

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	48KB (24K × 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4525-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Din Nome	Pi	n Numt	ber	Pin Buffer		r Description			
	PDIP	QFN	TQFP	Туре	Туре	Description			
						PORTD is a bidirectional I/O port or a Parallel Slave Port (PSP) for interfacing to a microprocessor port. These pins have TTL input buffers when the PSP module is enabled.			
RD0/PSP0 RD0 PSP0	19	38	38	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.			
RD1/PSP1 RD1 PSP1	20	39	39	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.			
RD2/PSP2 RD2 PSP2	21	40	40	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.			
RD3/PSP3 RD3 PSP3	22	41	41	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.			
RD4/PSP4 RD4 PSP4	27	2	2	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.			
RD5/PSP5/P1B RD5 PSP5 P1B	28	3	3	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. Enhanced CCP1 output.			
RD6/PSP6/P1C RD6 PSP6 P1C	29	4	4	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. Enhanced CCP1 output.			
RD7/PSP7/P1D RD7 PSP7 P1D	30	5	5	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. Enhanced CCP1 output.			
Legend: TTL = TTL c ST = Schm O = Outpu	compatib itt Triggo it	le input er input	with CN	/IOS lev	vels I F	CMOS = CMOS compatible input or output = Input = Power			

TABLE 1-3: PIC18F4525/4620 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.

3: For the QFN package, it is recommended that the bottom pad be connected to Vss.

3.2.3 RC_RUN MODE

In RC_RUN mode, the CPU and peripherals are clocked from the internal oscillator block using the INTOSC multiplexer. In this mode, the primary clock is shut down. When using the INTRC source, this mode provides the best power conservation of all the Run modes, while still executing code. It works well for user applications which are not highly timing sensitive or do not require high-speed clocks at all times.

If the primary clock source is the internal oscillator block (either INTRC or INTOSC), there are no distinguishable differences between PRI_RUN and RC_RUN modes during execution. However, a clock switch delay will occur during entry to and exit from RC_RUN mode. Therefore, if the primary clock source is the internal oscillator block, the use of RC_RUN mode is not recommended. This mode is entered by setting the SCS1 bit to '1'. Although it is ignored, it is recommended that the SCS0 bit also be cleared; this is to maintain software compatibility with future devices. When the clock source is switched to the INTOSC multiplexer (see Figure 3-3), the primary oscillator is shut down and the OSTS bit is cleared. The IRCF bits may be modified at any time to immediately change the clock speed.

Note:	Caution should be used when modifying a single IRCF bit. If VDD is less than 3V, it is
	possible to select a higher clock speed
	than is supported by the low VDD.
	Improper device operation may result if
	the VDD/FOSC specifications are violated.

R/W-0	0 R/W-1 ⁽¹⁾	U-0	R/W-1	R-1	R-1	R/W-0 ⁽²⁾	R/W-0					
IPEN	SBOREN	—	RI	TO	PD	POR	BOR					
bit 7			·	·	·	·	bit 0					
Legend:												
R = Read	able bit	W = Writable	bit	U = Unimple	emented bit, rea	id as '0'						
-n = Value	e at POR	'1' = Bit is se	t	0' = Bit is cl	eared	x = Bit is unkn	IOWN					
hit 7	IDEN: Interrur	ot Priority Epa	ble bit									
	1 = Enable p	1 – Enable priority levels on interrupts										
	0 = Disable priority levels on interrupts (PIC16CXXX Compatibility mode)											
bit 6	SBOREN: BO	OR Software E	nable bit ⁽¹⁾									
	If BOREN1:B	OREN0 = 01:										
	1 = BOR is er	nabled										
	<u>If BOREN1:B</u> Bit is disabled	<u>ORENU = 00,</u> Land read as '	<u>10 or 11:</u> 0'									
bit 5	Unimplemen	ted: Read as	°.									
bit 4	RI: RESET INS	struction Flag	oit									
	1 = The RESI	ET instruction	was not execu	ited (set by firi	mware only)							
	0 = The RES	ET instruction	was executed	d causing a d	evice Reset (m	ust be set in so	ftware after a					
	Brown-ou	ut Reset occur	s)									
bit 3	TO: Watchdog	g Time-out Fla	g bit									
	1 = Set by pc	wer-up, CLRW	DT instruction	or SLEEP inst	iruction							
hit 2	PD: Power-D	own Detection	Elan hit									
	1 = Set by pc	ower-up or by t	he CLRWDT in	struction								
	0 = Set by ex	ecution of the	SLEEP instruc	ction								
bit 1	POR: Power-	on Reset Statu	us bit									
	1 = A Power-	on Reset has	not occurred (set by firmwa	re only)							
	0 = A Power-	on Reset occu	urred (must be	set in softwar	re after a Powe	r-on Reset occur	rs)					
bit 0	BOR: Brown-	out Reset Stat	us bit									
	1 = A Brown	-out Reset has	s not occurred	(set by firmw	are only)	n out Doost ooo						
	0 = A Brown	-out reset oc	Surrea (must b	e sel in soffwa	are aller a Brow	m-out Reset OCC	uis)					
Note 1:	If SBOREN is enab	oled, its Reset	state is '1'; ot	herwise, it is '	0'.							
2:	The actual Reset v register and Section	alue of POR i on 4.6 "Reset	s determined b State of Regi	by the type of i sters " for add	device Reset. S ditional informat	See the notes foll	lowing this					

