

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4525-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:	
SPBRGH	EUSART Bau	ud Rate Gener	ator Register	High Byte					0000 0000	51, 206	
SPBRG	EUSART Bau	ud Rate Gener	ator Register	Low Byte					0000 0000	51, 206	
RCREG	EUSART Red	ceive Register							0000 0000	51, 213	
TXREG	EUSART Tra	EUSART Transmit Register									
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	51, 202	
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	51, 203	
EEADRH	—	—	—	—	—	—	EEPROM Add	r Register High	00	51, 73	
EEADR	EEPROM Ad	dress Registe	r						0000 0000	51, 80, 73	
EEDATA	EEPROM Da	0000 0000	51, 80, 73								
EECON2	EEPROM Co	ntrol Register	2 (not a physi	cal register)					0000 0000	51, 80, 73	
EECON1	EEPGD	CFGS	_	FREE	WRERR	WREN	WR	RD	xx-0 x000	51, 81, 74	
IPR2	OSCFIP	CMIP	_	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	11-1 1111	52, 119	
PIR2	OSCFIF	CMIF	_	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	00-0 0000	52, 115	
PIE2	OSCFIE	CMIE	_	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	00-0 0000	52, 117	
IPR1	PSPIP ⁽²⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1111	52, 118	
PIR1	PSPIF ⁽²⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	52, 114	
PIE1	PSPIE ⁽²⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	52, 116	
OSCTUNE	INTSRC	PLLEN ⁽³⁾	—	TUN4	TUN3	TUN2	TUN1	TUN0	00-0 0000	27, 52	
TRISE ⁽²⁾	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	0000 -111	52, 104	
TRISD ⁽²⁾	PORTD Data	Direction Cor	ntrol Register						1111 1111	52, 100	
TRISC	PORTC Data	Direction Cor	ntrol Register						1111 1111	52, 97	
TRISB	PORTB Data	Direction Cor	trol Register						1111 1111	52, 94	
TRISA	TRISA7 ⁽⁵⁾	TRISA6 ⁽⁵⁾	Data Directio	n Control Reg	ister for PORT	A			1111 1111	52, 91	
LATE ⁽²⁾	—	—	—	_	-	PORTE Data (Read and W	Latch Register	ch)	xxx	52, 103	
LATD ⁽²⁾	PORTD Data	Latch Registe	er (Read and V	Vrite to Data L	atch)				xxxx xxxx	52, 100	
LATC	PORTC Data Latch Register (Read and Write to Data Latch)									52, 97	
LATB	PORTB Data Latch Register (Read and Write to Data Latch)									52, 94	
LATA	LATA7 ⁽⁵⁾	LATA6 ⁽⁵⁾	A6 ⁽⁵⁾ PORTA Data Latch Register (Read and Write to Data Latch)							52, 91	
PORTE	_	_	_	_	RE3 ⁽⁴⁾	RE2 ⁽²⁾	RE1 ⁽²⁾	RE0 ⁽²⁾	xxxx	52, 103	
PORTD ⁽²⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	52, 100	
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX	52, 97	
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	52, 94	
PORTA	RA7 ⁽⁵⁾	RA6 ⁽⁵⁾	RA5	RA4	RA3	RA2	RA1	RA0	xx0x 0000	52, 91	

|--|

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition Note

The SBOREN bit is only available when the BOREN1:BOREN0 Configuration bits = 01; otherwise, it is disabled and reads as '0'. See 1: Section 4.4 "Brown-out Reset (BOR)".

2: These registers and/or bits are not implemented on 28-pin devices and are read as '0'. Reset values are shown for 40/44-pin devices; individual unimplemented bits should be interpreted as '-'.

The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as '0'. See Section 2.6.4 "PLL in 3: INTOSC Modes".

The RE3 bit is only available when Master Clear Reset is disabled (MCLRE Configuration bit = 0); otherwise, RE3 reads as '0'. This bit is 4: read-only.

RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. 5: When disabled, these bits read as '0'.

6: Bit 7 and bit 6 are cleared by user software or by a POR.

6.3 Reading the Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADRH:EEADR register pair, clear the EEPGD control bit (EECON1<7>) and then set control bit, RD (EECON1<0>). The data is available on the very next instruction cycle; therefore, the EEDATA register can be read by the next instruction. EEDATA will hold this value until another read operation, or until it is written to by the user (during a write operation).

