

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4620-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	7
2.0	Oscillator Configurations	23
3.0	Power-Managed Modes	33
4.0	Reset	41
5.0	Memory Organization	53
6.0	Data EEPROM Memory	73
7.0	Flash Program Memory	79
8.0	8 x 8 Hardware Multiplier	89
9.0	I/O Ports	91
10.0	Interrupts	109
11.0	Timer0 Module	123
12.0	Timer1 Module	127
13.0	Timer2 Module	133
14.0	Timer3 Module	135
15.0	Capture/Compare/PWM (CCP) Modules	139
16.0	Enhanced Capture/Compare/PWM (ECCP) Module	147
17.0	Master Synchronous Serial Port (MSSP) Module	161
18.0	Enhanced Universal Synchronous Receiver Transmitter (EUSART)	201
19.0	10-Bit Analog-to-Digital Converter (A/D) Module	223
20.0	Comparator Module	233
21.0	Comparator Voltage Reference Module	239
22.0	High/Low-Voltage Detect (HLVD)	243
23.0	Special Features of the CPU	249
24.0	Instruction Set Summary	267
25.0	Development Support	317
26.0	Electrical Characteristics	321
27.0	DC and AC Characteristics Graphs and Tables	361
28.0	Packaging Information	383
Appe	ndix A: Revision History	393
Appe	ndix B: Device Differences	394
Appe	ndix C: Conversion Considerations	395
Appe	ndix D: Migration from Baseline to Enhanced Devices	395
Appe	ndix E: Migration from Mid-Range TO Enhanced Devices	396
Appe	ndix F: Migration from High-End to Enhanced Devices	396
Index		397
The N	/icrochip Web Site	407
Custo	mer Change Notification Service	407
Custo	omer Support	407
Read	er Response	408
PIC1	3F2525/2620/4525/4620 Product Identification System	409

		BIOLOFOCOO		
Features	PIC18F2525	PIC18F2620	PIC18F4525	PIC18F4620
Operating Frequency	DC – 40 MHz			
Program Memory (Bytes)	49152	65536	49152	65536
Program Memory (Instructions)	24576	32768	24576	32768
Data Memory (Bytes)	3968	3968	3968	3968
Data EEPROM Memory (Bytes)	1024	1024	1024	1024
Interrupt Sources	19	19	20	20
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, D, E	Ports A, B, C, D, E
Timers	4	4	4	4
Capture/Compare/PWM Modules	2	2	1	1
Enhanced Capture/Compare/ PWM Modules	0	0	1	1
Serial Communications	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART
Parallel Communications (PSP)	No	No	Yes	Yes
10-Bit Analog-to-Digital Module	10 Input Channels	10 Input Channels	13 Input Channels	13 Input Channels
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT			
Programmable Low-Voltage Detect	Yes	Yes	Yes	Yes
Programmable Brown-out Reset	Yes	Yes	Yes	Yes
Instruction Set	75 Instructions; 83 with Extended Instruction Set Enabled			
Packages	28-Pin SPDIP 28-Pin SOIC	28-Pin SPDIP 28-Pin SOIC	40-Pin PDIP 44-Pin QFN 44-Pin TQFP	40-Pin PDIP 44-Pin QFN 44-Pin TQFP

TABLE 1-1: DEVICE FEATURES

Din Nome	Pi	n Numt	ber	Pin	Buffer	Decovirtien
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description
						PORTA is a bidirectional I/O port.
RA0/AN0 RA0 AN0	2	19	19	I/O I	TTL Analog	Digital I/O. Analog input 0.
RA1/AN1 RA1 AN1	3	20	20	I/O I	TTL Analog	Digital I/O. Analog input 1.
RA2/AN2/VREF-/CVREF RA2 AN2 VREF- CVREF	4	21	21	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog input 2. A/D reference voltage (low) input. Comparator reference voltage output.
RA3/AN3/VREF+ RA3 AN3 VREF+	5	22	22	I/O I I	TTL Analog Analog	Digital I/O. Analog input 3. A/D reference voltage (high) input.
RA4/T0CKI/C1OUT RA4 T0CKI C1OUT	6	23	23	I/O I O	ST ST —	Digital I/O. Timer0 external clock input. Comparator 1 output.
RA5/AN4/SS/HLVDIN/ C2OUT RA5 AN4 SS HLVDIN C2OUT	7	24	24	I/O I I O	TTL Analog TTL Analog —	Digital I/O. Analog input 4. SPI slave select input. High/Low-Voltage Detect input. Comparator 2 output.
RA6						See the OSC2/CLKO/RA6 pin.
RA7						See the OSC1/CLKI/RA7 pin.
Legend: TTL = TTL c ST = Schm O = Outpu	ompatib itt Trigge it	le input er input	with CN	IOS lev	C vels I F	CMOS = CMOS compatible input or output = Input P = Power

TABLE 1-3	PIC18F4525/4620 PINOUT I/O DESCRIPTIONS (١
IADLE I-J.		,

Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.

3: For the QFN package, it is recommended that the bottom pad be connected to Vss.

REGISTER 2-1: OSCTUNE: OSCILLATOR TUNING REGISTER

R/W-0	R/W-0 ⁽¹⁾	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INTSRC	PLLEN ⁽¹⁾	—	TUN4	TUN3	TUN2	TUN1	TUNO
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7	 INTSRC: Internal Oscillator Low-Frequency Source Select bit 1 = 31.25 kHz device clock derived from 8 MHz INTOSC source (divide-by-256 enabled) 0 = 31 kHz device clock derived directly from INTRC internal oscillator
bit 6	PLLEN: Frequency Multiplier PLL for INTOSC Enable bit ⁽¹⁾ 1 = PLL enabled for INTOSC (4 MHz and 8 MHz only) 0 = PLL disabled
bit 5	Unimplemented: Read as '0'
bit 4-0	TUN4:TUN0: Frequency Tuning bits
	011111 = Maximum frequency
	• •
	• •
	000001
	000000 = Center frequency. Oscillator module is running at the calibrated frequency.
	111111
	• •
	• •
	100000 = Minimum frequency

Note 1: Available only in certain oscillator configurations; otherwise, this bit is unavailable and reads as '0'. See Section 2.6.4 "PLL in INTOSC Modes" for details.

2.6.5.1 Compensating with the EUSART

An adjustment may be required when the EUSART begins to generate framing errors or receives data with errors while in Asynchronous mode. Framing errors indicate that the device clock frequency is too high; to adjust for this, decrement the value in OSCTUNE to reduce the clock frequency. On the other hand, errors in data may suggest that the clock speed is too low; to compensate, increment OSCTUNE to increase the clock frequency.

2.6.5.2 Compensating with the Timers

This technique compares device clock speed to some reference clock. Two timers may be used; one timer is clocked by the peripheral clock, while the other is clocked by a fixed reference source, such as the Timer1 oscillator.

