
Microchip Technology - PIC18LF4620-I/PT Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 40MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, HLVD, POR, PWM, WDT

Number of I/O 36

Program Memory Size 64KB (32K x 16)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 3.8K x 8

Voltage - Supply (Vcc/Vdd) 2V ~ 5.5V

Data Converters A/D 13x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 44-TQFP

Supplier Device Package 44-TQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4620-i-pt

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18lf4620-i-pt-4386382
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
DS39626E-page ii
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, PRO MATE, rfPIC and SmartShunt are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total
Endurance, UNI/O, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2008, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
© 2008 Microchip Technology Inc.

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

PIC18F2525/2620/4525/4620

DS39626E-page 28 © 2008 Microchip Technology Inc.

2.7 Clock Sources and Oscillator
Switching

Like previous PIC18 devices, the PIC18F2525/2620/
4525/4620 family includes a feature that allows the
device clock source to be switched from the main
oscillator to an alternate, low-frequency clock source.
PIC18F2525/2620/4525/4620 devices offer two alternate
clock sources. When an alternate clock source is enabled,
the various power-managed operating modes are
available.

Essentially, there are three clock sources for these
devices:

• Primary oscillators
• Secondary oscillators
• Internal oscillator block

The primary oscillators include the External Crystal
and Resonator modes, the External RC modes, the
External Clock modes and the internal oscillator block.
The particular mode is defined by the FOSC3:FOSC0
Configuration bits. The details of these modes are
covered earlier in this chapter.

The secondary oscillators are those external sources
not connected to the OSC1 or OSC2 pins. These
sources may continue to operate even after the
controller is placed in a power-managed mode.

PIC18F2525/2620/4525/4620 devices offer the Timer1
oscillator as a secondary oscillator. This oscillator, in all
power-managed modes, is often the time base for
functions such as a Real-Time Clock (RTC).

Most often, a 32.768 kHz watch crystal is connected
between the RC0/T1OSO/T13CKI and RC1/T1OSI
pins. Like the LP Oscillator mode circuit, loading
capacitors are also connected from each pin to ground.

The Timer1 oscillator is discussed in greater detail in
Section 12.3 “Timer1 Oscillator”.

In addition to being a primary clock source, the internal
oscillator block is available as a power-managed
mode clock source. The INTRC source is also used as
the clock source for several special features, such as
the WDT and Fail-Safe Clock Monitor.

The clock sources for the PIC18F2525/2620/4525/4620
devices are shown in Figure 2-8. See Section 23.0
“Special Features of the CPU” for Configuration
register details.

FIGURE 2-8: PIC18F2525/2620/4525/4620 CLOCK DIAGRAM

PIC18F2525/2620/4525/4620

4 x PLL

FOSC3:FOSC0

Secondary Oscillator

T1OSCEN
Enable
Oscillator

T1OSO

T1OSI

Clock Source Option
for Other Modules

OSC1

OSC2

Sleep HSPLL, INTOSC/PLL

LP, XT, HS, RC, EC

T1OSC

CPU

Peripherals

IDLEN

P
os

ts
ca

le
r

M
U

X

M
U

X

8 MHz

4 MHz

2 MHz
1 MHz

500 kHz

125 kHz

250 kHz

OSCCON<6:4>

111

110

101

100

011

010

001

00031 kHz

INTRC
Source

Internal
Oscillator

Block

WDT, PWRT, FSCM

8 MHz

Internal Oscillator

(INTOSC)

OSCCON<6:4>

Clock
Control

OSCCON<1:0>

Source
8 MHz

31 kHz (INTRC)

OSCTUNE<6>

0
1

OSCTUNE<7>

and Two-Speed Start-up

Primary Oscillator

PIC18F2525/2620/4525/4620

DS39626E-page 32 © 2008 Microchip Technology Inc.

NOTES:

PIC18F2525/2620/4525/4620

DS39626E-page 134 © 2008 Microchip Technology Inc.