The basic process is shown in Example 6-1.

6.4 Writing to the Data EEPROM Memory

To write an EEPROM data location, the address must first be written to the EEADRH:EEADR register pair and the data written to the EEDATA register. The sequence in Example 6-2 must be followed to initiate the write cycle.

The write will not begin if this sequence is not exactly followed (write 55h to EECON2, write 0AAh to EECON2, then set WR bit) for each byte. It is strongly recommended that interrupts be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code execution (i.e., runaway programs). The WREN bit should be kept clear at all times, except when updating the EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, EECON1, EEADRH:EEADR and EEDATA cannot be modified. The WR bit will be inhibited from being set unless the WREN bit is set. The WREN bit must be set on a previous instruction. Both WR and WREN cannot be set with the same instruction.

At the completion of the write cycle, the WR bit is cleared in hardware and the EEPROM Interrupt Flag bit, EEIF, is set. The user may either enable this interrupt, or poll this bit. EEIF must be cleared by software.

6.5 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

EXAMPLE 6-1: DATA EEPROM READ

MOVLW	DATA_EE_ADDRH	;
MOVWF	EEADRH	; Upper bits of Data Memory Address to read
MOVLW	DATA_EE_ADDR	;
MOVWF	EEADR	; Lower bits of Data Memory Address to read
BCF	EECON1, EEPGD	; Point to DATA memory
BCF	EECON1, CFGS	; Access EEPROM
BSF	EECON1, RD	; EEPROM Read
MOVF	EEDATA, W	; W = EEDATA

EXAMPLE 6-2:	DATA EEPROM WRITE

	MOVLW	DATA_EE_ADDRH	;
	MOVWF	EEADRH	; Upper bits of Data Memory Address to write
	MOVLW	DATA_EE_ADDR	;
	MOVWF	EEADR	; Lower bits of Data Memory Address to write
	MOVLW	DATA_EE_DATA	;
	MOVWF	EEDATA	; Data Memory Value to write
	BCF	EECON1, EPGD	; Point to DATA memory
	BCF	EECON1, CFGS	; Access EEPROM
	BSF	EECON1, WREN	; Enable writes
	BCF	INTCON, GIE	; Disable Interrupts
	MOVLW	55h	;
Required	MOVWF	EECON2	; Write 55h
Sequence	MOVLW	0AAh	i
	MOVWF	EECON2	; Write OAAh
	BSF	EECON1, WR	; Set WR bit to begin write
	BSF	INTCON, GIE	; Enable Interrupts
			; User code execution
	BCF	EECON1, WREN	; Disable writes on write complete (EEIF set)

TABLE 9-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	52
LATD	PORTD Data Latch Register (Read and Write to Data Latch)								
TRISD	PORTD Data Direction Control Register								
TRISE	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	52
CCP1CON	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	51

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTD.

9.6 Parallel Slave Port

Note:	The Parallel Slave Port is only available on
	40/44-pin devices.

In addition to its function as a general I/O port, PORTD can also operate as an 8-bit wide Parallel Slave Port (PSP) or microprocessor port. PSP operation is controlled by the 4 upper bits of the TRISE register (Register 9-1). Setting control bit, PSPMODE (TRISE<4>), enables PSP operation as long as the Enhanced CCP module is not operating in dual output or quad output PWM mode. In Slave mode, the port is asynchronously readable and writable by the external world.

The PSP can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting the control bit, PSPMODE, enables the PORTE I/O pins to become control inputs for the microprocessor port. When set, port pin RE0 is the RD input, RE1 is the \overline{WR} input and RE2 is the \overline{CS} (Chip Select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set). The A/D port configuration bits, PFCG3:PFCG0 (ADCON1<3:0>), must also be set to a value in the range of '1010' through '1111'.

A write to the PSP occurs when both the \overline{CS} and \overline{WR} lines are first detected low and ends when either are detected high. The PSPIF and IBF flag bits are both set when the write ends.

A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low. The data in PORTD is read out and the OBF bit is clear. If the user writes new data to PORTD to set OBF, the data is immediately read out; however, the OBF bit is not set.