Both timers are cleared, but the timer clocked by the reference generates interrupts. When an interrupt occurs, the internally clocked timer is read and both timers are cleared. If the internally clocked timer value is greater than expected, then the internal oscillator block is running too fast. To adjust for this, decrement the OSCTUNE register.

2.6.5.3 Compensating with the CCP Module in Capture Mode

A CCP module can use free-running Timer1 (or Timer3), clocked by the internal oscillator block and an external event with a known period (i.e., AC power frequency). The time of the first event is captured in the CCPRxH:CCPRxL registers and is recorded for use later. When the second event causes a capture, the time of the first event is subtracted from the time of the second event. Since the period of the external event is known, the time difference between events can be calculated.

If the measured time is much greater than the calculated time, the internal oscillator block is running too fast; to compensate, decrement the OSCTUNE register. If the measured time is much less than the calculated time, the internal oscillator block is running too slow; to compensate, increment the OSCTUNE register.

^{© 2008} Microchip Technology Inc.

4.6 Reset State of Registers

Most registers are unaffected by a Reset. Their status is unknown on POR and unchanged by all other Resets. The other registers are forced to a "Reset state" depending on the type of Reset that occurred.

Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register, RI, TO, PD, POR and BOR, are set or cleared differently in different Reset situations, as indicated in Table 4-3. These bits are used in software to determine the nature of the Reset. Table 4-4 describes the Reset states for all of the Special Function Registers. These are categorized by Power-on and Brown-out Resets, Master Clear and WDT Resets and WDT wake-ups.

Condition	Program	RCON Register						STKPTR Register		
Condition	Counter	SBOREN	RI	то	PD	POR	BOR	STKFUL	STKUNF	
Power-on Reset	0000h	1	1	1	1	0	0	0	0	
RESET Instruction	0000h	u (2)	0	u	u	u	u	u	u	
Brown-out Reset	0000h	u (2)	1	1	1	u	0	u	u	
MCLR during power-managed Run Modes	0000h	u (2)	u	1	u	u	u	u	u	
MCLR during power-managed Idle modes and Sleep mode	0000h	u (2)	u	1	0	u	u	u	u	
WDT time-out during full power or power-managed Run mode	0000h	u (2)	u	0	u	u	u	u	u	
MCLR during full-power execution	0000h	u (2)	u	u	u	u	u	u	u	
Stack Full Reset (STVREN = 1)	0000h	u (2)	u	u	u	u	u	1	u	
Stack Underflow Reset (STVREN = 1)	0000h	_ປ (2)	u	u	u	u	u	u	1	
Stack Underflow Error (not an actual Reset, STVREN = 0)	0000h	_ປ (2)	u	u	u	u	u	u	1	
WDT time-out during PC + 2 power-managed Idle or Sleep modes		u (2)	u	0	0	u	u	u	u	
Interrupt exit from power-managed modes	PC + 2 ⁽¹⁾	ս (2)	u	u	0	u	u	u	u	

TABLE 4-3:STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION
FOR RCON REGISTER

Legend: u = unchanged

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (008h or 0018h).

2: Reset state is '1' for POR and unchanged for all other Resets when software BOR is enabled (BOREN1:BOREN0 Configuration bits = 01 and SBOREN = 1); otherwise, the Reset state is '0'.