13.2 Timer2 Interrupt
Timer2 can also generate an optional device interrupt.
The Timer2 output signal (TMR2 to PR2 match)
provides the input for the 4-bit output counter/
postscaler. This counter generates the TMR2 match
interrupt flag which is latched in TMR2IF (PIR1<1>).
The interrupt is enabled by setting the TMR2 Match
Interrupt Enable bit, TMR2IE (PIE1<1>).

A range of 16 postscale options (from 1:1 through 1:16
inclusive) can be selected with the postscaler control
bits, T2OUTPS3:T2OUTPS0 (T2CON<6:3>).

13.3 Timer2 Output
The unscaled output of TMR2 is available primarily to
the CCP modules, where it is used as a time base for
operations in PWM mode.

Timer2 can be optionally used as the shift clock source
for the MSSP module operating in SPI mode.
Additional information is provided in Section 17.0
“Master Synchronous Serial Port (MSSP) Module”.

FIGURE 13-1: TIMER2 BLOCK DIAGRAM

TABLE 13-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset
Values

on page

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 49
PIR1 PSPIF(1) ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 52
PIE1 PSPIE(1) ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 52
IPR1 PSPIP(1) ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 52
TMR2 Timer2 Register 50
T2CON — T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0 50
PR2 Timer2 Period Register 50
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Timer2 module.
Note 1: These bits are unimplemented on 28-pin devices and read as ‘0’.

Comparator

TMR2 Output

TMR2

Postscaler

Prescaler
PR2

2

FOSC/4

1:1 to 1:16

1:1, 1:4, 1:16

4
T2OUTPS3:T2OUTPS0

T2CKPS1:T2CKPS0

Set TMR2IF

Internal Data Bus
8

Reset
TMR2/PR2

88

(to PWM or MSSP)

Match

PIC18F2525/2620/4525/4620

DS39626E-page 142 © 2008 Microchip Technology Inc.

15.3 Compare Mode
In Compare mode, the 16-bit CCPRx register value is
constantly compared against either the TMR1 or TMR3
register pair value. When a match occurs, the CCPx pin
can be:

• driven high
• driven low
• toggled (high-to-low or low-to-high)
• remain unchanged (that is, reflects the state of the

I/O latch)

The action on the pin is based on the value of the mode
select bits (CCPxM3:CCPxM0). At the same time, the
interrupt flag bit, CCPxIF, is set.

15.3.1 CCP PIN CONFIGURATION
The user must configure the CCPx pin as an output by
clearing the appropriate TRIS bit.

15.3.2 TIMER1/TIMER3 MODE SELECTION
Timer1 and/or Timer3 must be running in Timer mode
or Synchronized Counter mode if the CCP module is
using the compare feature. In Asynchronous Counter
mode, the compare operation may not work.

15.3.3 SOFTWARE INTERRUPT MODE
When the Generate Software Interrupt mode is chosen
(CCPxM3:CCPxM0 = 1010), the corresponding CCPx
pin is not affected. Only a CCP interrupt is generated,
if enabled, and the CCPxIE bit is set.

15.3.4 SPECIAL EVENT TRIGGER
Both CCP modules are equipped with a Special Event
Trigger. This is an internal hardware signal generated
in Compare mode to trigger actions by other modules.
The Special Event Trigger is enabled by selecting
the Compare Special Event Trigger mode
(CCPxM3:CCPxM0 = 1011).

For either CCP module, the Special Event Trigger resets
the Timer register pair for whichever timer resource is
currently assigned as the module’s time base. This
allows the CCPRx registers to serve as a programmable
Period register for either timer.

The Special Event Trigger for CCP2 can also start an
A/D conversion. In order to do this, the A/D converter
must already be enabled.

FIGURE 15-2: COMPARE MODE OPERATION BLOCK DIAGRAM

Note: Clearing the CCP2CON register will force
the RB3 or RC1 compare output latch
(depending on device configuration) to the
default low level. This is not the PORTB or
PORTC I/O data latch.

