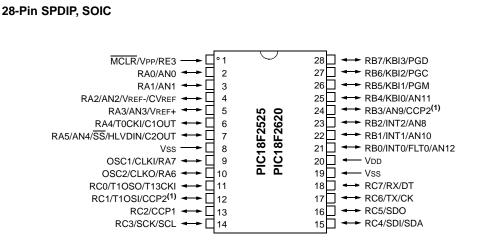


Welcome to E-XFL.COM

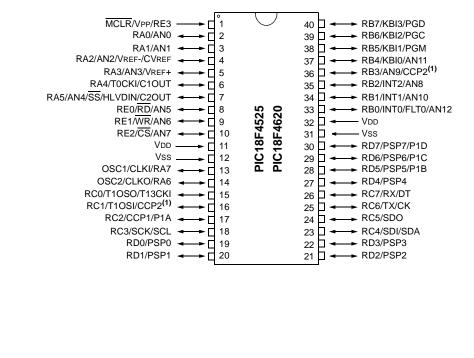
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4525-i-ml


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

40-Pin PDIP

Note 1: RB3 is the alternate pin for CCP2 multiplexing.

4.2 Master Clear (MCLR)

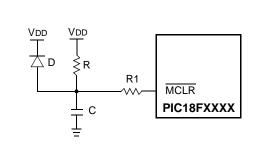
The MCLR pin provides a method for triggering an external Reset of the device. A Reset is generated by holding the pin low. These devices have a noise filter in the MCLR Reset path which detects and ignores small pulses.

The MCLR pin is not driven low by any internal Resets, including the WDT.

In PIC18F2525/2620/4525/4620 devices, the MCLR input can be disabled with the MCLRE Configuration bit. When MCLR is disabled, the pin becomes a digital input. See Section 9.5 "PORTE, TRISE and LATE Registers" for more information.

4.3 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip whenever VDD rises above a certain threshold. This allows the device to start in the initialized state when VDD is adequate for operation.


To take advantage of the POR circuitry, tie the $\overline{\text{MCLR}}$ pin through a resistor (1 k Ω to 10 k Ω) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset delay. A minimum rise rate for VDD is specified (parameter D004). For a slow rise time, see Figure 4-2.

When the device starts normal operation (i.e., exits the Reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

POR events are captured by the \overrightarrow{POR} bit (RCON<1>). The state of the bit is set to '0' whenever a POR occurs; it does not change for any other Reset event. \overrightarrow{POR} is not reset to '1' by any hardware event. To capture multiple events, the user manually resets the bit to '1' in software following any POR.

FIGURE 4-2:

EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

- Note 1: External Power-on Reset circuit is required only if the VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - 2: $R < 40 \text{ k}\Omega$ is recommended to make sure that the voltage drop across R does not violate the device's electrical specification.

Register	Register Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt		
TOSU 2525 2620 4525 4620		0 0000	0 0000	0 uuuu (3)			
TOSH	2525	2620	4525	4620	0000 0000	0000 0000	uuuu uuuu (3)
TOSL	2525	2620	4525	4620	0000 0000	0000 0000	uuuu uuuu (3)
STKPTR	2525	2620	4525	4620	00-0 0000	uu-0 0000	uu-u uuuu (3)
PCLATU	2525	2620	4525	4620	0 0000	0 0000	u uuuu
PCLATH	2525	2620	4525	4620	0000 0000	0000 0000	uuuu uuuu
PCL	2525	2620	4525	4620	0000 0000	0000 0000	PC + 2 ⁽²⁾
TBLPTRU	2525	2620	4525	4620	00 0000	00 0000	uu uuuu
TBLPTRH	2525	2620	4525	4620	0000 0000	0000 0000	uuuu uuuu
TBLPTRL	2525	2620	4525	4620	0000 0000	0000 0000	uuuu uuuu
TABLAT	2525	2620	4525	4620	0000 0000	0000 0000	uuuu uuuu
PRODH	2525	2620	4525	4620	XXXX XXXX	uuuu uuuu	uuuu uuuu
PRODL	2525	2620	4525	4620	XXXX XXXX	uuuu uuuu	uuuu uuuu
INTCON	2525	2620	4525	4620	0000 000x	0000 000u	uuuu uuuu (1)
INTCON2	2525	2620	4525	4620	1111 -1-1	1111 -1-1	uuuu -u-u (1)
INTCON3	2525	2620	4525	4620	11-0 0-00	11-0 0-00	uu-u u-uu (1)
INDF0	2525	2620	4525	4620	N/A	N/A	N/A
POSTINC0	2525	2620	4525	4620	N/A	N/A	N/A
POSTDEC0	2525	2620	4525	4620	N/A	N/A	N/A
PREINC0	2525	2620	4525	4620	N/A	N/A	N/A
PLUSW0	2525	2620	4525	4620	N/A	N/A	N/A
FSR0H	2525	2620	4525	4620	0000	0000	uuuu
FSR0L	2525	2620	4525	4620	XXXX XXXX	uuuu uuuu	uuuu uuuu
WREG	2525	2620	4525	4620	XXXX XXXX	uuuu uuuu	uuuu uuuu
INDF1	2525	2620	4525	4620	N/A	N/A	N/A
POSTINC1	2525	2620	4525	4620	N/A	N/A	N/A
POSTDEC1	2525	2620	4525	4620	N/A	N/A	N/A
PREINC1	2525	2620	4525	4620	N/A	N/A	N/A
PLUSW1	2525	2620	4525	4620	N/A	N/A	N/A