TOSH — — — Top-of-Stack Lupper Byte (TOS-20:16-) 0 0.000 49, 54 TOSH Top-of-Stack Lupp Byte (TOS-15.8-) 0.000 0.000 49, 54 STKPTR STKNUTB	File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
TOSH Top-d-Stack High Byte (TOS-(5.5x)) 0000 0000 49, 54 TOSL Top-d-Stack Lyow Byte (TOS-(7.0x)) SP4 SP3 SP2 SP1 SP0 0.000 49, 54 TOSL TSTKUTK TSTKUNF ¹⁰ — Holding Register for PC-(20:16) 0 0.000 49, 54 PCLATH Holding Register for PC-(7.5x) 0.000 0.000 49, 54 TBLPTRU — bt 21 Program Memory Table Pointer (TBLPTR 0 0.000 49, 54 TBLPTRU — bt 21 Program Memory Table Pointer (TBLPTR 0 0.000 49, 52 TBLPTRU Program Memory Table Pointer Low Byte (TBLPTR	TOSU	—	—	—	Top-of-Stack	Upper Byte (T	OS<20:16>)			0 0000	49, 54
TOSL Top-d-Stack Low Byte (TOS-70-) SP4 SP3 SP2 SP1 SP0 0.00 0.000 49, 54 STKPTR STKFUL ⁽⁶⁾ STKUR ⁽⁶⁾ — — Holding Register for PC-2105 0.000 49, 54 PCLATU — — — Holding Register for PC-2105 0.000 49, 54 PCLATU — — bit 21 Program Memory Table Pointer High Byte (TBLPTR 0.000 49, 54 TBLFTRU — — bit 21 Program Memory Table Pointer Low Byte (TBLPTR 0.000 49, 62 TBLFTRU Program Memory Table Pointer Low Byte (TBLPTR . 0.000 0.000 49, 62 TBLPTRU Program Memory Table Pointer Low Byte 0.000 0.000 49, 62 TRDCON GleGIGH PROBL INTEDG INTEDG2 . TMROIF INTOF RBP 1111 -1. 49, 112 INTCON GleGIGH PROBL INTEDG2 . TMROIF INT2F INT1	TOSH	Top-of-Stack	High Byte (TC) S<15:8>)						0000 0000	49, 54
STKFUL STKUL STKUL <t< td=""><td>TOSL</td><td>Top-of-Stack</td><td>Low Byte (TO</td><td>S<7:0>)</td><td></td><td></td><td></td><td></td><td></td><td>0000 0000</td><td>49, 54</td></t<>	TOSL	Top-of-Stack	Low Byte (TO	S<7:0>)						0000 0000	49, 54
PCLATH Holding Register for PC<15.3→	STKPTR	STKFUL ⁽⁶⁾	STKUNF ⁽⁶⁾		SP4	SP3	SP2	SP1	SP0	00-0 0000	49, 55
PCLATH Holding Register for PC<15:8> 0000 0000 49, 54 PCL PC Low Byte (PC<7:0> 0000 0000 49, 52 TBLPTRU Program Memory Table Pointer High Byte (TBLPTR<15:8>) 0000 0000 49, 82 TBLPTRU Program Memory Table Pointer Low Byte (TBLPTR<15:8>) 0000 0000 49, 82 TBLPTRU Program Memory Table Pointer Low Byte (TBLPTR<15:8)	PCLATU	—	_	_	Holding Regi	ster for PC<20):16>			0 0000	49, 54
PCL Decl Low Byte (PC-7:0>/// Dot 21 Program Memory Table Pointer High Byte (TBLPTR<15:8>) 0000 0000 49, 62 TBLPTRN Program Memory Table Pointer Ligh Byte (TBLPTR<15:8>) 0000 0000 49, 62 TBLPTRN Program Memory Table Pointer Low Byte (TBLPTR<15:8>) 0000 0000 49, 62 TABLAT Program Memory Table Pointer Low Byte (TBLPTR<15:8>) 0000 0000 49, 62 TABLAT Program Memory Table Pointer Low Byte (TBLPTR<15:8>) 0000 0000 49, 62 PRODH Product Register Low Byte xxxx xxxx 49, 89 INTCON GIE/GIEH PEIC/GIEL TMROIE INTDIE RBIE TMROIF INTDIF RBIF 0000 0000 49, 63 INTCON GIE/GIEH PEIC/GIEL TMROIE INTTIE INTOIP RBIF 1011 1-0 49, 112 INTCON Uses contents of FSR0 to address data memory - value of FSR0 not changed (not a physical register) N/A 49, 68 POSTINC0 Uses contents of FSR0 to address data memory - value of FSR0 to address data memory - value of FSR0 rot adress data memor	PCLATH	Holding Regi	ster for PC<15	5:8>						0000 0000	49, 54
TBLPTRIK — ibit 21 Program Memory Table Pointer Upper Byte (TBLPTR<20:16>) 0000000 49, 82 TBLPTRIK Program Memory Table Pointer Like Byte (TBLPTR<15:.8> 0000 0000 49, 82 TABLAT Program Memory Table Pointer Like Byte (TBLPTR<7:.> 0000 0000 49, 82 TABLAT Product Register High Byte USXXXXXXXX 49, 89 PRODH Product Register Like Byte INTRON GIE/GIEH PEIZ/GIE MROIF INTOF RBIF 0000 0000 49, 82 INTCON GIE/GIEH PEIZ/GIE INTRON INTEDG0 INTEDG1 INTEDG2 INTOF RBIF 0000 0000 49, 112 INTCON GIE/GIEH PEIZ/GIE INTRO INTIF INTTIF INTTIF 49, 68 POSTINC0 Uses contents of FSR0 to address data memory - value of FSR0 post-incremented (not a physical register) N/A 49, 68 POSTINC0 Uses contents of FSR0 to address data memory - value of FSR0 post-incremented (not a physical register) N/A 49, 68 PREINC0 Uses contents of FSR0 to address data memory - value of FSR0 post-incremented (not a physical register) N/A 49, 68	PCL	PC Low Byte	PC Low Byte (PC<7:0>) 0000 0000								
TBLPTRN Program Memory Table Pointer Ligh Byte (TBLPTR<15.3c)	TBLPTRU	bit 21 Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)00 0000								49, 82	
TBLPTRL Program Memory Table Pointer Low Byte (TBLPTR-7:0>) 0000 0000 49, 82 TABLAT Program Memory Table Lath 0000 0000 49, 82 PRODH Product Register Low Byte xxxxx xxxxx 49, 89 INTCON GIE/GIEH PEIE/GIEL TMROIF RBIP 0000 0000 49, 101 INTCON GIE/GIEH PEIE/GIEL TMROIF INTEIDG INTIC RBIP 0100 0000 49, 111 INTCON GIE/GIEH PEIE/GIEL TMROIF INTIC RBIP 1111 -1 49, 103 INTCON GIE/GIEH PEIE/GIEL TMROIF INTIC INTIC NIA 49, 68 POSTINCO Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register) N/A 49, 68 POSTINCO Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 49, 68 PUSWO Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 49, 68 FSR0H - - Indirect Data Memory Address Pointer 0 Low Byte	TBLPTRH	Program Memory Table Pointer High Byte (TBLPTR<15:8>) 0000 0000									49, 82
TABLAT Program Program Product Register High Byte SXXXX XXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXXXXXX X49, 89 PRODL Orduct Register High Byte INTCON GIE/GIEH PEIEGIEL INTROIP INTOIP RBIP INTOIP RBIP INTIP 49, 89 INTCON GIE/GIEH PEIEGIEL INTEDG0 INTEDG2 — TMROIP RBIP III - 1 49, 112 INTCON INT2IP INT1P — INT2IE INT1IE — INT2IF INT1IF 11.0 0.00 49, 68 POSTINCO Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register) N/A 49, 68 POSTINCO Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 49, 68 POSTINCO Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 49, 68 PLUSW0 Uses contents of FSR0 to address data memory – value of FSR1 pre-incremented (not a physical register) N/A 49, 68 FSR0L Indirect Data Memory Address Pointer 0	TBLPTRL	Program Memory Table Pointer Low Byte (TBLPTR<7:0>) 0000 0000									49, 82
PRODH Product Rejeter High Byte xxxx	TABLAT	Program Memory Table Latch 0000 0000									49, 82
PRODL Product Register Low Byte VICE	PRODH	Product Regi	ster High Byte	•						XXXX XXXX	49, 89
INTCON GIE/GIEH PEIE/GIEL TMR0IE INTOE RBIE TMR0IF INTOF RBIF 0000 000x 49, 111 INTCON2 RBPU INTEDG0 INTEDG1 INTEDG2 — TMR0IP — RBIP 1111 - 1 - 1 49, 142 INTCON3 INT2IP INT1IP — INT2IE INT1IE — INT2IF INT1IP 1-0 0-00 49, 113 INTCON3 Uses contents of FSR0 to address data memory - value of FSR0 post-incremented (not a physical register) NA 49, 68 POSTINC0 Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register) NA 49, 68 PREINC0 Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register) NA 49, 68 PLUSW0 Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register) NA 49, 68 FSR0 H —	PRODL	Product Regi	ster Low Byte							xxxx xxxx	49, 89
INTCON2 RBPU INTEDG0 INTEDG1 INTEDG2 — TMR0IP — RBIP 1111 - 1-1 49, 112 INTCON3 INT2IP INT1P — INT2IE INT1IE — INT2IF INT1F 1-0 0-00 49, 113 INDF0 Uses contents of FSR0 to address data memory - value of FSR0 not changed (not a physical register) N/A 49, 68 POSTINC0 Uses contents of FSR0 to address data memory - value of FSR0 post-decremented (not a physical register) N/A 49, 68 POSTDEC0 Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register) N/A 49, 68 PLUSW0 Uses contents of FSR1 to address data memory - value of FSR0 pre-incremented (not a physical register) N/A 49, 68 FSR0L Indirect Data Memory Address Pointer 0 Low Byte xxxx xxxx 49, 68 VMERig Working Register V/A 49, 68 POSTINC1 Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register) N/A 49, 68 POSTINC1 Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register) N	INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	49, 111