REGISTER 4-1: RCON: RESET CONTROL REGISTER

Note 1: It is recommended that the POR bit be set after a Power-on Reset has been detected so that subsequent Power-on Resets may be detected.

2: Brown-out Reset is said to have occurred when BOR is '0' and POR is '1' (assuming that POR was set to '1' by software immediately after Power-on Reset).

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:			
TMR0H	Timer0 Regis	ter High Byte					•		0000 0000	50, 125			
TMR0L	Timer0 Regis	ster Low Byte							xxxx xxxx	50, 125			
T0CON	TMR0ON	T08BIT	TOCS	T0SE	PSA	T0PS2	T0PS1	T0PS0	1111 1111	50, 123			
OSCCON	IDLEN	IRCF2	IRCF1	IRCF0	OSTS	IOFS	SCS1	SCS0	0100 q000	30, 50			
HLVDCON	VDIRMAG	_	IRVST	HLVDEN	HLVDL3	HLVDL2	HLVDL1	HLVDL0	0-00 0101	50, 243			
WDTCON	—	_	_	_	—		—	SWDTEN	0	50, 259			
RCON	IPEN	SBOREN ⁽¹⁾	-	RI	TO	PD	POR	BOR	0q-1 11q0	42, 48, 120			
TMR1H	Timer1 Regis	ter High Byte					•		xxxx xxxx	50, 131			
TMR1L	Timer1 Regis	ster Low Byte	_	_					xxxx xxxx	50, 131			
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	50, 127			
TMR2	Timer2 Regis	ster					•		0000 0000	50, 134			
PR2	Timer2 Perio	imer2 Period Register											
T2CON	—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	50, 133			
SSPBUF	MSSP Receiv	ASSP Receive Buffer/Transmit Register											
SSPADD	MSSP Addre	ss Register in	I ² C™ Slave N	lode. MSSP B	aud Rate Relo	ad Register in	I ² C Master Mo	ode.	0000 0000	50, 170			
SSPSTAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000 0000	50, 162, 171			
SSPCON1	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	50, 163, 172			
SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	50, 173			
ADRESH	A/D Result R	egister High B	yte						XXXX XXXX	51, 232			
ADRESL	A/D Result R	egister Low By	/te						XXXX XXXX	51, 232			
ADCON0	_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	00 0000	51, 223			
ADCON1	—	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	00 0qqq	51, 224			
ADCON2	ADFM	—	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	0-00 0000	51, 225			
CCPR1H	Capture/Com	pare/PWM Re	gister 1 High	Byte					xxxx xxxx	51, 140			
CCPR1L	Capture/Com	pare/PWM Re	gister 1 Low E	Byte					xxxx xxxx	51, 140			
CCP1CON	P1M1 ⁽²⁾	P1M0 ⁽²⁾	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	51, 139, 147			
CCPR2H	Capture/Com	pare/PWM Re	gister 2 High	Byte					xxxx xxxx	51, 140			
CCPR2L	Capture/Com	pare/PWM Re	gister 2 Low E	Byte			-		xxxx xxxx	51, 140			
CCP2CON	—	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	51, 139			
BAUDCON	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN	0100 0-00	51, 204			
PWM1CON	PRSEN	PDC6 ⁽²⁾	PDC5 ⁽²⁾	PDC4 ⁽²⁾	PDC3 ⁽²⁾	PDC2 ⁽²⁾	PDC1 ⁽²⁾	PDC0 ⁽²⁾	0000 0000	51, 156			
ECCP1AS	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1 ⁽²⁾	PSSBD0(2)	0000 0000	51, 157			
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	0000 0000	51, 239			
CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0111	51, 233			
TMR3H	Timer3 Regis	ter High Byte							xxxx xxxx	51, 137			
TMR3L	Timer3 Regis	ter Low Byte					r	1	XXXX XXXX	51, 137			
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0000 0000	51, 135			

TABLE 5-2: REGISTER FILE SUMMARY (PIC18F2525/2620/4525/4620) (CONTINUED)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition Note

1: The SBOREN bit is only available when the BOREN1:BOREN0 Configuration bits = 01; otherwise, it is disabled and reads as '0'. See Section 4.4 "Brown-out Reset (BOR)".