TABLE 4-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS

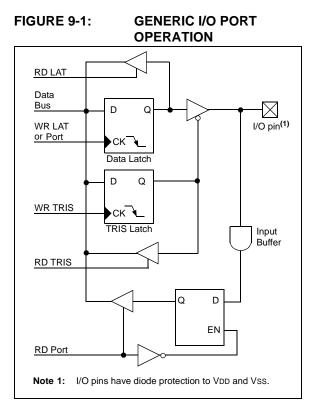
Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

- 2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).
- **3:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.
- 4: See Table 4-3 for Reset value for specific condition.
- **5:** Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

NOTES:

9.0 I/O PORTS


Depending on the device selected and features enabled, there are up to five ports available. Some pins of the I/O ports are multiplexed with an alternate function from the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Each port has three registers for its operation. These registers are:

- TRIS register (data direction register)
- PORT register (reads the levels on the pins of the device)
- LAT register (output latch)

The Data Latch (LAT register) is useful for read-modifywrite operations on the value that the I/O pins are driving.

A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 9-1.

9.1 PORTA, TRISA and LATA Registers

PORTA is a 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin). Reading the PORTA register reads the status of the pins, whereas writing to it, will write to the port latch.

The Data Latch (LATA) register is also memory mapped. Read-modify-write operations on the LATA register read and write the latched output value for PORTA.

The RA4 pin is multiplexed with the Timer0 module clock input and one of the comparator outputs to become the RA4/T0CKI/C1OUT pin. Pins RA6 and RA7 are multiplexed with the main oscillator pins; they are enabled as oscillator or I/O pins by the selection of the main oscillator in the Configuration register (see **Section 23.1 "Configuration Bits"** for details). When they are not used as port pins, RA6 and RA7 and their associated TRIS and LAT bits are read as '0'.

The other PORTA pins are multiplexed with analog inputs, the analog VREF+ and VREF- inputs and the comparator voltage reference output. The operation of pins RA3:RA0 and RA5 as A/D converter inputs is selected by clearing or setting the control bits in the ADCON1 register (A/D Control Register 1).

Pins RA0 through RA5 may also be used as comparator inputs or outputs by setting the appropriate bits in the CMCON register. To use RA3:RA0 as digital inputs, it is also necessary to turn off the comparators.

Note:	On a Power-on Reset, RA5 and RA3:RA0
	are configured as analog inputs and read
	as '0'. RA4 is configured as a digital input.

The RA4/T0CKI/C1OUT pin is a Schmitt Trigger input. All other PORTA pins have TTL input levels. All PORTA pins have full CMOS output drivers.

The TRISA register controls the direction of the PORTA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPL	E 9-1:		INITIALIZING PORTA
CLRF 1	PORTA	;	Initialize PORTA by
		;	clearing output
		;	data latches
CLRF 1	LATA	;	Alternate method
		;	to clear output
		;	data latches
MOVLW	07h	;	Configure A/D
MOVWF 2	ADCON1	;	for digital inputs
MOVWF	07h	;	Configure comparators
MOVWF	CMCON	;	for digital input
MOVLW	0CFh	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISA	;	Set RA<7:6,3:0> as inputs
		;	RA<5:4> as outputs