INTCON3 INT2IP INT1IP — INT2IE INT1IE — INT2IF INT1IF 11-0 0-00 49, 113 INDF0 Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register) N/A 49, 68 POSTDEC0 Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register) N/A 49, 68 POSTDEC0 Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register) N/A 49, 68 PLUSW0 Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 49, 68 FSR0H — — — Indirect Data Memory Address Pointer 0 High Byte 0000 49, 68 WREG Working Register	INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	—	RBIP	1111 -1-1	49, 112
INDF0 Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register) N/A 49, 68 POSTINC0 Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register) N/A 49, 68 POSTDEC0 Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register) N/A 49, 68 PREINC0 Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 49, 68 PLUSW0 Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 49, 68 FSR0H — — Indirect Data Memory Address Pointer 0 Low Byte 0000 49, 68 WREG Working Register	INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	11-0 0-00	49, 113
POSTINC0 Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register) N/A 49, 68 PREINC0 Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register) N/A 49, 68 PREINC0 Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 49, 68 PLUSW0 Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 49, 68 FSR0H — — Indirect Data Memory Address Pointer 0 Low Byte xxxx xxxxx 49, 68 WREG Working Register	INDF0	Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register)									49, 68
POSTDEC0 Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register) N/A 49,68 PREINC0 Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 49,68 PLUSW0 Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 49,68 FSR0H — — — Indirect Data Memory Address Pointer 0 High Byte 0000 49,68 FSR0L Indirect Data Memory Address Pointer 0 Low Byte xxxx xxxx 49 xxxx xxxx 49 INDF1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register) N/A 49,68 POSTINC1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register) N/A 49,68 POSTDEC1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register) N/A 49,68 PREINC1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register) N/A 49,68 PLUSW1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) N/A 49,68 FSR1H<	POSTINC0	0 Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register) N/A									49, 68
PREINCO Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 49,68 PLUSW0 Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) – value of FSR0 pre-incremented (not a physical register) – N/A N/A 49,68 FSR0H — — — Indirect Data Memory Address Pointer 0 Low Byte >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	POSTDEC0	Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register) N/A								49, 68	
PLUSW0 Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) – value of FSR0 offset by W N/A 49, 68 FSR0H — — — Indirect Data Memory Address Pointer 0 Low Byte xxxx xxxx 49, 68 FSR0L Indirect Data Memory Address Pointer 0 Low Byte xxxx xxxx 49, 68 WREG Working Register xxxx xxxx 49, 68 POSTINC1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register) N/A 49, 68 POSTINC1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register) N/A 49, 68 POSTINC1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register) N/A 49, 68 PREINC1 Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register) N/A 49, 68 PLUSW1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) N/A 49, 68 FSR14 — — — Indirect Data Memory Address Pointer 1 High Byte 0000 50, 68 FSR14 Indirect Data Memory Address Pointer 1 Low Byte xxxx xxxx	PREINC0	Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A								49, 68	
FSR0H — — Indirect Data Memory Address Pointer 0 High Byte 0000 49, 68 FSR0L Indirect Data Memory Address Pointer 0 Low Byte xxxx xxxx x49, 68 WREG Working Register xxxx x49, 68 INDF1 Uses contents of FSR1 to address data memory - value of FSR1 not changed (not a physical register) N/A 49, 68 POSTINC1 Uses contents of FSR1 to address data memory - value of FSR1 post-incremented (not a physical register) N/A 49, 68 POSTDEC1 Uses contents of FSR1 to address data memory - value of FSR1 post-incremented (not a physical register) N/A 49, 68 PREINC1 Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register) N/A 49, 68 PLUSM1 Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register) N/A 49, 68 FSR1H — — — Indirect Data Memory Address Pointer 1 High Byte 0000 50, 68 FSR1L Indirect Data Memory Address Pointer 1 High Byte 0000 50, 59 50, 59 INDF2 Uses contents of FSR2 to address data memory - value of FSR2 post-incremented (not a physical register) N/A 50, 68	PLUSW0	Uses content value of FSR	s of FSR0 to a 0 offset by W	address data n	nemory – valu	e of FSR0 pre	-incremented (not a physical r	egister) –	N/A	49, 68
FSR0L Indirect Data Memory Address Pointer 0 Low Byte xxxx	FSR0H	_	—	—	—	Indirect Data	Memory Addr	ess Pointer 0 H	igh Byte	0000	49, 68
WREG Working Register xxxx 49 INDF1 Uses contents of FSR1 to address data memory - value of FSR1 not changed (not a physical register) N/A 49, 68 POSTINC1 Uses contents of FSR1 to address data memory - value of FSR1 post-incremented (not a physical register) N/A 49, 68 POSTDEC1 Uses contents of FSR1 to address data memory - value of FSR1 post-decremented (not a physical register) N/A 49, 68 PREINC1 Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register) N/A 49, 68 PLUSW1 Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register) N/A 49, 68 FSR1H — — — Indirect Data Memory Address Pointer 1 High Byte 0000 50, 68 FSR1 Indirect Data Memory Address Pointer 1 Low Byte	FSR0L	Indirect Data	Memory Addr	ess Pointer 0	Low Byte					xxxx xxxx	49, 68
INDF1 Uses contents of FSR1 to address data memory – value of FSR1 not changed (not a physical register) N/A 49, 68 POSTINC1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register) N/A 49, 68 POSTDEC1 Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register) N/A 49, 68 PREINC1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) N/A 49, 68 PLUSW1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) – value of FSR1 offset by W N/A 49, 68 FSR1H — — — Indirect Data Memory Address Pointer 1 High Byte 0000 50, 68 FSR1L Indirect Data Memory Address Pointer 1 Low Byte xxxx xxxx 50, 68 88 BSR — — — Bank Select Register 0000 50, 59 INDF2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 50, 68 POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 POSTINC2 Uses contents o	WREG	Working Reg	ister							xxxx xxxx	49
POSTINC1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register) N/A 49, 68 POSTDEC1 Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register) N/A 49, 68 PREINC1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) N/A 49, 68 PLUSW1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) N/A 49, 68 FSR1H — — — Indirect Data Memory Address Pointer 1 High Byte 0000 50, 68 FSR1L Indirect Data Memory Address Pointer 1 Low Byte	INDF1	Uses content	s of FSR1 to a	address data n	nemory – valu	e of FSR1 not	changed (not	a physical regis	ter)	N/A	49, 68
POSTDEC1 Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register) N/A 49, 68 PREINC1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) N/A 49, 68 PLUSW1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) – N/A M/A 49, 68 FSR1H — — — Indirect Data Memory Address Pointer 1 High Byte 0000 50, 68 FSR1L Indirect Data Memory Address Pointer 1 Low Byte xxxx xxxx 50, 68 59 INDF2 Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register) N/A 50, 68 POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 50, 68 POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register) N/A 50, 68 POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 PREINC2 Uses con	POSTINC1	Uses content	s of FSR1 to a	address data n	nemory – valu	e of FSR1 pos	t-incremented	(not a physical	register)	N/A	49, 68