When either the \overline{CS} or \overline{RD} lines are detected high, the PORTD pins return to the input state and the PSPIF bit is set. User applications should wait for PSPIF to be set before servicing the PSP; when this happens, the IBF and OBF bits can be polled and the appropriate action taken.

The timing for the control signals in Write and Read modes is shown in Figure 9-3 and Figure 9-4, respectively.

14.1 Timer3 Operation

Timer3 can operate in one of three modes:

- Timer
- Synchronous Counter
- Asynchronous Counter

The operating mode is determined by the clock select bit, TMR3CS (T3CON<1>). When TMR3CS is cleared (= 0), Timer3 increments on every internal instruction cycle (Fosc/4). When the bit is set, Timer3 increments on every rising edge of the Timer1 external clock input or the Timer1 oscillator, if enabled.

As with Timer1, the RC1/T1OSI and RC0/T1OSO/ T13CKI pins become inputs when the Timer1 oscillator is enabled. This means the values of TRISC<1:0> are ignored and the pins are read as '0'.

FIGURE 14-2: TIMER3 BLOCK DIAGRAM (16-BIT READ/WRITE MODE)

FIGURE 14-1: TIMER3 BLOCK DIAGRAM

17.4.9 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit (SSPCON2<1>) is programmed high and the I²C logic module is in the Idle state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded with the contents of SSPADD<5:0> and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. Following this, the RSEN bit (SSPCON2<1>) will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

17.4.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Repeated Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated Start condition is complete.

FIGURE 17-20: REPEAT START CONDITION WAVEFORM

17.4.12 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit. ACKEN (SSPCON2<4>). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 17-23).

17.4.12.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

17.4.13 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN (SSPCON2<2>). At the end of a receive/ transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to 0. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 17-24).

17.4.13.1 WCOL Status Flag

If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 17-23: ACKNOWLEDGE SEQUENCE WAVEFORM

FIGURE 17-24: STOP CONDITION RECEIVE OR TRANSMIT MODE

FIGURE 18-2: BRG OVERFLOW SEQUENCE

18.3.2 EUSART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either the Single Receive Enable bit, SREN (RCSTA<5>), or the Continuous Receive Enable bit, CREN (RCSTA<4>). Data is sampled on the RX pin on the falling edge of the clock.

If enable bit, SREN, is set, only a single word is received. If enable bit, CREN, is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence.

To set up a Synchronous Master Reception:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRG16 bit, as required, to achieve the desired baud rate.
- 2. Enable the synchronous master serial port by setting bits, SYNC, SPEN and CSRC.

- 3. Ensure bits, CREN and SREN, are clear.
- 4. If interrupts are desired, set enable bit, RCIE.
- 5. If 9-bit reception is desired, set bit, RX9.
- 6. If a single reception is required, set bit, SREN. For continuous reception, set bit, CREN.
- 7. Interrupt flag bit, RCIF, will be set when reception is complete and an interrupt will be generated if the enable bit, RCIE, was set.
- 8. Read the RCSTA register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit, CREN.
- 11. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

FIGURE 18-13: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

TABLE 18-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	52
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	52
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	52
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	51
RCREG	EUSART R	eceive Regi	ster						51
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	51
BAUDCON	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	51
SPBRGH	EUSART Baud Rate Generator Register High Byte								
SPBRG	EUSART B	aud Rate Ge	enerator Re	gister Low B	Syte				51
Legend: -	— = unimple	mented rea	d as '0' Sha	aded cells a	re not used :	for synchror	ous master	reception	

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master reception

Note 1: These bits are unimplemented on 28-pin devices and read as '0'.

19.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) converter module has 10 inputs for the 28-pin devices and 13 for the 40/44-pin devices. This module allows conversion of an analog input signal to a corresponding 10-bit digital number.