Pin	Function	TRIS Setting	I/O	l/O Type	Description
RC0/T1OSO/	RC0	0	0	DIG	LATC<0> data output.
T13CKI		1	Ι	ST	PORTC<0> data input.
	T1OSO	х	0	ANA	Timer1 oscillator output; enabled when Timer1 oscillator enabled. Disables digital I/O.
	T13CKI	1	Ι	ST	Timer1/Timer3 counter input.
RC1/T1OSI/CCP2	RC1	0	0	DIG	LATC<1> data output.
		1	Ι	ST	PORTC<1> data input.
	T1OSI	x	Ι	ANA	Timer1 oscillator input; enabled when Timer1 oscillator enabled. Disables digital I/O.
	CCP2 ⁽¹⁾	0	0	DIG	CCP2 compare and PWM output; takes priority over port data.
		1	Ι	ST	CCP2 capture input.
RC2/CCP1/P1A	RC2	0	0	DIG	LATC<2> data output.
		1	Ι	ST	PORTC<2> data input.
	CCP1	0	0	DIG	ECCP1 compare or PWM output; takes priority over port data.
		1	Ι	ST	ECCP1 capture input.
	P1A ⁽²⁾	0	0	DIG	ECCP1 Enhanced PWM output, channel A. May be configured for tri-state during Enhanced PWM shutdown events. Takes priority over port data.
RC3/SCK/SCL	RC3	0	0	DIG	LATC<3> data output.
		1	Ι	ST	PORTC<3> data input.
	SCK	0	0	DIG	SPI clock output (MSSP module); takes priority over port data.
		1		ST	SPI clock input (MSSP module).
	SCL	0	0	DIG	I ² C [™] clock output (MSSP module); takes priority over port data.
		1	Ι	I ² C/SMB	I ² C clock input (MSSP module); input type depends on module setting
RC4/SDI/SDA	RC4	0	0	DIG	LATC<4> data output.
		1	Ι	ST	PORTC<4> data input.
	SDI	1	Ι	ST	SPI data input (MSSP module).
	SDA	0	0	DIG	I ² C data output (MSSP module); takes priority over port data.
		1	Ι	I ² C/SMB	I ² C data input (MSSP module); input type depends on module setting.
RC5/SDO	RC5	0	0	DIG	LATC<5> data output.
		1	Ι	ST	PORTC<5> data input.
	SDO	0	0	DIG	SPI data output (MSSP module); takes priority over port data.
RC6/TX/CK	RC6	0	0	DIG	LATC<6> data output.
		1	Ι	ST	PORTC<6> data input.
	ТΧ	0	0	DIG	Asynchronous serial transmit data output (EUSART module); takes priority over port data. User must configure as output.
	СК	0	0	DIG	Synchronous serial clock output (EUSART module); takes priority over port data.
		1	Ι	ST	Synchronous serial clock input (EUSART module).
RC7/RX/DT	RC7	0	0	DIG	LATC<7> data output.
		1	Ι	ST	PORTC<7> data input.
	RX	1	Ι	ST	Asynchronous serial receive data input (EUSART module).
	DT	0	0	DIG	Synchronous serial data output (EUSART module); takes priority over port data.
		1	Ι	ST	Synchronous serial data input (EUSART module). User must configure as an input.

TABLE 9-5: PORTC I/O SUMMARY

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; $I^2C/SMB = I^2C/SMB$ us input buffer; x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set. Alternate assignment is RB3.

2: Enhanced PWM output is available only on PIC18F4525/4620 devices.

9.5 PORTE, TRISE and LATE Registers

Depending on the particular PIC18F2525/2620/4525/ 4620 device selected, PORTE is implemented in two different ways.

For 40/44-pin devices, PORTE is a 4-bit wide port. Three pins (RE0/RD/AN5, RE1/WR/AN6 and RE2/CS/ AN7) are individually configurable as inputs or outputs. These pins have Schmitt Trigger input buffers. When selected as an analog input, these pins will read as '0's.

The corresponding Data Direction register is TRISE. Setting a TRISE bit (= 1) will make the corresponding PORTE pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISE bit (= 0) will make the corresponding PORTE pin an output (i.e., put the contents of the output latch on the selected pin).

TRISE controls the direction of the RE pins, even when they are being used as analog inputs. The user must make sure to keep the pins configured as inputs when using them as analog inputs.

Note:	On	а	Power-on	Reset,	RE2:RE0	are
	con	figu	ired as anal	log input	s.	

The upper four bits of the TRISE register also control the operation of the Parallel Slave Port. Their operation is explained in Register 9-1.

The Data Latch register (LATE) is also memory mapped. Read-modify-write operations on the LATE register, read and write the latched output value for PORTE.

The fourth pin of PORTE ($\overline{\text{MCLR}}/\text{VPP}/\text{RE3}$) is an input only pin. Its operation is controlled by the MCLRE Configuration bit. When selected as a port pin (MCLRE = 0), it functions as a digital input only pin; as such, it does not have TRIS or LAT bits associated with its operation. Otherwise, it functions as the device's Master Clear input. In either configuration, RE3 also functions as the programming voltage input during programming.

Note:	On a Power-on Reset, RE3 is enabled as
	a digital input only if Master Clear
	functionality is disabled.

EXAMPLE 9-5: INITIALIZING PORTE

CLRF	PORTE	; Initialize PORTE by
		; clearing output
		; data latches
CLRF	LATE	; Alternate method
		; to clear output
		; data latches
MOVLW	0Ah	; Configure A/D
MOVWF	ADCON1	; for digital inputs
MOVLW	03h	; Value used to
		; initialize data
		; direction
MOVWF	TRISE	; Set RE<0> as inputs
		; RE<1> as outputs
		; RE<2> as inputs

9.5.1 PORTE IN 28-PIN DEVICES

For 28-pin devices, PORTE is only available when Master Clear functionality is disabled (MCLRE = 0). In these cases, PORTE is a single bit, input only port comprised of RE3 only. The pin operates as previously described.

10.5 RCON Register

The RCON register contains flag bits which are used to determine the cause of the last Reset or wake-up from Idle or Sleep modes. RCON also contains the IPEN bit which enables interrupt priorities.