PREINC1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) N/A 49, 68 PLUSW1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) – value of FSR1 offset by W N/A 49, 68 FSR1H — — — Indirect Data Memory Address Pointer 1 High Byte 0000 50, 68 FSR1L Indirect Data Memory Address Pointer 1 Low Byte xxxx xxxx 50, 68 BSR — — — Bank Select Register 0000 50, 59 INDF2 Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register) N/A 50, 68 POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 50, 68 POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register) N/A 50, 68 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 PREINC2 Uses contents of FSR2 to address dat	POSTDEC1	Uses content	s of FSR1 to a	address data n	nemory – valu	e of FSR1 pos	t-decremented	d (not a physica	l register)	N/A	49, 68
PLUSW1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) – N/A 49, 68 FSR1H — — — Indirect Data Memory Address Pointer 1 High Byte 0000 50, 68 FSR1L Indirect Data Memory Address Pointer 1 Low Byte xxxx xxxx 50, 68 BSR — — — Bank Select Register 0000 50, 59 INDF2 Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register) N/A 50, 68 POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 50, 68 POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 50, 68 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 50, 68 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 PLUSW2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented	PREINC1	Uses content	s of FSR1 to a	address data n	nemory – valu	e of FSR1 pre	-incremented (not a physical r	egister)	N/A	49, 68
FSR1H————Indirect Data Memory Address Pointer 1 High Byte 000050, 68FSR1LIndirect Data Memory Address Pointer 1 Low Bytexxxx xxxx50, 68BSR———Bank Select Register 000050, 59INDF2Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register)N/A50, 68POSTINC2Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register)N/A50, 68POSTDEC2Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register)N/A50, 68POSTDEC2Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)N/A50, 68PREINC2Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)N/A50, 68PREINC2Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)N/A50, 68PLUSW2Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)N/A50, 68FSR2H—————Indirect Data Memory Address Pointer 2 High Byte 000050, 68FSR2LIndirect Data Memory Address Pointer 2 Low Byte50, 6850, 68STATUS———NOVZDCCx xxxx50, 66	PLUSW1	Uses content value of FSR	s of FSR1 to a 1 offset by W	address data n	nemory – valu	e of FSR1 pre	-incremented (not a physical r	egister) –	N/A	49, 68
FSR1L Indirect Data Memory Address Pointer 1 Low Byte xxxx 50, 68 BSR — — — Bank Select Register 0000 50, 59 INDF2 Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register) N/A 50, 68 POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 50, 68 POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register) N/A 50, 68 POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register) N/A 50, 68 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 PLUSW2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 FSR2H — — — — Indirect Data Memory Address Pointer 2 High Byte 0000 50, 68 FSR2L Indirect Data Memory Address Pointer 2 Low Byte xxxx xxxx 50, 68 50, 68 50, 68 50, 68 50, 66 50, 68 50, 66 50, 68 <td>FSR1H</td> <td>—</td> <td>—</td> <td>—</td> <td>—</td> <td>Indirect Data</td> <td>Memory Addre</td> <td>ess Pointer 1 H</td> <td>igh Byte</td> <td> 0000</td> <td>50, 68</td>	FSR1H	—	—	—	—	Indirect Data	Memory Addre	ess Pointer 1 H	igh Byte	0000	50, 68
BSR — — — Bank Select Register 0000 50, 59 INDF2 Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register) N/A 50, 68 POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 50, 68 POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 50, 68 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register) N/A 50, 68 PLUSW2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 FSR2H — — — — Indirect Data Memory Address Pointer 2 High Byte 0000 50, 68 FSR2L Indirect Data Memory Address Pointer 2 Low Byte xxxx xxxx 50, 68 50, 68 57ATUS — — — N OV Z DC C x xxxx 50, 66	FSR1L	Indirect Data	Memory Addr	ess Pointer 1	Low Byte					xxxx xxxx	50, 68
INDF2 Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register) N/A 50, 68 POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 50, 68 POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register) N/A 50, 68 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register) N/A 50, 68 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 PLUSW2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) – N/A 50, 68 FSR2H — — — Indirect Data Memory Address Pointer 2 High Byte 0000 50, 68 FSR2L Indirect Data Memory Address Pointer 2 Low Byte xxxx xxxx 50, 68 50, 68 STATUS — — N OV Z DC C x xxxxx 50, 66	BSR	—	—	—	—	Bank Select	Register			0000	50, 59
POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 50, 68 POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register) N/A 50, 68 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 PLUSW2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 FSR2H — — — Indirect Data Memory Address Pointer 2 High Byte 0000 50, 68 FSR2L Indirect Data Memory Address Pointer 2 Low Byte xxxx xxxx 50, 68 57ATUS — — N OV Z DC C x xxxx 50, 66	INDF2	Uses content	s of FSR2 to a	address data n	nemory – valu	e of FSR2 not	changed (not	a physical regis	ter)	N/A	50, 68
POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register) N/A 50, 68 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 PLUSW2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) – value of FSR2 offset by W N/A 50, 68 FSR2H — — — Indirect Data Memory Address Pointer 2 High Byte 0000 50, 68 FSR2L Indirect Data Memory Address Pointer 2 Low Byte xxxx xxxx 50, 68 STATUS — — N OV Z DC C x xxxx 50, 66	POSTINC2	Uses content	s of FSR2 to a	address data n	nemory – valu	e of FSR2 pos	t-incremented	(not a physical	register)	N/A	50, 68
PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 50, 68 PLUSW2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) – value of FSR2 offset by W N/A 50, 68 FSR2H — — — Indirect Data Memory Address Pointer 2 High Byte 0000 50, 68 FSR2L Indirect Data Memory Address Pointer 2 Low Byte xxxx xxxx 50, 68 STATUS — — N OV Z DC C x xxxx 50, 66	POSTDEC2	Uses content	s of FSR2 to a	address data n	nemory – valu	e of FSR2 pos	t-decremented	d (not a physica	l register)	N/A	50, 68
PLUSW2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) – N/A 50, 68 FSR2H — — — Indirect Data Memory Address Pointer 2 High Byte 0000 50, 68 FSR2L Indirect Data Memory Address Pointer 2 Low Byte	PREINC2	Uses content	s of FSR2 to a	address data n	nemory – valu	e of FSR2 pre	-incremented (not a physical r	egister)	N/A	50, 68
FSR2H — — — Indirect Data Memory Address Pointer 2 High Byte 0000 50, 68 FSR2L Indirect Data Memory Address Pointer 2 Low Byte xxxx xxxx 50, 68 STATUS — — N OV Z DC C x xxxx 50, 66	PLUSW2	Uses content value of FSR	s of FSR2 to a 2 offset by W	address data n	nemory – valu	e of FSR2 pre	-incremented (not a physical r	egister) –	N/A	50, 68
FSR2L Indirect Data Memory Address Pointer 2 Low Byte xxxx xxxx 50, 68 STATUS - - N OV Z DC C	FSR2H	—	_	_	—	Indirect Data	Memory Addr	ess Pointer 2 H	igh Byte	0000	50, 68
STATUS — — — N OV Z DC C	FSR2L	Indirect Data	Memory Addr	ess Pointer 2	Low Byte					XXXX XXXX	50, 68
	STATUS	_	_	_	N	OV	Z	DC	С	x xxxx	50, 66