These registers and/or bits are not implemented on 28-pin devices and are read as '0'. Reset values are shown for 40/44-pin devices; 2: individual unimplemented bits should be interpreted as '-

3: The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as '0'. See Section 2.6.4 "PLL in INTOSC Modes".

The RE3 bit is only available when Master Clear Reset is disabled (MCLRE Configuration bit = 0); otherwise, RE3 reads as '0'. This bit is 4: read-only.

5: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

Bit 7 and bit 6 are cleared by user software or by a POR. 6:

The PLUSW register can be used to implement a form of Indexed Addressing in the data memory space. By manipulating the value in the W register, users can reach addresses that are fixed offsets from pointer addresses. In some applications, this can be used to implement some powerful program control structure, such as software stacks, inside of data memory.

5.4.3.3 Operations by FSRs on FSRs

Indirect Addressing operations that target other FSRs or virtual registers represent special cases. For example, using an FSR to point to one of the virtual registers will not result in successful operations. As a specific case, assume that FSR0H:FSR0L contains FE7h, the address of INDF1. Attempts to read the value of the INDF1 using INDF0 as an operand will return 00h. Attempts to write to INDF1 using INDF0 as the operand will result in a NOP.

On the other hand, using the virtual registers to write to an FSR pair may not occur as planned. In these cases, the value will be written to the FSR pair but without any incrementing or decrementing. Thus, writing to INDF2 or POSTDEC2 will write the same value to the FSR2H:FSR2L.

Since the FSRs are physical registers mapped in the SFR space, they can be manipulated through all direct operations. Users should proceed cautiously when working on these registers, particularly if their code uses Indirect Addressing.

Similarly, operations by Indirect Addressing are generally permitted on all other SFRs. Users should exercise the appropriate caution that they do not inadvertently change settings that might affect the operation of the device.

5.5 Data Memory and the Extended Instruction Set

Enabling the PIC18 extended instruction set (XINST Configuration bit = 1) significantly changes certain aspects of data memory and its addressing. Specifically, the use of the Access Bank for many of the core PIC18 instructions is different; this is due to the introduction of a new addressing mode for the data memory space.

What does not change is just as important. The size of the data memory space is unchanged, as well as its linear addressing. The SFR map remains the same. Core PIC18 instructions can still operate in both Direct and Indirect Addressing mode; inherent and literal instructions do not change at all. Indirect Addressing with FSR0 and FSR1 also remains unchanged.

5.5.1 INDEXED ADDRESSING WITH LITERAL OFFSET

Enabling the PIC18 extended instruction set changes the behavior of Indirect Addressing using the FSR2 register pair within Access RAM. Under the proper conditions, instructions that use the Access Bank – that is, most bit-oriented and byte-oriented instructions – can invoke a form of Indexed Addressing using an offset specified in the instruction. This special addressing mode is known as Indexed Addressing with Literal Offset, or Indexed Literal Offset mode.

When using the extended instruction set, this addressing mode requires the following:

- The use of the Access Bank is forced ('a' = 0); and
- The file address argument is less than or equal to 5Fh.

Under these conditions, the file address of the instruction is not interpreted as the lower byte of an address (used with the BSR in Direct Addressing), or as an 8-bit address in the Access Bank. Instead, the value is interpreted as an offset value to an Address Pointer, specified by FSR2. The offset and the contents of FSR2 are added to obtain the target address of the operation.

5.5.2 INSTRUCTIONS AFFECTED BY INDEXED LITERAL OFFSET MODE

Any of the core PIC18 instructions that can use Direct Addressing are potentially affected by the Indexed Literal Offset Addressing mode. This includes all byte-oriented and bit-oriented instructions, or almost one-half of the standard PIC18 instruction set. Instructions that only use Inherent or Literal Addressing modes are unaffected.

Additionally, byte-oriented and bit-oriented instructions are not affected if they do not use the Access Bank (Access RAM bit is '1'), or include a file address of 60h or above. Instructions meeting these criteria will continue to execute as before. A comparison of the different possible addressing modes when the extended instruction set is enabled is shown in Figure 5-8.

Those who desire to use bit-oriented or byte-oriented instructions in the Indexed Literal Offset mode should note the changes to assembler syntax for this mode. This is described in more detail in **Section 24.2.1** "Extended Instruction Syntax".

