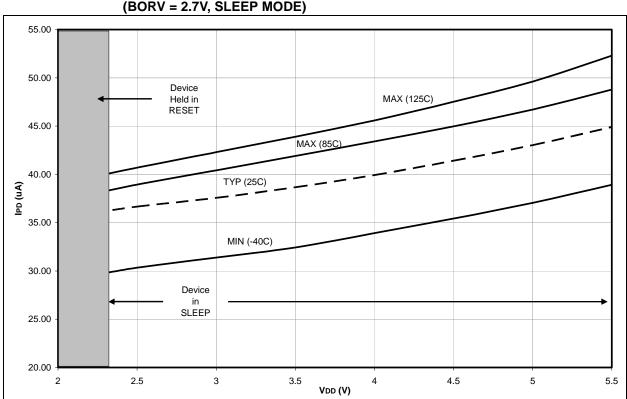
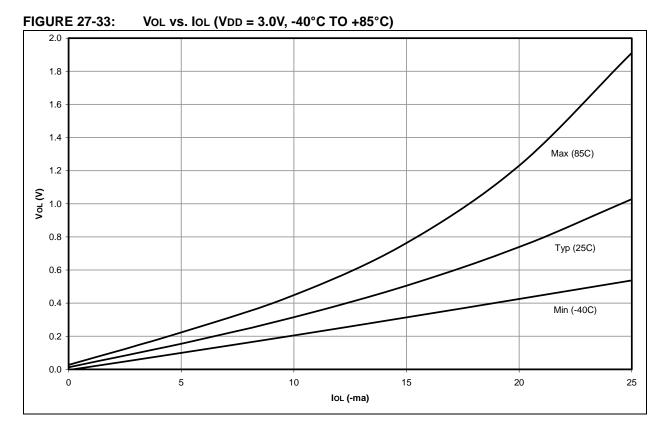
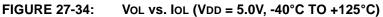
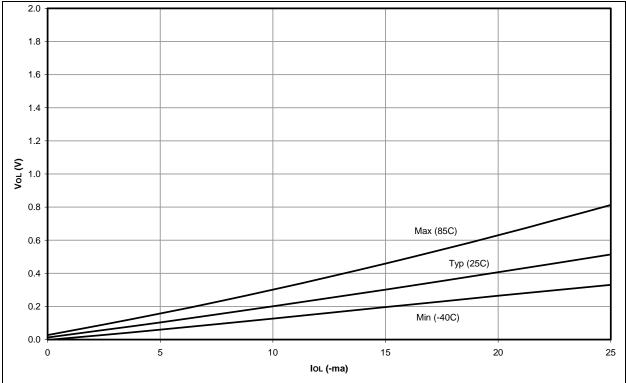





FIGURE 27-8: TYPICAL BOR DELTA CURRENT vs. VDD ACROSS TEMP. (BORV = 2.7V, SLEEP MODE)

APPENDIX A: REVISION HISTORY

Revision A (April 2004)

Original data sheet for PIC18F2525/2620/4525/4620 devices.

Revision B (June 2004)

This revision introduces High/Low-Voltage Detect updates to Section 22.0 and includes minor corrections to the data sheet text related to the High/Low-Voltage Detect update.

Revision C (January 2007)

This update includes revisions to the packaging diagrams.

Revision D (November 2007)

Updated values in "Power-Down and Supply Current" tables in **Section 26.2**, "**DC Characteristics**" and modified Figure 17-9, "I²C Slave Mode Timing (Transmission, 7-Bit Address)". In **Section 28.2**, "**Package Details**", added land-pattern drawings for both 44-lead packages.

Revision E (May 2008)

Updated Section 26.0 "Electrical Characteristics". Added characteristics data tables in Section 27.0 "DC and AC Characteristics Graphs and Tables". Minor text edits throughout the rest of the document.