TABLE 5-2:	REGISTER FILE SUMMARY	PIC18F2525/2620/4525/4620)
-		

Note 1: The SBOREN bit is only available when the BOREN1:BOREN0 Configuration bits = 01; otherwise, it is disabled and reads as '0'. See Section 4.4 "Brown-out Reset (BOR)".

2: These registers and/or bits are not implemented on 28-pin devices and are read as '0'. Reset values are shown for 40/44-pin devices; individual unimplemented bits should be interpreted as '-'.

3: The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as '0'. See Section 2.6.4 "PLL in INTOSC Modes".

4: The RE3 bit is only available when Master Clear Reset is disabled (MCLRE Configuration bit = 0); otherwise, RE3 reads as '0'. This bit is read-only.

5: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

6: Bit 7 and bit 6 are cleared by user software or by a POR.

10.2 PIR Registers

The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Request (Flag) registers (PIR1 and PIR2).

- Note 1: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE (INTCON<7>).
 - 2: User software should ensure the appropriate interrupt flag bits are cleared prior to enabling an interrupt and after servicing that interrupt.

REGISTER 10-4: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF CCP1IF		TMR2IF	TMR1IF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	PSPIF: Parallel Slave Port Read/Write Interrupt Flag bit ⁽¹⁾
	 1 = A read or a write operation has taken place (must be cleared in software) 0 = No read or write has occurred
bit 6	ADIF: A/D Converter Interrupt Flag bit
	 1 = An A/D conversion completed (must be cleared in software) 0 = The A/D conversion is not complete
bit 5	RCIF: EUSART Receive Interrupt Flag bit
	 1 = The EUSART receive buffer, RCREG, is full (cleared when RCREG is read) 0 = The EUSART receive buffer is empty
bit 4	TXIF: EUSART Transmit Interrupt Flag bit
	 1 = The EUSART transmit buffer, TXREG, is empty (cleared when TXREG is written) 0 = The EUSART transmit buffer is full
bit 3	SSPIF: Master Synchronous Serial Port Interrupt Flag bit
	 1 = The transmission/reception is complete (must be cleared in software) 0 = Waiting to transmit/receive
bit 2	CCP1IE: CCP1 Interrupt Flag bit
5	<u>Capture mode:</u> 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred
	Capture mode: 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare mode: 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM mode: Unused in this mode.
bit 1	Capture mode: 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare mode: 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM mode: Unused in this mode. TMR2IF: TMR2 to PR2 Match Interrupt Flag bit
bit 1	Capture mode: 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare mode: 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM mode: Unused in this mode. TMR2IF: TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred
bit 1 bit 0	Capture mode: 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare mode: 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM mode: Unused in this mode. TMR2IF: TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred TMR1IF: TMR1 Overflow Interrupt Flag bit
bit 1 bit 0	Capture mode: 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare mode: 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM mode: Unused in this mode. TMR2IF: TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred TMR1IF: TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflowed (must be cleared in software) 0 = TMR1 register overflowed (must be cleared in software) 0 = TMR1 register overflowed (must be cleared in software) 0 = TMR1 register did not overflow

Note 1: This bit is unimplemented on 28-pin devices and will read as '0'.

15.2 Capture Mode

In Capture mode, the CCPRxH:CCPRxL register pair captures the 16-bit value of the TMR1 or TMR3 registers when an event occurs on the corresponding CCPx pin. An event is defined as one of the following:

- every falling edge
- every rising edge
- every 4th rising edge
- every 16th rising edge

The event is selected by the mode select bits, CCPxM3:CCPxM0 (CCPxCON<3:0>). When a capture is made, the interrupt request flag bit, CCPxIF, is set; it must be cleared in software. If another capture occurs before the value in register CCPRx is read, the old captured value is overwritten by the new captured value.

15.2.1 CCP PIN CONFIGURATION

In Capture mode, the appropriate CCPx pin should be configured as an input by setting the corresponding TRIS direction bit.

Note:	If RB3/CCP2 or RC1/CCP2 is configured
	as an output, a write to the port can cause
	a capture condition.

15.2.2 TIMER1/TIMER3 MODE SELECTION

The timers that are to be used with the capture feature (Timer1 and/or Timer3) must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the capture operation will not work. The timer to be used with each CCP module is selected in the T3CON register (see Section 15.1.1 "CCP Modules and Timer Resources").

15.2.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit clear to avoid false interrupts. The interrupt flag bit, CCPxIF, should also be cleared following any such change in operating mode.

15.2.4 CCP PRESCALER

There are four prescaler settings in Capture mode; they are specified as part of the operating mode selected by the mode select bits (CCPxM3:CCPxM0). Whenever the CCP module is turned off or Capture mode is disabled, the prescaler counter is cleared. This means that any Reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared; therefore, the first capture may be from a non-zero prescaler. Example 15-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 15-1: CHANGING BETWEEN CAPTURE PRESCALERS (CCP2 SHOWN)

CLRF MOVLW	CCP2CON NEW CAPT PS	; Turn CCP module off ; Load WREG with the
MOVWF	CCP2CON	; new prescaler mode ; value and CCP ON ; Load CCP2CON with
		; this value

FIGURE 15-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

V+ PIC18F4X2X QC FET QA FET Driver Driver P1A Load P1B FET FET Driver Driver P1C ΩD QB V-P1D

FIGURE 16-7: EXAMPLE OF FULL-BRIDGE APPLICATION

16.4.5.1 Direction Change in Full-Bridge Mode

In the Full-Bridge Output mode, the P1M1 bit in the CCP1CON register allows user to control the forward/ reverse direction. When the application firmware changes this direction control bit, the module will assume the new direction on the next PWM cycle.

Just before the end of the current PWM period, the modulated outputs (P1B and P1D) are placed in their inactive state, while the unmodulated outputs (P1A and P1C) are switched to drive in the opposite direction. This occurs in a time interval of 4 Tosc * (Timer2 Prescale Value) before the next PWM period begins. The Timer2 prescaler will be either 1, 4 or 16, depending on the value of the T2CKPS1:T2CKPS0 bits (T2CON<1:0>). During the interval from the switch of the unmodulated outputs to the beginning of the next period, the modulated outputs (P1B and P1D) remain inactive. This relationship is shown in Figure 16-8.

Note that in the Full-Bridge Output mode, the CCP1 module does not provide any dead-band delay. In general, since only one output is modulated at all times, dead-band delay is not required. However, there is a situation where a dead-band delay might be required. This situation occurs when both of the following conditions are true:

- 1. The direction of the PWM output changes when the duty cycle of the output is at or near 100%.
- 2. The turn-off time of the power switch, including the power device and driver circuit, is greater than the turn-on time.