FIGURE 5-8: COMPARING ADDRESSING OPTIONS FOR BIT-ORIENTED AND BYTE-ORIENTED INSTRUCTIONS (EXTENDED INSTRUCTION SET ENABLED)

EXAMPLE INSTRUCTION: ADDWF, f, d, a (Opcode: 0010 01da ffff ffff)

When 'a' = 0 and $f \ge 60h$:

The instruction executes in Direct Forced mode. 'f' is interpreted as a location in the Access RAM between 060h and 0FFh. This is the same as locations 060h to 07Fh (Bank 0) and F80h to FFFh (Bank 15) of data memory.

Locations below 60h are not available in this addressing mode.

When 'a' = 0 and $f \leq 5Fh$:

The instruction executes in Indexed Literal Offset mode. 'f' is interpreted as an offset to the address value in FSR2. The two are added together to obtain the address of the target register for the instruction. The address can be anywhere in the data memory space.

Note that in this mode, the correct syntax is now: ADDWF [k], d where 'k' is the same as 'f'.

When 'a' = 1 (all values of f):

The instruction executes in Direct mode (also known as Direct Long mode). 'f' is interpreted as a location in one of the 16 banks of the data memory space. The bank is designated by the Bank Select Register (BSR). The address can be in any implemented bank in the data memory space.

FIGURE 7-2: TABLE WRITE OPERATION

7.2 Control Registers

Several control registers are used in conjunction with the TBLRD and TBLWT instructions. These include the:

- EECON1 register
- EECON2 register
- TABLAT register
- TBLPTR registers

7.2.1 EECON1 AND EECON2 REGISTERS

The EECON1 register (Register 7-1) is the control register for memory accesses. The EECON2 register is not a physical register; it is used exclusively in the memory write and erase sequences. Reading EECON2 will read all '0's.

The EEPGD control bit determines if the access will be a program or data EEPROM memory access. When clear, any subsequent operations will operate on the data EEPROM memory. When set, any subsequent operations will operate on the program memory.

The CFGS control bit determines if the access will be to the Configuration/Calibration registers or to program memory/data EEPROM memory. When set, subsequent operations will operate on Configuration registers regardless of EEPGD (see Section 23.0 "Special Features of the CPU"). When clear, memory selection access is determined by EEPGD. The FREE bit, when set, will allow a program memory erase operation. When FREE is set, the erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set in hardware when the WR bit is set and cleared when the internal programming timer expires and the write operation is complete.

Note:	During normal operation, the WRERR									
	may read as '1'. This can indicate that a									
	write operation was prematurely termi-									
	nated by a Reset, or a write operation was									
	attempted improperly.									

The WR control bit initiates write operations. The bit cannot be cleared, only set, in software; it is cleared in hardware at the completion of the write operation.

Note: The EEIF interrupt flag bit (PIR2<4>) is set when the write is complete. It must be cleared in software.

R/W-1	R/W-1	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1						
OSCFIP	CMIP	—	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP						
bit 7						·	bit 0						
Legend:													
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'									
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown						
bit 7	OSCFIP: Osc	cillator Fail Inter	rrupt Priority b	it									
	1 = High prio	ority											
	0 = Low prior	rity											
bit 6 CMIP: Comparator Interrupt Priority bit													
	1 = High prior 0 = Low prior	ority rity											
bit 5		nty It ed: Read as 'i	n'										
bit 4	EFIP: Data E	EPROM/Elash	Write Operativ	on Interrunt Pric	ority bit								
511 -	1 = High priority												
	0 = Low prior	rity											
bit 3	BCLIP: Bus (Collision Interru	pt Priority bit										
	1 = High priority												
	0 = Low priority												
bit 2	HLVDIP: High	LVDIP: High/Low-Voltage Detect Interrupt Priority bit											
	1 = High prio	1 = High priority											
1.16.4				1.5									
DIT 1		R3 Overflow Int	errupt Priority	DI									
	$\perp = High prid$ 0 = Low prio	rity ritv											
bit 0	CCP2IP: CCI	P2 Interrunt Pri	ority bit										
	1 = High price	pritv	only on										
	0 = Low prior	rity											

REGISTER 10-9: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2

NOTES:

16.4.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The PWM duty cycle is calculated by the following equation.

EQUATION 16-2:

PWM Duty Cycle =	(CCPR1L:CCP1CON<5:4>) •
	Tosc • (TMR2 Prescale Value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not copied into CCPR1H until a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double-buffer the PWM duty cycle. This double-buffering is essential for glitchless PWM operation. When the CCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock or two bits of the TMR2 prescaler, the CCP1 pin is cleared. The maximum PWM resolution (bits) for a given PWM frequency is given by the following equation.

EQUATION 16-3:

PWM Resolution (max) =
$$\frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log(2)}$$
 bits

Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.