The operation of the SBOREN bit and the Reset flag bits is discussed in more detail in **Section 4.1 "RCON Register"**.

REGISTER 10-10: RCON: RESET CONTROL REGISTER

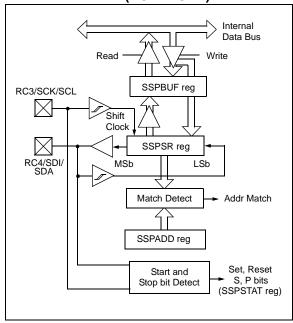
R/W-0	R/W-1 ⁽¹⁾	U-0	R/W-1	R-1	R-1	R/W-0 ⁽¹⁾	R/W-0
IPEN	SBOREN	_	RI	TO	PD	POR	BOR
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	IPEN: Interrupt Priority Enable bit
	 1 = Enable priority levels on interrupts 0 = Disable priority levels on interrupts (PIC16CXXX Compatibility mode)
bit 6	SBOREN: Software BOR Enable bit ⁽¹⁾
	For details of bit operation, see Register 4-1.
bit 5	Unimplemented: Read as '0'
bit 4	RI: RESET Instruction Flag bit
	For details of bit operation, see Register 4-1.
bit 3	TO: Watchdog Timer Time-out Flag bit
	For details of bit operation, see Register 4-1.
bit 2	PD: Power-Down Detection Flag bit
	For details of bit operation, see Register 4-1.
bit 1	POR: Power-on Reset Status bit ⁽¹⁾
	For details of bit operation, see Register 4-1.
bit 0	BOR: Brown-out Reset Status bit
	For details of bit operation, see Register 4-1.

Note 1: Actual Reset values are determined by device configuration and the nature of the device Reset. See Register 4-1 for additional information.

17.4 I²C Mode


The MSSP module in I^2C mode fully implements all master and slave functions (including general call support) and provides interrupts on Start and Stop bits in hardware to determine a free bus (multi-master function). The MSSP module implements the standard mode specifications, as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer:

- Serial clock (SCL) RC3/SCK/SCL
- Serial data (SDA) RC4/SDI/SDA

The user must configure these pins as inputs or outputs through the TRISC<4:3> bits.

FIGURE 17-7: MSSP BLOCK DIAGRAM (I²C™ MODE)

17.4.1 REGISTERS

The MSSP module has six registers for $\mathsf{I}^2\mathsf{C}$ operation. These are:

- MSSP Control Register 1 (SSPCON1)
- MSSP Control Register 2 (SSPCON2)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer Register (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible
- MSSP Address Register (SSPADD)

SSPCON1, SSPCON2 and SSPSTAT are the control and status registers in I^2C mode operation. The SSPCON1 and SSPCON2 registers are readable and writable. The lower 6 bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write.

SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

SSPADD register holds the slave device address when the MSSP is configured in I²C Slave mode. When the MSSP is configured in Master mode, the lower seven bits of SSPADD act as the Baud Rate Generator reload value.

In receive operations, SSPSR and SSPBUF together create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

During transmission, the SSPBUF is not doublebuffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

18.0 ENHANCED UNIVERSAL SYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is one of the two serial I/O modules. (Generically, the USART is also known as a Serial Communications Interface or SCI.) The EUSART can be configured as a full-duplex asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers. It can also be configured as a halfduplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc.

The Enhanced USART module implements additional features, including automatic baud rate detection and calibration, automatic wake-up on Sync Break reception and 12-bit Break character transmit. These make it ideally suited for use in Local Interconnect Network bus (LIN bus) systems.

The EUSART can be configured in the following modes:

- Asynchronous (full duplex) with:
 - Auto-wake-up on character reception
 - Auto-baud calibration
 - 12-bit Break character transmission
- Synchronous Master (half duplex) with selectable clock polarity
- Synchronous Slave (half duplex) with selectable clock polarity

The pins of the Enhanced USART are multiplexed with PORTC. In order to configure RC6/TX/CK and RC7/RX/DT as a USART:

- SPEN bit (RCSTA<7>) must be set (= 1)
- TRISC<7> bit must be set (= 1)
- TRISC<6> bit must be set (= 1)

Note:	The EUSART control will automatically
	reconfigure the pin from input to output as needed.

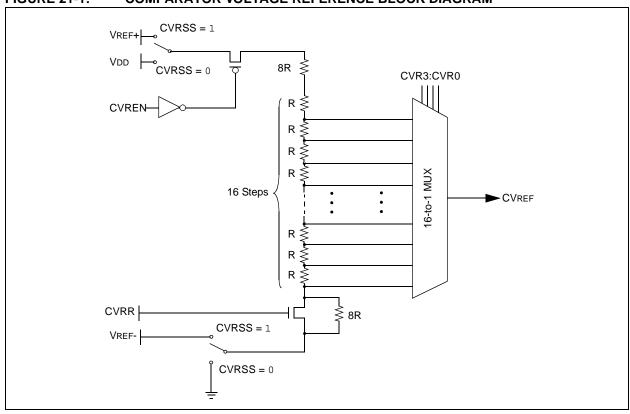
The operation of the Enhanced USART module is controlled through three registers:

- Transmit Status and Control (TXSTA)
- Receive Status and Control (RCSTA)
- Baud Rate Control (BAUDCON)

These are detailed on the following pages in Register 18-1, Register 18-2 and Register 18-3, respectively.