The module has five registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)
- A/D Control Register 2 (ADCON2)

REGISTER 19-1: ADCON0: A/D CONTROL REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0

Legend:				
R = Read	lable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Valu	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7-6	Unimple	mented: Read as '0'		
bit 5-2	CHS3:C	HS0: Analog Channel Select	bits	
	0000 = 0 0001 = 0 0011 = 0 0100 = 0 0101 = 0 0110 = 0 1000 = 0 1001 = 0 1011 = 0 1011 = 0 1100 = 0 1101 = 0 1101 = 0 1110 = 0 1111 = 0	Channel 0 (AN0) Channel 1 (AN1) Channel 2 (AN2) Channel 3 (AN3) Channel 4 (AN4) Channel 5 (AN5) $(1,2)$ Channel 6 (AN6) $(1,2)$ Channel 7 (AN7) $(1,2)$ Channel 8 (AN8) Channel 9 (AN9) Channel 10 (AN10) Channel 11 (AN11) Channel 12 (AN12) Jnimplemented) (2) Jnimplemented) (2)		
bit 1	GO/DON <u>When AI</u> 1 = A/D 0 = A/D	E: A/D Conversion Status bit <u>DON = 1:</u> conversion in progress Idle	t	
bit 0	ADON: A 1 = A/D (0 = A/D (VD On bit Converter module is enabled Converter module is disabled		
Note 1.	These chann	els are not implemented on :	28-nin devices	

- **De 1.** These chamiles are not implemented on 26-pin devices.
 - 2: Performing a conversion on unimplemented channels will return a floating input measurement.

The ADCON0 register, shown in Register 19-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 19-2, configures the functions of the port pins. The ADCON2 register, shown in Register 19-3, configures the A/D clock source, programmed acquisition time and justification.

21.0 COMPARATOR VOLTAGE REFERENCE MODULE

The comparator voltage reference is a 16-tap resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it may also be used independently of them.

A block diagram of the module is shown in Figure 21-1. The resistor ladder is segmented to provide two ranges of CVREF values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/VSS or an external voltage reference.

21.1 Configuring the Comparator Voltage Reference

The voltage reference module is controlled through the CVRCON register (Register 21-1). The comparator voltage reference provides two ranges of output voltage, each with 16 distinct levels. The range to be

used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF selection bits (CVR3:CVR0), with one range offering finer resolution. The equations used to calculate the output of the comparator voltage reference are as follows:

<u>If CVRR = 1:</u> CVREF = ((CVR3:CVR0)/24) x CVRSRC <u>If CVRR = 0:</u> CVREF = (CVRSRC x 1/4) + (((CVR3:CVR0)/32) x CVRSRC)

The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF- that are multiplexed with RA2 and RA3. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output (see Table 26-3 in **Section 26.0 "Electrical Characteristics**").

REGISTER 21-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

R/W-0
CVR0
bit 0
wn

Note 1: CVROE overrides the TRISA<2> bit setting.

22.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

PIC18F2525/2620/4525/4620 devices have a High/Low-Voltage Detect module (HLVD). This is a programmable circuit that allows the user to specify both a device voltage trip point and the direction of change from that point. If the device experiences an excursion past the trip point in that direction, an interrupt flag is set. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt.

The High/Low-Voltage Detect Control register (Register 22-1) completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device.

The block diagram for the HLVD module is shown in Figure 22-1.

REGISTER 22-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

R/W-0	U-0	R-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1
VDIRMAG	—	IRVST	HLVDEN	HLVDL3 ⁽¹⁾	HLVDL2 ⁽¹⁾	HLVDL1 ⁽¹⁾	HLVDL0 ⁽¹⁾
bit 7							bit 0

Legend:										
R = Reada	able bit	W = Writable bit	U = Unimplemented bit, read as '0'							
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
bit 7	VDIRMA	G: Voltage Direction Magnitu	ude Select bit							
	1 = Even 0 = Even	= Event occurs when voltage equals or exceeds trip point (HLVDL3:HLDVL0) = Event occurs when voltage equals or falls below trip point (HLVDL3:HLVDL0)								
bit 6	Unimple	mented: Read as '0'								
bit 5	IRVST: II	IRVST: Internal Reference Voltage Stable Flag bit								
	1 = India 0 = India rang	 1 = Indicates that the voltage detect logic will generate the interrupt flag at the specified voltage range 0 = Indicates that the voltage detect logic will not generate the interrupt flag at the specified voltage range and the HLVD interrupt should not be enabled 								
bit 4	HLVDEN	HLVDEN: High/Low-Voltage Detect Power Enable bit								
	1 = HLV 0 = HLV	1 = HLVD enabled 0 = HLVD disabled								
bit 3-0	HLVDL3	:HLVDL0: Voltage Detection	Limit bits ⁽¹⁾							
	1111 = E 1110 = N	<pre>1111 = External analog input is used (input comes from the HLVDIN pin) 1110 = Maximum setting</pre>								
	•									
	•									
	0000 = N	• 0000 = Minimum setting								

Note 1: See Table 26-4 in Section 26.0 "Electrical Characteristics" for the specifications.