Figure 16-9 shows an example where the PWM direction changes from forward to reverse at a near 100% duty cycle. At time t1, the outputs P1A and P1D become inactive, while output P1C becomes active. In this example, since the turn-off time of the power devices is longer than the turn-on time, a shoot-through current may flow through power devices, QC and QD (see Figure 16-7), for the duration of 't'. The same phenomenon will occur to power devices, QA and QB, for PWM direction change from reverse to forward.

If changing PWM direction at high duty cycle is required for an application, one of the following requirements must be met:

- 1. Reduce PWM for a PWM period before changing directions.
- 2. Use switch drivers that can drive the switches off faster than they can drive them on.

Other options to prevent shoot-through current may exist.

22.1 Operation

When the HLVD module is enabled, a comparator uses an internally generated reference voltage as the set point. The set point is compared with the trip point, where each node in the resistor divider represents a trip point voltage. The "trip point" voltage is the voltage level at which the device detects a high or low-voltage event, depending on the configuration of the module. When the supply voltage is equal to the trip point, the voltage tapped off of the resistor array is equal to the internal reference voltage generated by the voltage reference module. The comparator then generates an interrupt signal by setting the HLVDIF bit. The trip point voltage is software programmable to any one of 16 values. The trip point is selected by programming the HLVDL3:HLVDL0 bits (HLVDCON<3:0>).

The HLVD module has an additional feature that allows the user to supply the trip voltage to the module from an external source. This mode is enabled when bits HLVDL3:HLVDL0 are set to '1111'. In this state, the comparator input is multiplexed from the external input pin, HLVDIN. This gives users flexibility because it allows them to configure the High/Low-Voltage Detect interrupt to occur at any voltage in the valid operating range.

22.5 Applications

In many applications, the ability to detect a drop below or rise above a particular threshold is desirable. For example, the HLVD module could be periodically enabled to detect a Universal Serial Bus (USB) attach or detach. This assumes the device is powered by a lower voltage source than the USB when detached. An attach would indicate a high-voltage detect from, for example, 3.3V to 5V (the voltage on USB) and vice versa for a detach. This feature could save a design a few extra components and an attach signal (input pin).

For general battery applications, Figure 22-4 shows a possible voltage curve. Over time, the device voltage decreases. When the device voltage reaches voltage VA, the HLVD logic generates an interrupt at time TA. The interrupt could cause the execution of an ISR, which would allow the application to perform "house-keeping tasks" and perform a controlled shutdown before the device voltage exits the valid operating range at TB. The HLVD, thus, would give the application a time window, represented by the difference between TA and TB, to safely exit.

TYPICAL LOW-VOLTAGE DETECT APPLICATION

POP	POP Pop Top of Return Stack						
Synta	ax:	POP					
Oper	ands:	None					
Oper	ation:	$(TOS) \rightarrow bi$	it bucket				
Statu	s Affected:	None					
Enco	ding:	0000	0000	000	0	0110	
Desc	ription:	The TOS v stack and is then becom was pushed This instruc- the user to stack to inc	alue is pro- s discard nes the p d onto th ction is pro- properly corporate	ulled o led. Th reviou e retur rovideo mana a soft	ff the s va n sta d to ge th ware	e return DS value lue that ack. enable ne return e stack.	
Word	ls:	1					
Cycle	es:	1					
QC	ycle Activity:						
	Q1	Q2	Q	3		Q4	
	Decode	No operation	POP 1 valu	ros ie	op	No peration	
<u>Exan</u>	nple:	POP GOTO	NEW				
	Before Instruc TOS Stack (1 I	tion evel down)	= (= ()031A2)14332	2h ?h		
	After Instructic TOS PC	'n	= 0 = N)14332 NEW	?h		

PUSH	Push Top	p of Return Stack				
Syntax:	PUSH					
Operands:	None	None				
Operation:	$(PC + 2) \rightarrow$	TOS				
Status Affected:	None					
Encoding:	0000	0000	000	0	0101	
Description:	The PC + 2 the return s value is pus This instruc software sta then pushin	is push tack. Th shed do tion allo ack by n g it onto	ed onto the prev wn on the the simp modifyir the re	o the ious the s olem ng T(e top of TOS stack. enting a OS and stack.	
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q	3		Q4	
Decode	PUSH	Ν	0		No	
	PC + 2 onto return stack	opera	ation	op	peration	
Example:	PUSH					
Before Instruc TOS PC	ction	= =	345Ah 0124h			
After Instructi PC TOS	on	=	0126h 0126h			

TBLWT	Table W	rite						
Syntax:	TBLWT (*	[*] ; *+; *-; +*	*)					
Operands:	None							
Operation:	if TBLWT*, (TABLAT) \rightarrow Holding Register, TBLPTR – No Change; if TBLWT*+, (TABLAT) \rightarrow Holding Register, (TBLPTR) + 1 \rightarrow TBLPTR;							
	if TBLWT*-, (TABLAT) \rightarrow Holding Register, (TBLPTR) $-1 \rightarrow$ TBLPTR; if TBLWT+*, (TBLPTR) + 1 \rightarrow TBLPTR							
	(TABLAT)	\rightarrow Holding	g Register					
Status Affected:	None							
Encoding:	0000	000 0000 0000 11nn nn=0 * =1 *+						
				=2 *-				
Descriptions	This is stru			=3 +*				
	TBLPTR to determine which of the 8 holding registers the TABLAT is written to. The holding registers are used to program the contents of Program Memory (P.M.). (Refer to Section 7.0 "Flash Program Memory" for additional details on programming Flash memory.) The TBLPTR (a 21-bit pointer) points to each byte in the program memory. TBLPTR has a 2-Mbyte address range. The LSb of the TBLPTR selects which byte of the program memory location to access. TBLPTR[0] = 0: Least Significant Byte of Program Memory Word TBLPTR[0] = 1: Most Significant Byte of Program Memory Word The TBLWT instruction can modify the value of TBLPTR as follows:							
	 post-inc 	crement						
	 post-de 	crement						
Words	• pre-inci	ement						
Cycles:	י 2							
	2							
	01	02	02	04				
	Decodo	No	No	No				
	Decode	operation	operation	operation				
	No	No	No	No				
	operation	operation	operation	operation				
		(Read		(Write to				
		TABLAT)		Holding Register)				

TBLWT Table Write (Continued)

Example 1:	TBLWT	*+;

	,	
Before Instruction		
TABLAT	=	55h
TBLPTR	=	00A356h
HOLDING REGISTE	R	
(00A356h)	=	FFh
After Instructions (table wr	rite comp	letion)
TABLAT	=	55h
TBLPTR	=	00A357h
HOLDING REGISTE	R	
(00A356h)	=	55h
Example 2: TBLWT +*	;	
Before Instruction		
TABLAT	=	34h
TBLPTR	=	01389Ah
HOLDING REGISTE	R	
(01389Ah)	_ =	FFh
	R	
(01389Bh)	=	FFN
After Instruction (table writ	te comple	etion)
TABLAT	=	34h
TBLPTR	=	01389Bh
HOLDING REGISTE	R	
(01389Ah)	=	FFh
	к	0.45
(U1389BN)	=	34N