16.4.3 PWM OUTPUT CONFIGURATIONS

The P1M1:P1M0 bits in the CCP1CON register allow one of four configurations:

- Single Output
- Half-Bridge Output
- Full-Bridge Output, Forward mode
- Full-Bridge Output, Reverse mode

The Single Output mode is the standard PWM mode discussed in **Section 16.4** "**Enhanced PWM Mode**". The Half-Bridge and Full-Bridge Output modes are covered in detail in the sections that follow.

The general relationship of the outputs in all configurations is summarized in Figure 16-2.

PWM Frequency	2.44 kHz	9.77 kHz	39.06 kHz	156.25 kHz	312.50 kHz	416.67 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	FFh	FFh	FFh	3Fh	1Fh	17h
Maximum Resolution (bits)	10	10	10	8	7	6.58

TABLE 16-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz

17.4.9 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit (SSPCON2<1>) is programmed high and the I²C logic module is in the Idle state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded with the contents of SSPADD<5:0> and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. Following this, the RSEN bit (SSPCON2<1>) will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

17.4.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Repeated Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated Start condition is complete.

FIGURE 17-20: REPEAT START CONDITION WAVEFORM

17.4.10 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPBUF register. This action will set the Buffer Full flag bit, BF and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted (see data hold time specification parameter 106). SCL is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCL is released high (see data setup time specification parameter 107). When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time if an address match occurred, or if data was received properly. The status of ACK is written into the ACKDT bit on the falling edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPBUF, leaving SCL low and SDA unchanged (Figure 17-21).

After the write to the SSPBUF, each bit of the address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will deassert the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT status bit (SSPCON2<6>). Following the falling edge of the ninth clock transmission of the address, the SSPIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.

17.4.10.1 BF Status Flag

In Transmit mode, the BF bit (SSPSTAT<0>) is set when the CPU writes to SSPBUF and is cleared when all 8 bits are shifted out.

17.4.10.2 WCOL Status Flag

If the user writes the SSPBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), the WCOL flag is set and the contents of the buffer are unchanged (the write doesn't occur) after 2 TcY after the SSPBUF write. If SSPBUF is rewritten within 2 TcY, the WCOL bit is set and SSPBUF is updated. This may result in a corrupted transfer. The user should verify that the WCOL flag is clear after each write to SSPBUF to ensure the transfer is correct.

17.4.10.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is cleared when the slave has sent an Acknowledge $(\overline{ACK} = 0)$ and is set when the slave does not Acknowledge $(\overline{ACK} = 1)$. A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

17.4.11 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the Receive Enable bit, RCEN (SSPCON2<3>).

Note: The MSSP module must be in an Idle state before the RCEN bit is set or the RCEN bit will be disregarded.

The Baud Rate Generator begins counting and on each rollover, the state of the SCL pin changes (high-to-low/ low-to-high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF flag bit is set, the SSPIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCL low. The MSSP is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable bit, ACKEN (SSPCON2<4>).

17.4.11.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when the SSPBUF register is read.

17.4.11.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when 8 bits are received into the SSPSR and the BF flag bit is already set from a previous reception.

17.4.11.3 WCOL Status Flag

If the user writes the SSPBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

	SYNC = 0, BRGH = 0, BRG16 = 1													
BAUD	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz				
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	I % S Error (d	SPBRG value (decimal)		
0.3	0.300	0.00	8332	0.300	0.02	4165	0.300	0.02	2082	0.300	-0.04	1665		
1.2	1.200	0.02	2082	1.200	-0.03	1041	1.200	-0.03	520	1.201	-0.16	415		
2.4	2.402	0.06	1040	2.399	-0.03	520	2.404	0.16	259	2.403	-0.16	207		
9.6	9.615	0.16	259	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51		
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25		
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8		
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	_		

TABLE 18-3: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 0, BRG16 = 1													
BAUD	Foso	= 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz							
KATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)					
0.3	0.300	0.04	832	0.300	-0.16	415	0.300	-0.16	207					
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51					
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25					
9.6	9.615	0.16	25	9.615	-0.16	12	_	_	_					
19.2	19.231	0.16	12	_	_	—	_	_	—					
57.6	62.500	8.51	3	—	_	_	_	_	_					
115.2	125.000	8.51	1	—	_	_	_	_	_					