CCPR1H CCPR1L

TMR1H TMR1L

Comparator
QS

R

Output
Logic

Special Event Trigger
Set CCP1IF

CCP1 pin

TRIS

CCP1CON<3:0>

Output Enable

TMR3H TMR3L

CCPR2H CCPR2L

Comparator

1

0

T3CCP2
T3CCP1

Set CCP2IF

1

0

Compare

4

(Timer1/Timer3 Reset)

QS

R

Output
Logic

Special Event Trigger

CCP2 pin

TRIS

CCP2CON<3:0>

Output Enable4

(Timer1/Timer3 Reset, A/D Trigger)

Match

Compare
Match

PIC18F2525/2620/4525/4620

DS39626E-page 164 © 2008 Microchip Technology Inc.

17.3.2 OPERATION
When initializing the SPI, several options need to be
specified. This is done by programming the appropriate
control bits (SSPCON1<5:0> and SSPSTAT<7:6>).
These control bits allow the following to be specified:

• Master mode (SCK is the clock output)
• Slave mode (SCK is the clock input)
• Clock Polarity (Idle state of SCK)
• Data Input Sample Phase (middle or end of data

output time)
• Clock Edge (output data on rising/falling edge

of SCK)
• Clock Rate (Master mode only)
• Slave Select mode (Slave mode only)

The MSSP consists of a transmit/receive shift register
(SSPSR) and a buffer register (SSPBUF). The SSPSR
shifts the data in and out of the device, MSb first. The
SSPBUF holds the data that was written to the SSPSR
until the received data is ready. Once the 8 bits of data
have been received, that byte is moved to the SSPBUF
register. Then, the Buffer Full detect bit, BF
(SSPSTAT<0>) and the interrupt flag bit, SSPIF, are
set. This double-buffering of the received data
(SSPBUF) allows the next byte to start reception before
reading the data that was just received. Any write to the
SSPBUF register during transmission/reception of data
will be ignored and the write collision detect bit, WCOL

(SSPCON1<7>), will be set. User software must clear
the WCOL bit so that it can be determined if the following
write(s) to the SSPBUF register completed successfully.

When the application software is expecting to receive
valid data, the SSPBUF should be read before the next
byte of data to transfer is written to the SSPBUF. The
Buffer Full bit, BF (SSPSTAT<0>), indicates when
SSPBUF has been loaded with the received data
(transmission is complete). When the SSPBUF is read,
the BF bit is cleared. This data may be irrelevant if the
SPI is only a transmitter. Generally, the MSSP interrupt
is used to determine when the transmission/reception
has completed. The SSPBUF must be read and/or
written. If the interrupt method is not going to be used,
then software polling can be done to ensure that a write
collision does not occur. Example 17-1 shows the
loading of the SSPBUF (SSPSR) for data transmission.

The SSPSR is not directly readable or writable and can
only be accessed by addressing the SSPBUF register.
Additionally, the MSSP status register (SSPSTAT)
indicates the various status conditions.

EXAMPLE 17-1: LOADING THE SSPBUF (SSPSR) REGISTER

Note: The SSPBUF register cannot be used with
read-modify-write instructions such as
BCF, BTFSC and COMF, etc.

Note: To avoid lost data in Master mode, a read of
the SSPBUF must be performed to clear the
Buffer Full (BF) detect bit (SSPSTAT<0>)
between each transmission.

LOOP BTFSS SSPSTAT, BF ;Has data been received (transmit complete)?
BRA LOOP ;No
MOVF SSPBUF, W ;WREG reg = contents of SSPBUF

MOVWF RXDATA ;Save in user RAM, if data is meaningful

MOVF TXDATA, W ;W reg = contents of TXDATA
MOVWF SSPBUF ;New data to xmit

PIC18F2525/2620/4525/4620

DS39626E-page 186 © 2008 Microchip Technology Inc.