20.0 COMPARATOR MODULE

The analog comparator module contains two comparators that can be configured in a variety of ways. The inputs can be selected from the analog inputs multiplexed with pins RA0 through RA5, as well as the on-chip voltage reference (see Section 21.0 "Comparator Voltage Reference Module"). The digital outputs (normal or inverted) are available at the pin level and can also be read through the control register.


The CMCON register (Register 20-1) selects the comparator input and output configuration. Block diagrams of the various comparator configurations are shown in Figure 20-1.

REGISTER 20-1: CMCON: COMPARATOR CONTROL REGISTER

R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1
C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0
bit 7							bit 0
l egend.							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	C2OUT: Comparator 2 Output bit
	When $C2INV = 0$:
	1 = C2 VIN + > C2 VIN -
	0 = C2 VIN + < C2 VIN -
	<u>When C2INV = 1:</u>
	1 = C2 VIN+ < C2 VIN-
	0 = C2 VIN+ > C2 VIN-
bit 6	C1OUT: Comparator 1 Output bit
	$\frac{\text{When C1INV} = 0}{1 - 24}$
	1 = C1 VIN+ > C1 VIN- 0 = C1 VIN+ < C1 VIN-
	When $C1INV = 1$:
	1 = C1 VIN+ < C1 VIN-
	0 = C1 Vin + > C1 Vin
bit 5	C2INV: Comparator 2 Output Inversion bit
	1 = C2 output inverted
	0 = C2 output not inverted
bit 4	C1INV: Comparator 1 Output Inversion bit
	1 = C1 output inverted
	0 = C1 output not inverted
bit 3	CIS: Comparator Input Switch bit
	$\frac{\text{When CM2:CM0} = 110:}{2}$
	1 = C1 VIN- connects to RA3/AN3/VREF+
	C2 VIN- connects to RA2/AN2/VREF-/CVREF 0 = C1 VIN- connects to RA0/AN0
	C2 VIN- connects to RA1/AN1
bit 2-0	CM2:CM0: Comparator Mode bits
	Figure 20-1 shows the Comparator modes and the CM2:CM0 bit settings.
	о

FIGURE 21-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

21.2 Voltage Reference Accuracy/Error

The full range of voltage reference cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 21-1) keep CVREF from approaching the reference source rails. The voltage reference is derived from the reference source; therefore, the CVREF output changes with fluctuations in that source. The tested absolute accuracy of the voltage reference can be found in **Section 26.0 "Electrical Characteristics"**.

21.3 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the CVRCON register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

21.4 Effects of a Reset

A device Reset disables the voltage reference by clearing bit, CVREN (CVRCON<7>). This Reset also disconnects the reference from the RA2 pin by clearing bit, CVROE (CVRCON<6>) and selects the high-voltage range by clearing bit, CVRR (CVRCON<5>). The CVR value select bits are also cleared.

21.5 Connection Considerations

The voltage reference module operates independently of the comparator module. The output of the reference generator may be connected to the RA2 pin if the CVROE bit is set. Enabling the voltage reference output onto RA2 when it is configured as a digital input will increase current consumption. Connecting RA2 as a digital output with CVRSS enabled will also increase current consumption.

The RA2 pin can be used as a simple D/A output with limited drive capability. Due to the limited current drive capability, a buffer must be used on the voltage reference output for external connections to VREF. Figure 21-2 shows an example buffering technique.

TABLE 24-2: PIC18FXXXX INSTRUCTION SET

Mnemo	onic,	Description	Cualas	16-	Bit Instr	uction W	/ord	Status	Nataa
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORI	BYTE-ORIENTED OPERATIONS								
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, Skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, Skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, Skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
		f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	1, 2
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	1, 2
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	1, 2
SUBFWB	f, d, a	Subtract f from WREG with Borrow	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	1, 2
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	
	, ,	Borrow							
SWAPF	f, d, a	Swap Nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	f, a	Test f, Skip if 0	1 (2 or 3)	0110	011a	ffff	ffff	None	1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Z, N	ĺ