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1													
BAUD	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fos	Fosc = 8.000 MHz			
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)		
0.3	0.300	0.00	33332	0.300	0.00	16665	0.300	0.00	8332	0.300	-0.01	6665		
1.2	1.200	0.00	8332	1.200	0.02	4165	1.200	0.02	2082	1.200	-0.04	1665		
2.4	2.400	0.02	4165	2.400	0.02	2082	2.402	0.06	1040	2.400	-0.04	832		
9.6	9.606	0.06	1040	9.596	-0.03	520	9.615	0.16	259	9.615	-0.16	207		
19.2	19.193	-0.03	520	19.231	0.16	259	19.231	0.16	129	19.230	-0.16	103		
57.6	57.803	0.35	172	57.471	-0.22	86	58.140	0.94	42	57.142	0.79	34		
115.2	114.943	-0.22	86	116.279	0.94	42	113.636	-1.36	21	117.647	-2.12	16		

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1								
BAUD	Fosc = 4.000 MHz			Fos	c = 2.000	MHz	Fosc = 1.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	0.300	0.01	3332	0.300	-0.04	1665	0.300	-0.04	832
1.2	1.200	0.04	832	1.201	-0.16	415	1.201	-0.16	207
2.4	2.404	0.16	415	2.403	-0.16	207	2.403	-0.16	103
9.6	9.615	0.16	103	9.615	-0.16	51	9.615	-0.16	25
19.2	19.231	0.16	51	19.230	-0.16	25	19.230	-0.16	12
57.6	58.824	2.12	16	55.555	3.55	8	—	—	—
115.2	111.111	-3.55	8			_	_		_

18.4 EUSART Synchronous Slave Mode

Synchronous Slave mode is entered by clearing bit, CSRC (TXSTA<7>). This mode differs from the Synchronous Master mode in that the shift clock is supplied externally at the CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in any low-power mode.

18.4.1 EUSART SYNCHRONOUS SLAVE TRANSMISSION

The operation of the Synchronous Master and Slave modes is identical, except in the case of the Sleep mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in the TXREG register.
- c) Flag bit, TXIF, will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit, TXIF, will now be set.
- e) If enable bit, TXIE, is set, the interrupt will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. Clear bits, CREN and SREN.
- 3. If interrupts are desired, set enable bit, TXIE.
- 4. If 9-bit transmission is desired, set bit, TX9.
- 5. Enable the transmission by setting enable bit, TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 7. Start transmission by loading data to the TXREGx register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	52
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	52
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	52
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	51
TXREG	EUSART Transmit Register								
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	51
BAUDCON	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	51
SPBRGH	EUSART Baud Rate Generator Register High Byte								51
SPBRG	EUSART B	aud Rate Ge	enerator Re	gister Low I	Byte				51

TABLE 18-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

Note 1: These bits are unimplemented on 28-pin devices and read as '0'.

19.4 Operation in Power-Managed Modes

The selection of the automatic acquisition time and A/D conversion clock is determined in part by the clock source and frequency while in a power-managed mode.

If the A/D is expected to operate while the device is in a power-managed mode, the ACQT2:ACQT0 and ADCS2:ADCS0 bits in ADCON2 should be updated in accordance with the clock source to be used in that mode. After entering the mode, an A/D acquisition or conversion may be started. Once started, the device should continue to be clocked by the same clock source until the conversion has been completed.

If desired, the device may be placed into the corresponding Idle mode during the conversion. If the device clock frequency is less than 1 MHz, the A/D RC clock source should be selected.

Operation in the Sleep mode requires the A/D FRC clock to be selected. If bits ACQT2:ACQT0 are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction and entry to Sleep mode. The IDLEN bit (OSCCON<7>) must have already been cleared prior to starting the conversion.

19.5 Configuring Analog Port Pins

The ADCON1, TRISA, TRISB and TRISE registers all configure the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS3:CHS0 bits and the TRIS bits.

- Note 1: When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert as analog inputs. Analog levels on a digitally configured input will be accurately converted.
 - 2: Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.
 - 3: The PBADEN bit in Configuration Register 3H configures PORTB pins to reset as analog or digital pins by controlling how the PCFG<3:0> bits in ADCON1 are reset.

RRNCF		Rotate R	Rotate Right f (No Carry)							
Synta	ax:	RRNCF	RRNCF f {,d {,a}}							
Operands:		$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$							
Operation:		$(f < n >) \rightarrow (f < 0 >) \rightarrow (f <$	$(f < n >) \rightarrow dest < n - 1 >,$ $(f < 0 >) \rightarrow dest < 7 >$							
Status Affected:		N, Z	N, Z							
Enco	oding:	0100	0100 00da ffff fff							
Description:		The conte one bit to is placed ia placed ba If 'a' is '0', selected, o is '1', then per the BS If 'a' is '0' set is enal in Indexed mode whe Section 2 Bit-Orient Literal Of	The contents of register 'f' are rotated one bit to the right. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.							
14/										
Cual	15.	1								
	το. Volo Activity:	I								
QU		02	03	R	04					
	Decode	Read	Proce	, ess	Write to					
		register 'f'	Dat	а	destination					
<u>Exan</u>	nple 1: Before Instruc REG After Instructic REG	RRNCF tion = 1101 on = 1110	REG, 1, 0111 1011	. 0						
Example 2:		RRNCF	REG, 0,	0						
	Before Instruc	tion								
	W REG After Instructio	= ? = 1101 on	0111							
	w REG	= 1110 = 1101	1011 0111							