17.4.6.1 I2C Master Mode Operation
The master device generates all of the serial clock
pulses and the Start and Stop conditions. A transfer is
ended with a Stop condition or with a Repeated Start
condition. Since the Repeated Start condition is also
the beginning of the next serial transfer, the I2C bus will
not be released.

In Master Transmitter mode, serial data is output
through SDA, while SCL outputs the serial clock. The
first byte transmitted contains the slave address of the
receiving device (7 bits) and the Read/Write (R/W) bit.
In this case, the R/W bit will be logic ‘0’. Serial data is
transmitted 8 bits at a time. After each byte is transmit-
ted, an Acknowledge bit is received. Start and Stop
conditions are output to indicate the beginning and the
end of a serial transfer.

In Master Receive mode, the first byte transmitted
contains the slave address of the transmitting device
(7 bits) and the R/W bit. In this case, the R/W bit will be
logic ‘1’. Thus, the first byte transmitted is a 7-bit slave
address followed by a ‘1’ to indicate the receive bit.
Serial data is received via SDA, while SCL outputs the
serial clock. Serial data is received 8 bits at a time. After
each byte is received, an Acknowledge bit is transmit-
ted. Start and Stop conditions indicate the beginning
and end of transmission.

The Baud Rate Generator used for the SPI mode
operation is used to set the SCL clock frequency for
either 100 kHz, 400 kHz or 1 MHz I2C operation. See
Section 17.4.7 “Baud Rate” for more detail.

A typical transmit sequence would go as follows:

1. The user generates a Start condition by setting
the Start Enable bit, SEN (SSPCON2<0>).

2. SSPIF is set. The MSSP module will wait the
required start time before any other operation
takes place.

3. The user loads the SSPBUF with the slave
address to transmit.

4. Address is shifted out the SDA pin until all 8 bits
are transmitted.

5. The MSSP module shifts in the ACK bit from the
slave device and writes its value into the
SSPCON2 register.

6. The MSSP module generates an interrupt at the
end of the ninth clock cycle by setting the SSPIF
bit.

7. The user loads the SSPBUF with eight bits of
data.

8. Data is shifted out the SDA pin until all 8 bits are
transmitted.

9. The MSSP module shifts in the ACK bit from the
slave device and writes its value into the
SSPCON2 register.

10. The MSSP module generates an interrupt at the
end of the ninth clock cycle by setting the SSPIF
bit.

11. The user generates a Stop condition by setting
the Stop Enable bit, PEN (SSPCON2<2>).

12. Interrupt is generated once the Stop condition is
complete.

© 2008 Microchip Technology Inc. DS39626E-page 195

PIC18F2525/2620/4525/4620
17.4.14 SLEEP OPERATION
While in Sleep mode, the I2C module can receive
addresses or data and when an address match or
complete byte transfer occurs, wake the processor
from Sleep (if the MSSP interrupt is enabled).

17.4.15 EFFECTS OF A RESET
A Reset disables the MSSP module and terminates the
current transfer.

17.4.16 MULTI-MASTER MODE
In Multi-Master mode, the interrupt generation on the
detection of the Start and Stop conditions allows the
determination of when the bus is free. The Stop (P) and
Start (S) bits are cleared from a Reset or when the
MSSP module is disabled. Control of the I2C bus may
be taken when the P bit (SSPSTAT<4>) is set, or the
bus is Idle, with both the S and P bits clear. When the
bus is busy, enabling the MSSP interrupt will generate
the interrupt when the Stop condition occurs.

In multi-master operation, the SDA line must be
monitored for arbitration to see if the signal level is the
expected output level. This check is performed in
hardware with the result placed in the BCLIF bit.