ADD	OWF	ADD W to Indexed (Indexed Literal Offset mode)					
Synta	ax:	ADDWF	[k] {,d}				
Oper	ands:	$\begin{array}{l} 0 \leq k \leq 95 \\ d \in [0,1] \end{array}$					
Oper	ation:	(W) + ((FS	SR2) + k) -	\rightarrow dest			
Statu	is Affected:	N, OV, C,	DC, Z				
Enco	oding:	0010	01d0	kkkk	kkkk		
Desc	cription:	The contents of W are added to the contents of the register indicated by FSR2, offset by the value 'k'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default).					
Word	ds:	1					
Cycle	es:	1					
QC	ycle Activity:						
	Q1	Q2	Q3		Q4		
	Decode	Read 'k'	Proce Dat	ess \ a de	Write to stination		
<u>Exar</u>	nple:	ADDWF	[OFST]	, 0			
	Before Instructi	on					
	W OFST FSR2 Contents of 0A2Ch	= = =	17h 2Ch 0A00h 20h	1			
	After Instruction W Contents	ו =	37h				
	of 0A2Ch	=	20h				

BSF		Bit Set I (Indexed	Ind d L	lexed _iteral (Offse	et m	ode)
Synta	ax:	BSF [k],	b				
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 95 \\ 0 \leq b \leq 7 \end{array}$					
Oper	ation:	$1 \rightarrow ((FS))$	R2) + k) <b< td=""><td>></td><td></td><td></td></b<>	>		
Statu	s Affected:	None					
Enco	ding:	1000		bbb0	kkk	k	kkkk
Desc	ription:	Bit 'b' of th offset by	he the	register value 'l	indica ‹', is s	ated et.	by FSR2,
Word	ls:	1					
Cycles:		1					
QC	ycle Activity:						
	Q1	Q2		Q3			Q4
	Decode	Read register 'f'		Proce Data	SS A	V de	Vrite to stination
<u>Exan</u>	nple:	BSF	[]	FLAG_0	FST]	, 7	
	Before Instruc FLAG_O FSR2 Contents of 0A0Ah	tion FST = =	=	0Ah 0A00h 55h	I		
	After Instruction Contents of 0A0Ah	on I =	=	D5h			

SET	F	Set Index (Indexed	Set Indexed (Indexed Literal Offset mode)				
Synt	ax:	SETF [k]					
Ope	rands:	$0 \leq k \leq 95$					
Ope	ration:	$FFh \rightarrow ((FSR2) + k)$					
Statu	us Affected:	None					
Enco	oding:	0110	1000	kkkk	kkkk		
Des	cription:	The conter FSR2, offs	The contents of the register indicated by FSR2, offset by 'k', are set to FFh.				
Wor	ds:	1					
Cycl	es:	1	1				
QC	Cycle Activity:						
	Q1	Q2	Q3	3	Q4		
	Decode	Read 'k'	Proce Dat	ess a r	Write egister		
<u>Exar</u>	<u>mple:</u>	SETF	[OFST]				
	Before Instruct OFST FSR2	tion = 20 = 04	Ch A00h				

of 0A2Ch	=	00h
After Instruction		
Contents of 0A2Ch	=	FFh

TABLE 26-23: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
125	TdtV2ckl	<u>SYNC RCV (MASTER & SLAVE)</u> Data Hold before CK ↓ (DT hold time)	10	_	ns	
126	TckL2dtl	Data Hold after CK \downarrow (DT hold time)	15	_	ns	

TABLE 26-24:A/D CONVERTER CHARACTERISTICS:PIC18F2525/2620/4525/4620 (INDUSTRIAL)PIC18LF2525/2620/4525/4620 (INDUSTRIAL)

Param No.	Symbol	Charact	eristic	Min	Тур	Мах	Units	Conditions
A01	NR	Resolution			_	10	bit	$\Delta VREF \ge 3.0V$
A03	EIL	Integral Linearity	Error		_	<±1	LSb	$\Delta \text{VREF} \geq 3.0 \text{V}$
A04	Edl	Differential Linear	ity Error		_	<±1	LSb	$\Delta \text{VREF} \geq 3.0 \text{V}$
A06	EOFF	Offset Error			_	<±2.0	LSb	$\Delta \text{VREF} \geq 3.0 \text{V}$
A07	Egn	Gain Error		_	_	<±1	LSb	$\Delta \text{VREF} \geq 3.0 \text{V}$
A10	—	Monotonicity		Gu	Juaranteed ⁽¹⁾			$VSS \leq VAIN \leq VREF$
A20	$\Delta VREF$	Reference Voltage Range (VREFH – VREFL)		1.8	—	—	V	VDD < 3.0V
				3	_		V	$VDD \ge 3.0V$
A21	Vrefh	Reference Voltage High		Vss	_	Vrefh	V	
A22	Vrefl	Reference Voltage Low		Vss – 0.3V	_	Vdd - 3.0V	V	
A25	Vain	Analog Input Voltage		Vrefl	_	Vrefh	V	
A30	ZAIN	Recommended Impedance of Analog Voltage Source		-		2.5	kΩ	
A40	IAD	A/D Current from	PIC18FXXXX		180	—	μΑ	Average current during
		Vdd	PIC18 LF XX20	_	90	—	μΑ	conversion
A50	IREF	VREF Input Current ⁽²⁾		_	_	5	μΑ	During VAIN acquisition.
				—	—	150	μΑ	During A/D conversion

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

2: VREFH current is from RA3/AN3/VREF+ pin or VDD, whichever is selected as the VREFH source. VREFL current is from RA2/AN2/VREF-/CVREF pin or VSS, whichever is selected as the VREFL source.

27.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.

FIGURE 27-1: SLEEP MODE

FIGURE 27-13: TYPICAL AND MAXIMUM IDD ACROSS VDD (RC_RUN MODE, 31 kHz)

© 2008 Microchip Technology Inc.

28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimensio	n Limits	MIN	NOM	MAX			
Number of Pins	Ν	28					
Pitch	е	1.27 BSC					
Overall Height	А	-	-	2.65			
Molded Package Thickness	A2	2.05	—				
Standoff §	A1	0.10	_	0.30			
Overall Width	Е	10.30 BSC					
Molded Package Width	E1	7.50 BSC					
Overall Length	D	17.90 BSC					
Chamfer (optional)	h	0.25	_	0.75			
Foot Length	L	0.40	-	1.27			
Footprint	L1	1.40 REF					
Foot Angle Top	ф	0°	-	8°			
Lead Thickness	С	0.18	_	0.33			
Lead Width	b	0.31	_	0.51			
Mold Draft Angle Top	α	5°	_	15°			
Mold Draft Angle Bottom	β	5° – 15°					

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-052B