The module is enabled by setting the HLVDEN bit. Each time that the HLVD module is enabled, the circuitry requires some time to stabilize. The IRVST bit is a read-only bit and is used to indicate when the circuit is stable. The module can only generate an interrupt after the circuit is stable and IRVST is set. The VDIRMAG bit determines the overall operation of the module. When VDIRMAG is cleared, the module monitors for drops in VDD below a predetermined set point. When the bit is set, the module monitors for rises in VDD above the set point.

R/P-0	R/P-0	U-0	U-0	R/P-0	R/P-1	R/P-1	R/P-1			
IESO	FCMEN	—	—	FOSC3	FOSC2	FOSC1	FOSC0			
bit 7				·			bit 0			
Legend:										
R = Readable	e bit	P = Programn	nable bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value wh	nen device is ur	programmed		u = Unchange	ed from program	nmed state				
bit 7	IESO: Interna	l/External Osci	llator Switchov	/er bit						
	1 = Oscillator	Switchover mo	de enabled							
	0 = Oscillator	Switchover mo	de disabled							
bit 6	FCMEN: Fail-	Safe Clock Mo	nitor Enable b	it						
	1 = Fail-Safe Clock Monitor enabled									
	0 = Fail-Safe	Clock Monitor	disabled							
bit 5-4	Unimplemen	ted: Read as ')'							
bit 3-0	FOSC3:FOSC	: Oscillator S	election bits							
11xx = External RC oscillator, CLKO function on RA6										
	101x = Extern	nal RC oscillato	or, CLKO funct	tion on RA6		D 4 7				
	1001 = Intern	al oscillator bio	CK, CLKO fun	ction on RA6, p		RA/				
	1000 = Interm	nal PC oscillator bit	ock, port function	O(1) O(1) RAO and n on RAG	KA/					
	0110 = HS os	scillator PLL er	habled (Clock	Frequency = 4	(FOSC1)					
	0101 = EC os	scillator, port fu	nction on RA6		(10001)					
	0100 = EC oscillator, CLKO function on RA6									
	0011 = Exter	nal RC oscillato	or, CLKO funct	tion on RA6						
	0010 = HS os	scillator								
	0001 = XT os	scillator								
	0000 = LP os	cillator								

REGISTER 23-1: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)

FIGURE 23-7: EXTERNAL BLOCK TABLE READ (EBTRx) DISALLOWED

FIGURE 23-8: EXTERNAL BLOCK TABLE READ (EBTRx) ALLOWED

26.2

DC Characteristics: Power-Down and Supply Current PIC18F2525/2620/4525/4620 (Industrial) PIC18LF2525/2620/4525/4620 (Industrial) (Continued)