The states where arbitration can be lost are:

• Address Transfer
• Data Transfer
• A Start Condition
• A Repeated Start Condition
• An Acknowledge Condition

17.4.17 MULTI -MASTER COMMUNICATION,
BUS COLLISION AND BUS
ARBITRATION

Multi-Master mode support is achieved by bus arbitra-
tion. When the master outputs address/data bits onto
the SDA pin, arbitration takes place when the master
outputs a ‘1’ on SDA, by letting SDA float high and
another master asserts a ‘0’. When the SCL pin floats
high, data should be stable. If the expected data on
SDA is a ‘1’ and the data sampled on the SDA pin = 0,
then a bus collision has taken place. The master will set
the Bus Collision Interrupt Flag, BCLIF, and reset the
I2C port to its Idle state (Figure 17-25).

If a transmit was in progress when the bus collision
occurred, the transmission is halted, the BF flag is
cleared, the SDA and SCL lines are deasserted and the
SSPBUF can be written to. When the user services the
bus collision Interrupt Service Routine, and if the I2C
bus is free, the user can resume communication by
asserting a Start condition.

If a Start, Repeated Start, Stop or Acknowledge
condition was in progress when the bus collision
occurred, the condition is aborted, the SDA and SCL
lines are deasserted and the respective control bits in
the SSPCON2 register are cleared. When the user ser-
vices the bus collision Interrupt Service Routine, and if
the I2C bus is free, the user can resume communication
by asserting a Start condition.

The master will continue to monitor the SDA and SCL
pins. If a Stop condition occurs, the SSPIF bit will be set.

A write to the SSPBUF will start the transmission of
data at the first data bit, regardless of where the
transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the
detection of Start and Stop conditions allows the
determination of when the bus is free. Control of the I2C
bus can be taken when the P bit is set in the SSPSTAT
register, or the bus is Idle and the S and P bits are
cleared.

FIGURE 17-25: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

SDA

SCL

BCLIF

SDA released

SDA line pulled low
by another source

Sample SDA. While SCL is high,
data doesn’t match what is driven

Bus collision has occurred.

Set bus collision
interrupt (BCLIF)

by the master.

by master

Data changes
while SCL = 0

© 2008 Microchip Technology Inc. DS39626E-page 215

PIC18F2525/2620/4525/4620
18.2.4.1 Special Considerations Using

Auto-Wake-up
Since auto-wake-up functions by sensing rising edge
transitions on RX/DT, information with any state
changes before the Stop bit may signal a false End-Of-
Character (EOC) and cause data or framing errors. To
work properly, therefore, the initial character in the
transmission must be all ‘0’s. This can be 00h (8 bytes)
for standard RS-232 devices or 000h (12 bits) for LIN
bus.

Oscillator start-up time must also be considered,
especially in applications using oscillators with longer
start-up intervals (i.e., XT or HS mode). The Sync
Break (or wake-up signal) character must be of
sufficient length and be followed by a sufficient interval
to allow enough time for the selected oscillator to start
and provide proper initialization of the EUSART.

18.2.4.2 Special Considerations Using
the WUE Bit

The timing of WUE and RCIF events may cause some
confusion when it comes to determining the validity of
received data. As noted, setting the WUE bit places the
EUSART in an Idle mode. The wake-up event causes a
receive interrupt by setting the RCIF bit. The WUE bit is
cleared after this when a rising edge is seen on RX/DT.
The interrupt condition is then cleared by reading the
RCREG register. Ordinarily, the data in RCREG will be
dummy data and should be discarded.

The fact that the WUE bit has been cleared (or is still
set) and the RCIF flag is set should not be used as an
indicator of the integrity of the data in RCREG. Users
should consider implementing a parallel method in
firmware to verify received data integrity.

To assure that no actual data is lost, check the RCIDL
bit to verify that a receive operation is not in process. If
a receive operation is not occurring, the WUE bit may
then be set just prior to entering the Sleep mode.