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

ΒZ		Branch if	Zero					
Synt	ax:	BZ n						
Ope	rands:	-128 ≤ n ≤ ′	127					
Ope	ration:		if Zero bit is '1', (PC) + 2 + 2n \rightarrow PC					
Statu	us Affected:	None	None					
Enco	oding:	1110	0000	nnnn	nnnn			
Desc	cription:	will branch. The 2's con added to th have incren instruction,	The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a					
Word	ds:	1						
Cycl	es:	1(2)						
	cycle Activity: ump:				_			
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'n'	Proce: Data		rite to PC			
	No	No	No		No			
	operation	operation	operati	ion o	peration			
If N	o Jump:							
	Q1	Q2	Q3	-	Q4			
	Decode	Read literal	Proces		No			
		ʻn'	Data	1 O	peration			
Exar	<u>mple:</u>	HERE	BZ J	lamp				
	Before Instruc PC After Instructio If Zero	= ad	dress (H	ERE)				
If Zero PC If Zero PC			dress (J	iumn)				

Curtary						
Syntax:	CALL k {,s}					
Operands:	$0 \le k \le 1048575$ s $\in [0,1]$					
Operation:	$(PC) + 4 \rightarrow$					
	$k \rightarrow PC < 20$ if s = 1,):1>;				
	$(W) \rightarrow WS,$					
	(STATUS) -		JSS,			
.	$(BSR) \rightarrow B$	SRS				
Status Affected:	None			- T		
Encoding: 1st word (k<7:0>)	1110	110s	le lele	1. 1.1.1.1.1	-	
2nd word(k<19:8>)		k ₁₉ kkk	k ₇ kk kkkł		0	
Words:	respective s STATUSS a update occi 20-bit value CALL is a t 2	and BSR urs (defa e 'k' is loa	S. If 's' ult). Th ded int	= 0, no ien, the o PC<20:	1:	
Cycles:	2					
Q Cycle Activity:						
Q Cycle Activity:	Q2	Q3	8	Q4		
	Read literal	PUSHF	PC to	Read liter		
Q1		1	PC to	Read liter 'k'<19:8>	>,	
Q1	Read literal	PUSHF	PC to k	Read liter	>,	
Q1 Decode	Read literal 'k'<7:0>,	PUSH F stac	PC to k	Read liter 'k'<19:8> Write to F	>, >(
Q1 Decode No	Read literal 'k'<7:0>, No	PUSH F stac	PC to k	Read liter 'k'<19:8> Write to F No operatio	>, >(
Q1 Decode No operation Example: Before Instruct	Read literal 'k'<7:0>, No operation HERE tion	PUSH F stac No opera	PC to k tion THER:	Read liter 'k'<19:8> Write to F No operatio	>, >(
Q1 Decode No operation Example:	Read literal 'k'<7:0>, No operation HERE tion = address	PUSH F stac No opera	PC to k tion THER:	Read liter 'k'<19:8> Write to F No operatio	>, >(

RCA	LL	Relative	Call				R	ES	
Synta	ax:	RCALL n	RCALL n						
Oper	ands:	-1024 ≤ n ≤	1023				0	ре	
Oper	ation:	· · /	$(PC) + 2 \rightarrow TOS,$ (PC) + 2 + 2n \rightarrow PC						
Statu	is Affected:	None					St	tati	
Enco	oding:	1101	1nnn	nnr	n	nnnn	Er	nco	
Desc	cription:	Subroutine from the cu			• •		De	es	
		address (P stack. Ther	C + 2) is	pushe	ed or	nto the	W	or	
		number '2n					C	ycl	
		have increr instruction, PC + 2 + 2 two-cycle ir	the new n. This ir	addre struct	SS W	/ill be	C	QC	
Word	ls:	1							
Cycle		2					<u>E</u> 2	xar	
QC	ycle Activity:								
	Q1	Q2	Q	3		Q4			
	Decode	Read literal 'n'	Proce Dat		Wr	ite to PC			
		PUSH PC to stack							

No

operation

No

operation

Example: HERE RCALL Jump

No

operation

Before Instruction PC = Address (HERE) After Instruction

No

operation

PC = Address (Jump) TOS = Address (HERE + 2)

RES	ET	Reset						
Synta	ax:	RESET						
Oper	ands:	None						
Oper	ation:		Reset all registers and flags that are affected by a MCLR Reset.					
Statu	s Affected:	All	All					
Encoding:		0000	0000	1111	1111			
Desc	ription:	This instru execute a						
Word	ls:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3	8	Q4			
	Decode	Start Reset	No opera		No operation			

xample:

After Instruction

Registers =	Reset Value
Flags* =	Reset Value

RESET

RRNCF	CF Rotate Right f (No Carry)					
Syntax:	RRNCF	f {,d {,a}}				
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5				
Operation:	$(f < n >) \rightarrow c$ $(f < 0 >) \rightarrow c$		>,			
Status Affected:	N, Z					
Encoding:	0100	00da	ffff	ffff		
Description:	The contents of register 'f' are rotated one bit to the right. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a is '1', then the bank will be selected as per the BSR value (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
			gister f			
Words:	1					
Words: Cycles:	1 1					
	-					
Cycles:	-		egister f			
Cycles: Q Cycle Activity:	1	► re	egister f]		
Cycles: Q Cycle Activity: Q1	1 Q2 Read	Q3 Proce	egister f ess a de	Q4 Write to		
Cycles: Q Cycle Activity: Q1 Decode	1 Q2 Read register 'f' RRNCF stion = 1101	► re Q3 Proce Dat REG, 1, 0111	egister f ess a de	Q4 Write to		
Cycles: Q Cycle Activity: Q1 Decode Example 1: Before Instruct REG After Instruction	1 Q2 Read register 'f' RRNCF ction = 1101 pn	► re Q3 Proce Dat REG, 1, 0111 1011	egister f ess a de 0	Q4 Write to		
Cycles: Q Cycle Activity: Q1 Decode Example 1: Before Instruct REG After Instruction REG	1 Q2 Read register 'f' RRNCF etion = 1101 on = 1110 RRNCF	► re Q3 Proce Dat REG, 1, 0111 1011	egister f ess a de 0	Q4 Write to		
Cycles: Q Cycle Activity: Q1 Decode Example 1: Before Instructor REG After Instructor REG Example 2:	1 Q2 Read register 'f' RRNCF tion = 1101 on = 1110 RRNCF tion = 1110 = 1110	Q3 Proce Dat REG, 1, 0111 1011 REG, 0,	egister f ess a de 0	Q4 Write to		

SET	F	Set f								
Synt	ax:	SETF f{	SETF f {,a}							
Oper	ands:		$0 \le f \le 255$							
		a ∈ [0,1]								
Oper	ation:	$FFh\tof$								
Statu	is Affected:	None								
Enco	oding:	0110	100a	ffff	ffff					
Desc	cription:	The conter are set to	FFh.	•	0					
		If 'a' is '0', If 'a' is '1',								
		GPR bank		3 0300 10	301001 110					
		If 'a' is '0' a	and the e	xtended in	struction					
		set is enat	-		•					
		in Indexed mode whe			0					
		Section 2		· · ·						
		Bit-Orient								
		Literal Off	set Mode	e" for deta	uls.					
Word	ds:	1								
Cycle	es:	1	1							
QC	ycle Activity:									
	Q1	Q2	Q3	3	Q4					
	Decode	Read	Proce		Write					
		register 'f'	Dat	a re	gister 'f'					
Exar	<u>nple:</u>	SETF	REG	5, 1						

Before Instruction			
REG	=	5Ah	
After Instruction			
REG	=	FFh	

26.2 DC Characteristics: Power-Down and Supply Current PIC18F2525/2620/4525/4620 (Industrial) PIC18LF2525/2620/4525/4620 (Industrial) (Continued)

PIC18LF2525/2620/4525/4620 (Industrial) PIC18F2525/2620/4525/4620 (Industrial, Extended)		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
	Supply Current (IDD) ⁽²⁾								
	PIC18LFX525/X620	65	100	μA	-40°C				
		65	100	μA	+25°C	VDD = 2.0V			
		70	110	μΑ	+85°C				
	PIC18LFX525/X620	120	140	μΑ	-40°C		Fosc = 1 MHz (PRI_IDLE mode, EC oscillator)		
		120	140	μΑ	+25°C	VDD = 3.0V			
		130	160	μΑ	+85°C				
	All devices	230	300	μA	-40°C	VDD = 5.0V			
		235	300	μΑ	+25°C				
		240	300	μΑ	+85°C				
	Extended devices only	260	500	μA	+125°C				
	PIC18LFX525/X620	260	360	μA	-40°C	VDD = 2.0V	Fosc = 4 MHz (PRI_IDLE mode, EC oscillator)		
		255	360	μA	+25°C				
		270	360	μA	+85°C				
	PIC18LFX525/X620	420	620	μA	-40°C	T			
		430	620	μA	+25°C	VDD = 3.0V			
		450	650	μA	+85°C]			
	All devices	0.9	1.2	mA	-40°C				
		0.9	1.2	mA	+25°C	VDD = 5.0V			
		0.9	1.2	mA	+85°C				
	Extended devices only	1	1.3	mA	+125°C				
	Extended devices only	2.8	6.0	mA	+125°C	VDD = 4.2V	Fosc = 25 MHz		
		4.3	8.0	mA	+125°C	VDD = 5.0V	(PRI_IDLE mode, EC oscillator)		
	All devices	6.0	10	mA	-40°C				
		6.2	10	mA	+25°C	VDD = 4.2V VDD = 5.0V	Fosc = 40 MHz		
		6.6	10	mA	+85°C				
	All devices	8.1	13	mA	-40°C		(PRI_IDLE mode, EC oscillator)		
		9.1	12	mA	+25°C				
		8.3	12	mA	+85°C	1			

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;

- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0. When operation will always be above -10°C, then the low-power Timer1 oscillator may be selected.
- 4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

26.2 DC Characteristics: Power-Down an

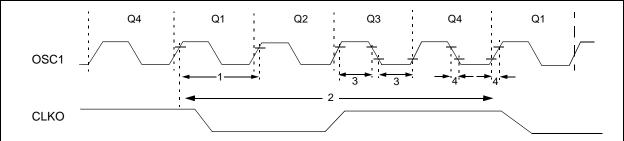
Power-Down and Supply Current PIC18F2525/2620/4525/4620 (Industrial) PIC18LF2525/2620/4525/4620 (Industrial) (Continued)