PIC18LF2 (Indus	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
PIC18F2525/2620/4525/4620 (Industrial, Extended)									
Param No.	Param Device No.		Max	Units	Conditions				
	Supply Current (IDD) ⁽²⁾								
	PIC18LFX525/X620	13	25	μΑ	-40°C				
			22	μA	+25°C	VDD = 2.0V			
		14	25	μΑ	+85°C				
	PIC18LFX525/X620	42	61	μA	-40°C		Essa od III		
		34	46	μΑ	+25°C	VDD = 3.0V	FOSC = 31 KHZ		
		28	45	μA	+85°C		INTRC source)		
	All devices	103	160	μΑ	-40°C				
		82	130	μA	+25°C				
		67	120	μΑ	+85°C	VDD = 3.0V			
	Extended devices only	71	230	μΑ	+125°C				
	PIC18LFX525/X620	320	440	μA	-40°C				
		330	440	μΑ	+25°C	VDD = 2.0V			
		330	440	μA	+85°C				
	PIC18LFX525/X620	5/X620 630 800	μA	-40°C					
		590	720	μA	+25°C	VDD = 3.0V	FOSC = 1 MHZ		
		570	700	μΑ	+85°C		INTOSC source)		
	All devices	1.2	1.6	mA	-40°C				
		1.0	1.5	mA	+25°C	Vpp = 5.0V			
		1.0	1.5	mA	+85°C	VDD = 3.0V			
	Extended devices only	1.0	1.5	mA	+125°C				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;
- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0. When operation will always be above -10°C, then the low-power Timer1 oscillator may be selected.
- 4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions	
70	TssL2scH, TssL2scL	$\overline{SS} \downarrow$ to SCK \downarrow or SCK \uparrow Input	3 Тсү	—	ns		
71	TscH	SCK Input High Time	Continuous	1.25 Tcy + 30	_	ns	
71A		(Slave mode)	Single Byte	40		ns	(Note 1)
72	TscL	SCK Input Low Time	Continuous	1.25 Tcy + 30		ns	
72A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup Time of SDI Data Input to SCK E	20	_	ns		
73A	Tb2b	Last Clock Edge of Byte 1 to the First Cloc	ck Edge of Byte 2	1.5 Tcy + 40	_	ns	(Note 2)
74	TscH2diL, TscL2diL	Hold Time of SDI Data Input to SCK Ed	40	—	ns		
75	TdoR	SDO Data Output Rise Time	PIC18FXXXX		25	ns	
			PIC18LFXXXX		45	ns	VDD = 2.0V
76	TdoF	SDO Data Output Fall Time		—	25	ns	
77	TssH2doZ	\overline{SS} \uparrow to SDO Output High-Impedance		10	50	ns	
78	TscR	SCK Output Rise Time (Master mode)	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX		45	ns	VDD = 2.0V
79	TscF	SCK Output Fall Time (Master mode)		—	25	ns	
80	TscH2doV,	SDO Data Output Valid after SCK Edge	PIC18FXXXX	—	50	ns	
	TscL2doV		PIC18LFXXXX		100	ns	VDD = 2.0V
83	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5 Tcy + 40	—	ns	

TABLE 26-16: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING, CKE = 0)

Note 1: Requires the use of Parameter #73A.

2: Only if Parameter #71A and #72A are used.

TABLE 26-18:	I ² C™ BUS	START/STOP	BITS REQUIREMENTS	(SLAVE MODE)
--------------	-----------------------	------------	--------------------------	--------------

Param. No.	Symbol	Characte	Min	Мах	Units	Conditions		
90	TSU:STA	Start Condition	100 kHz mode	4700	—	ns	Only relevant for Repeated	
		Setup Time	400 kHz mode	600	—		Start condition	
91	THD:STA	Start Condition	100 kHz mode	4000	—	ns	After this period, the first	
		Hold Time	400 kHz mode	600	—		clock pulse is generated	
92	Tsu:sto	Stop Condition	100 kHz mode	4700		ns		
		Setup Time	400 kHz mode	600	—			
93	THD:STO	Stop Condition	100 kHz mode	4000	—	ns		
		Hold Time	400 kHz mode	600				

FIGURE 26-18: I²C[™] BUS DATA TIMING

FIGURE 27-21: TYPICAL IDD vs. Fosc, 4 MHz TO 40 MHz (PRI_RUN MODE (EC CLOCK), 25°C)

FIGURE 27-22: MAXIMUM IDD vs. Fosc, 4 MHz TO 40 MHz (PRI_RUN MODE (EC CLOCK), -40°C TO +125°C)

NOTES:

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
From	n: Name	
	Company	
	Address	<u>.</u>
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appli	ication (optional):	
Wou	ld you like a reply?YN	
Devi	ce: PIC18F2525/2620/4525/4620	Literature Number: DS39626E
Ques	stions:	
1. \	What are the best features of this docu	iment?
-		
- -		
2. г	now does this document meet your ha	roware and software development needs?
-		
3. E	Do you find the organization of this doo	cument easy to follow? If not, why?
-		
-		
4. V	What additions to the document do you	u think would enhance the structure and subject?
-		
5. \	What deletions from the document cou	ld be made without affecting the overall usefulness?
_		Ū.
_		
6. I	s there any incorrect or misleading info	ormation (what and where)?
-		
- 7 L	Low would you improve this desument	2
1. Г		. r
-		
-		