FIGURE 18-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION

FIGURE 18-9: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

OSC1

WUE bit(1)

RX/DT Line

RCIF

Note 1: The EUSART remains in Idle while the WUE bit is set.

Bit set by user

Cleared due to user read of RCREG

Auto-Cleared

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

OSC1

WUE bit(2)

RX/DT Line

RCIF

Bit set by user

Cleared due to user read of RCREG
Sleep Command Executed

Note 1: If the wake-up event requires long oscillator warm-up time, the auto-clear of the WUE bit can occur before the oscillator is ready. This
sequence should not depend on the presence of Q clocks.

2: The EUSART remains in Idle while the WUE bit is set.

Sleep Ends

Note 1

Auto-Cleared

© 2008 Microchip Technology Inc. DS39626E-page 225

PIC18F2525/2620/4525/4620

REGISTER 19-3: ADCON2: A/D CONTROL REGISTER 2

R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
ADFM — ACQT2 ACQT1 ACQT0 ADCS2 ADCS1 ADCS0

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 ADFM: A/D Result Format Select bit
1 = Right justified
0 = Left justified

bit 6 Unimplemented: Read as ‘0’
bit 5-3 ACQT2:ACQT0: A/D Acquisition Time Select bits

111 = 20 TAD
110 = 16 TAD
101 = 12 TAD
100 = 8 TAD
011 = 6 TAD
010 = 4 TAD
001 = 2 TAD
000 = 0 TAD(1)

bit 2-0 ADCS2:ADCS0: A/D Conversion Clock Select bits
111 = FRC (clock derived from A/D RC oscillator)(1)
110 = FOSC/64
101 = FOSC/16
100 = FOSC/4
011 = FRC (clock derived from A/D RC oscillator)(1)
010 = FOSC/32
001 = FOSC/8
000 = FOSC/2

Note 1: If the A/D FRC clock source is selected, a delay of one TCY (instruction cycle) is added before the A/D
clock starts. This allows the SLEEP instruction to be executed before starting a conversion.

© 2008 Microchip Technology Inc. DS39626E-page 259

PIC18F2525/2620/4525/4620

TABLE 23-2: SUMMARY OF WATCHDOG TIMER REGISTERS

REGISTER 23-14: WDTCON: WATCHDOG TIMER CONTROL REGISTER

U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0
— — — — — — — SWDTEN(1)

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-1 Unimplemented: Read as ‘0’
bit 0 SWDTEN: Software Controlled Watchdog Timer Enable bit(1)

1 = Watchdog Timer is on
0 = Watchdog Timer is off

Note 1: This bit has no effect if the Configuration bit, WDTEN, is enabled.

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset
Values

on page

RCON IPEN SBOREN(1) — RI TO PD POR BOR 50
WDTCON — — — — — — — SWDTEN 50
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Watchdog Timer.
Note 1: The SBOREN bit is only available when the BOREN1:BOREN0 Configuration bits = 01; otherwise, it is

disabled and reads as ‘0’. See Section 4.4 “Brown-out Reset (BOR)”.

© 2008 Microchip Technology Inc. DS39626E-page 275

PIC18F2525/2620/4525/4620

ANDWF AND W with f

Syntax: ANDWF f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (W) .AND. (f) → dest

Status Affected: N, Z

Encoding: 0001 01da ffff ffff

Description: The contents of W are ANDed with
register ‘f’. If ‘d’ is ‘0’, the result is stored
in W. If ‘d’ is ‘1’, the result is stored back
in register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: ANDWF REG, 0, 0

Before Instruction
W = 17h
REG = C2h

After Instruction
W = 02h
REG = C2h

BC Branch if Carry

Syntax: BC n

Operands: -128 ≤ n ≤ 127

Operation: if Carry bit is ‘1’,
(PC) + 2 + 2n → PC

Status Affected: None

Encoding: 1110 0010 nnnn nnnn

Description: If the Carry bit is ‘1’, then the program
will branch.
The 2’s complement number ‘2n’ is
added to the PC. Since the PC will have
incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then a
two-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
If Jump:

Q1 Q2 Q3 Q4
Decode Read literal

‘n’
Process

Data
Write to PC

No
operation

No
operation

No
operation

No
operation

If No Jump:
Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

No
operation

Example: HERE BC 5

Before Instruction
PC = address (HERE)

After Instruction
If Carry = 1;

PC = address (HERE + 12)
If Carry = 0;

PC = address (HERE + 2)

PIC18F2525/2620/4525/4620

DS39626E-page 292 © 2008 Microchip Technology Inc.

MOVFF Move f to f

Syntax: MOVFF fs,fd
Operands: 0 ≤ fs ≤ 4095

0 ≤ fd ≤ 4095

Operation: (fs) → fd
Status Affected: None

Encoding:
1st word (source)
2nd word (destin.)

1100
1111

ffff
ffff

ffff
ffff

ffffs
ffffd

Description: The contents of source register ‘fs’ are
moved to destination register ‘fd’.
Location of source ‘fs’ can be anywhere
in the 4096-byte data space (000h to
FFFh) and location of destination ‘fd’
can also be anywhere from 000h to
FFFh.
Either source or destination can be W
(a useful special situation).
MOVFF is particularly useful for
transferring a data memory location to a
peripheral register (such as the transmit
buffer or an I/O port).
The MOVFF instruction cannot use the
PCL, TOSU, TOSH or TOSL as the
destination register.

Words: 2

Cycles: 2 (3)

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

(src)

Process
Data

No
operation

Decode No
operation

No dummy
read

No
operation

Write
register ‘f’

(dest)

Example: MOVFF REG1, REG2

Before Instruction
REG1 = 33h
REG2 = 11h

After Instruction
REG1 = 33h
REG2 = 33h

MOVLB Move Literal to Low Nibble in BSR

Syntax: MOVLW k

Operands: 0 ≤ k ≤ 255

Operation: k → BSR
Status Affected: None

Encoding: 0000 0001 kkkk kkkk

Description: The eight-bit literal ‘k’ is loaded into the
Bank Select Register (BSR). The value of
BSR<7:4> always remains ‘0’, regardless
of the value of k7:k4.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process
Data

Write literal
‘k’ to BSR

Example: MOVLB 5

Before Instruction
BSR Register = 02h

After Instruction
BSR Register = 05h

PIC18F2525/2620/4525/4620

DS39626E-page 314 © 2008 Microchip Technology Inc.

24.2.3 BYTE-ORIENTED AND
BIT-ORIENTED INSTRUCTIONS IN
INDEXED LITERAL OFFSET MODE

In addition to eight new commands in the extended set,
enabling the extended instruction set also enables
Indexed Literal Offset Addressing mode (Section 5.5.1
“Indexed Addressing with Literal Offset”). This has
a significant impact on the way that many commands of
the standard PIC18 instruction set are interpreted.

When the extended set is disabled, addresses embed-
ded in opcodes are treated as literal memory locations:
either as a location in the Access Bank (‘a’ = 0) or in a
GPR bank designated by the BSR (‘a’ = 1). When the
extended instruction set is enabled and ‘a’ = 0,
however, a file register argument of 5Fh or less is
interpreted as an offset from the pointer value in FSR2
and not as a literal address. For practical purposes, this
means that all instructions that use the Access RAM bit
as an argument – that is, all byte-oriented and bit-
oriented instructions, or almost half of the core PIC18
instructions – may behave differently when the
extended instruction set is enabled.

When the content of FSR2 is 00h, the boundaries of the
Access RAM are essentially remapped to their original
values. This may be useful in creating backward
compatible code. If this technique is used, it may be
necessary to save the value of FSR2 and restore it
when moving back and forth between C and assembly
routines in order to preserve the Stack Pointer. Users
must also keep in mind the syntax requirements of the
extended instruction set (see Section 24.2.3.1
“Extended Instruction Syntax with Standard PIC18
Commands”).