PIC18LF2525/2620/4525/4620 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
	2 5/2620/4525/4620 trial, Extended)			e rating (perature	-40°C ≤ T/	ess otherwise states $A \le +85^{\circ}C$ for indus $A \le +125^{\circ}C$ for external	strial		
Param No.	Device	Тур	Max	Units		Conditions			
	Supply Current (IDD) ⁽²⁾								
	PIC18LFX525/X620	10	25	μA	-40°C ⁽³⁾				
		11	21	μΑ	+25°C	VDD = 2.0V	Fosc = 32 kHz ⁽³⁾ (SEC_RUN mode, Timer1 as clock)		
		12	25	μΑ	+85°C				
	PIC18LFX525/X620	42	57	μA	-40°C ⁽³⁾	VDD = 3.0V			
		33	45	μA	+25°C				
		29	45	μA	+85°C				
	All devices	105	150	μA	-40°C ⁽³⁾				
		81	130	μA	+25°C	VDD = 5.0V			
		67	130	μA	+85°C				
	PIC18LFX525/X620	3.0	12	μA	-40°C ⁽³⁾	_	Fosc = 32 kHz ⁽³⁾ (SEC_IDLE mode,		
		3.0	6	μA	+25°C	VDD = 2.0V VDD = 3.0V			
		3.7	10	μA	+85°C				
	PIC18LFX525/X620	5.0	15	μΑ	-40°C ⁽³⁾				
		5.4	10	μA	+25°C				
		6.3	15	μA	+85°C		Timer1 as clock)		
	All devices	8.5	25	μΑ	-40°C ⁽³⁾				
		9.0	20	μΑ	+25°C	VDD = 5.0V			
		10.5	30	μA	+85°C				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

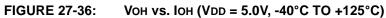
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

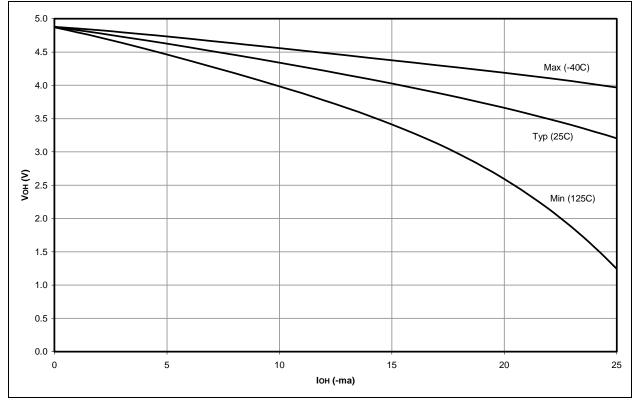

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;

- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0. When operation will always be above -10°C, then the low-power Timer1 oscillator may be selected.
- 4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

26.4.3 TIMING DIAGRAMS AND SPECIFICATIONS




TABLE 26-6: EXTERNAL CLOCK TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Мах	Units	Conditions
1A	Fosc	External CLKI Frequency ⁽¹⁾	DC	1	MHz	XT, RC Oscillator mode
			DC	25	MHz	HS Oscillator mode
			DC	31.25	kHz	LP Oscillator mode
			DC	40	MHz	EC Oscillator mode
		Oscillator Frequency ⁽¹⁾	DC	4	MHz	RC Oscillator mode
			0.1	4	MHz	XT Oscillator mode
			4	25	MHz	HS Oscillator mode
			4	10	MHz	HS + PLL Oscillator mode
			5	200	kHz	LP Oscillator mode
1	Tosc	External CLKI Period ⁽¹⁾	1000	—	ns	XT, RC Oscillator mode
			40	—	ns	HS Oscillator mode
		Oscillator Period ⁽¹⁾	32	—	μs	LP Oscillator mode
			25	—	ns	EC Oscillator mode
			250	—	ns	RC Oscillator mode
			0.25	10	μs	XT Oscillator mode
			40	250	ns	HS Oscillator mode
			100	250	ns	HS + PLL Oscillator mode
			5	200	μs	LP Oscillator mode
2	Тсү	Instruction Cycle Time ⁽¹⁾	100	—	ns	Tcy = 4/Fosc, Industrial
			160	—	ns	Tcy = 4/Fosc, Extended
3	TosL,	External Clock in (OSC1)	30	—	ns	XT Oscillator mode
	TosH	High or Low Time	2.5	—	μS	LP Oscillator mode
			10	—	ns	HS Oscillator mode
4	TosR,	External Clock in (OSC1)	_	20	ns	XT Oscillator mode
	TosF	Rise or Fall Time	—	50	ns	LP Oscillator mode
				7.5	ns	HS Oscillator mode

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period for all configurations except PLL. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