SET	F	Set f							
Synta	ax:	SETF f{,	SETF f {,a}						
Operands:		0 ≤ f ≤ 255 a ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$						
Operation:		$FFh\tof$							
Statu	is Affected:	None							
Enco	oding:	0110	100a	fff	f	ffff			
Description:		The conter are set to F If 'a' is '0', ' If 'a' is '1', ' GPR bank. If 'a' is '0' a set is enab in Indexed mode when Section 24 Bit-Oriente Literal Off	The contents of the specified register are set to FFh. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed						
Word	ls:	1	1						
Cycle	es:	1	1						
Q Cycle Activity:									
	Q1	Q2	Q3	5		Q4			
	Decode	Read register 'f'	Proce Dat	ess a	re	Write gister 'f'			
Example:		SETF	REG	;, 1					

Before Instruction			
REG	=	5Ah	
After Instruction			
REG	=	FFh	

25.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator

The MPLAB ICE 2000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers. Software control of the MPLAB ICE 2000 In-Circuit Emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The architecture of the MPLAB ICE 2000 In-Circuit Emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE 2000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft[®] Windows[®] 32-bit operating system were chosen to best make these features available in a simple, unified application.

25.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The MPLAB REAL ICE probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with the popular MPLAB ICD 2 system (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

MPLAB REAL ICE is field upgradeable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added, such as software breakpoints and assembly code trace. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, real-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

25.9 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial Programming[™] (ICSP[™]) protocol, offers costeffective, in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single stepping and watching variables, and CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices.

25.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an SD/MMC card for file storage and secure data applications.

26.2

DC Characteristics: Power-Down and Supply Current PIC18F2525/2620/4525/4620 (Industrial) PIC18LF2525/2620/4525/4620 (Industrial) (Continued)

PIC18LF2525/2620/4525/4620 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC18F2525/2620/4525/4620 (Industrial, Extended)		Standa Operat	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param No.	Device	Тур	Max	Units	Conditions				
D025L	Timer1 Oscillator	4.5	9.0	μΑ	-40°C ⁽³⁾	VDD = 2.0V	32 kHz on Timer1		
$(\Delta IOSCB)$		0.9	1.6	μΑ	-10°C				
		0.9	1.6	μA	+25°C				
		0.9	1.8	μA	+85°C				
		4.8	10	μA	-40°C ⁽³⁾		32 kHz on Timer1		
		1.0	2.0	μA	-10°C				
		1.0	2.0	μA	+25°C	VDD = 3.0V			
		1.0	2.6	μA	+85°C				
		6.0	11	μA	-40°C ⁽³⁾				
		1.6	4.0	μΑ	-10°C	VDD = 5.0V	22 kills on Timori		
		1.6	4.0	μΑ	+25°C		JZ KIIZ UN TIMEN		
		1.6	4.0	μΑ	+85°C				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or Vss;

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

3: When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0. When operation will always be above -10°C, then the low-power Timer1 oscillator may be selected.

4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

Full-Bridge PWM Output153
Half-Bridge PWM Output152
High/Low-Voltage Detect Characteristics
High-Voltage Detect Operation (VDIRMAG = 1) 246 $J^{2}O$ Rue Dete
Inc. Bus Data
I^2 C Master Mode (7 or 10-Bit Transmission) 192
I^2 C Master Mode (7-Bit Reception) 193
l^2C Slave Mode (10-Bit Reception, SEN = 0)
I^2C Slave Mode (10-Bit Reception, SEN = 1)
I ² C Slave Mode (10-Bit Transmission)
I^2C Slave Mode (7-Bit Reception, SEN = 0)
I^2 C Slave Mode (7-Bit Reception, SEN = 1)
I ² C Slave Mode (7-Bit Transmission) 177
I ² C Slave Mode General Call Address
Sequence (7 or 10-Bit Address Mode)
I-C Stop Condition Receive or Transmit Mode
Low-voltage Detect Operation (VDIRMAG = 0)245 Master SSB I^{2} C Rue Data
Master SSP I ² C Bus Start/Stop Bits 356
Parallel Slave Port (PIC18F4525/4620) 348
Parallel Slave Port (PSP) Read
Parallel Slave Port (PSP) Write
PWM Auto-Shutdown ($PRSEN = 0$,
Auto-Restart Disabled)158
PWM Auto-Shutdown (PRSEN = 1,
Auto-Restart Enabled)158
PWM Direction Change
PWM Direction Change at Near
100% Duty Cycle
PWM Output
Ropport Start Condition 100
Repeat Start Condition
Repeat Start Condition
Repeat Start Condition
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up 190 Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, 167
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT)
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 Synchronous Reception (Master Mode, SREN) 219 Suraprocessor 219
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission 218
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, 167 VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, 167 VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCL R Tied to VDD) 47
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, 167 VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Tied to VDD) 47
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD, Case 1) 47
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) 47 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 1) 46 Time-out Sequence on Power-up 46
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) 47 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 1) 46 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2) 46
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD, Case 1) 46 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2) (MCLR Not Tied to VDD, Case 2) 46
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD, Case 1) 46 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2) (MCLR Not Tied to VDD, Case 2) 46 Time-out Sequence on Power-up (MCLR Tied to VDD, Case 2) (MCLR Tied to VDD, VDD Rise < TPWRT)
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD, Case 1) 46 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2) (MCLR Tied to VDD, VDD, Case 2) 46 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise < TPWRT)
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD, Case 1) 46 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2) (MCLR Not Tied to VDD, Case 2) 46 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise < TPWRT)
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD, Case 1) 46 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2) (MCLR Not Tied to VDD, VDD Rise < TPWRT)
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD, Case 1) 46 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2) (MCLR Not Tied to VDD, Case 2) 46 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise < TPWRT)
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD, Case 1) 46 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2) (MCLR Not Tied to VDD, Case 2) 46 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise < TPWRT)
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD, Case 1) 46 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2) (MCLR Not Tied to VDD, Case 2) 46 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise < TPWRT)
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD, Case 1) 46 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 1) (MCLR Not Tied to VDD, Case 2) 46 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise < TPWRT)
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD, Case 1) 46 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2) (MCLR Not Tied to VDD, VDD Rise < TPWRT)
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD, Case 1) 46 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 1) (MCLR Not Tied to VDD, Case 2) 46 Timer0 and Sequence on Power-up (MCLR Not Tied to VDD, VDD Rise < TPWRT)
Repeat Start Condition 190 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 345 Send Break Character Sequence 216 Slave Synchronization 167 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 47 SPI Mode (Master Mode) 166 SPI Mode (Slave Mode, CKE = 0) 168 SPI Mode (Slave Mode, CKE = 1) 168 Synchronous Reception (Master Mode, SREN) 219 Synchronous Transmission 217 Synchronous Transmission (Through TXEN) 218 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD, Case 1) 46 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 1) (MCLR Not Tied to VDD, VDD Rise < TPWRT)

Transition to RC_RUN Mode	6
Timing Diagrams and Specifications	2
A/D Conversion Requirements	C
Capture/Compare/PWM (CCP) Requirements 347	7
CLKO and I/O Requirements 344	4
EUSART Synchronous Receive Requirements 359	9
EUSART Synchronous Transmission	
Requirements	3
Example SPI Mode Requirements	
(Master Mode, CKE = 0) 349	Э
Example SPI Mode Requirements	
(Master Mode, CKE = 1) 350	С
Example SPI Mode Requirements	
(Slave Mode, CKE = 0)	2
Example SPI Mode Requirements	
(Slave Mode, CKE = 1)	3
External Clock Requirements 342	2
I ² C Bus Data Requirements (Slave Mode)	5
Master SSP I ² C Bus Data Requirements	7
Master SSP I ² C Bus Start/Stop Bits	
Requirements	6
Parallel Slave Port Requirements	
(PIC18F4525/4620)	3
PLL Clock 343	3
Reset, Watchdog Timer, Oscillator Start-up	
Timer, Power-up Timer and Brown-out	
Reset Requirements 345	5
Timer0 and Timer1 External Clock	
Requirements	3
Top-of-Stack Access 54	4
TRISE Register	
PSPMODE Bit 100	С
TSTFSZ	7
Two-Speed Start-up 249, 260	0
Two-Word Instructions	
Example Cases 58	3
TXSTA Register	
BRGH Bit 205	5
V	
Voltage Reference Specifications 229	0
voltage Reference Specifications	S
W	
Watchdog Timer (WDT) 249, 258	в
Associated Registers	9
Control Register 258	3

 During Oscillator Failure
 261

 Programming Considerations
 258

 WCOL
 189, 190, 191, 194

 WCOL Status Flag
 189, 190, 191, 194

 WWW Address
 407

 WWW, On-Line Support
 5

Х