Although the Indexed Literal Offset Addressing mode
can be very useful for dynamic stack and pointer
manipulation, it can also be very annoying if a simple
arithmetic operation is carried out on the wrong
register. Users who are accustomed to the PIC18
programming must keep in mind that, when the
extended instruction set is enabled, register addresses
of 5Fh or less are used for Indexed Literal Offset
Addressing mode.

Representative examples of typical byte-oriented and
bit-oriented instructions in the Indexed Literal Offset
Addressing mode are provided on the following page to
show how execution is affected. The operand
conditions shown in the examples are applicable to all
instructions of these types.

24.2.3.1 Extended Instruction Syntax with
Standard PIC18 Commands

When the extended instruction set is enabled, the file
register argument, ‘f’, in the standard byte-oriented and
bit-oriented commands is replaced with the literal offset
value, ‘k’. As already noted, this occurs only when ‘f’ is
less than or equal to 5Fh. When an offset value is used,
it must be indicated by square brackets (“[]”). As with
the extended instructions, the use of brackets indicates
to the compiler that the value is to be interpreted as an
index or an offset. Omitting the brackets, or using a
value greater than 5Fh within brackets, will generate an
error in the MPASM Assembler.

If the index argument is properly bracketed for Indexed
Literal Offset Addressing mode, the Access RAM
argument is never specified; it will automatically be
assumed to be ‘0’. This is in contrast to standard
operation (extended instruction set disabled) when ‘a’
is set on the basis of the target address. Declaring the
Access RAM bit in this mode will also generate an error
in the MPASM Assembler.

The destination argument, ‘d’, functions as before.

In the latest versions of the MPASM assembler,
language support for the extended instruction set must
be explicitly invoked. This is done with either the
command line option, /y, or the PE directive in the
source listing.

24.2.4 CONSIDERATIONS WHEN
ENABLING THE EXTENDED
INSTRUCTION SET

It is important to note that the extensions to the instruc-
tion set may not be beneficial to all users. In particular,
users who are not writing code that uses a software
stack may not benefit from using the extensions to the
instruction set.

Additionally, the Indexed Literal Offset Addressing
mode may create issues with legacy applications
written to the PIC18 assembler. This is because
instructions in the legacy code may attempt to address
registers in the Access Bank below 5Fh. Since these
addresses are interpreted as literal offsets to FSR2
when the instruction set extension is enabled, the
application may read or write to the wrong data
addresses.

When porting an application to the PIC18F2525/2620/
4525/4620, it is very important to consider the type of
code. A large, re-entrant application that is written in ‘C’
and would benefit from efficient compilation will do well
when using the instruction set extensions. Legacy
applications that heavily use the Access Bank will most
likely not benefit from using the extended instruction
set.

Note: Enabling the PIC18 instruction set
extension may cause legacy applications
to behave erratically or fail entirely.

© 2008 Microchip Technology Inc. DS39626E-page 315

PIC18F2525/2620/4525/4620

ADDWF ADD W to Indexed
(Indexed Literal Offset mode)

Syntax: ADDWF [k] {,d}

Operands: 0 ≤ k ≤ 95
d ∈ [0,1]

Operation: (W) + ((FSR2) + k) → dest

Status Affected: N, OV, C, DC, Z

Encoding: 0010 01d0 kkkk kkkk

Description: The contents of W are added to the
contents of the register indicated by
FSR2, offset by the value ‘k’.
If ‘d’ is ‘0’, the result is stored in W. If ‘d’
is ‘1’, the result is stored back in
register ‘f’ (default).

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read ‘k’ Process
Data

Write to
destination

Example: ADDWF [OFST] , 0

Before Instruction
W = 17h
OFST = 2Ch
FSR2 = 0A00h
Contents
of 0A2Ch = 20h

After Instruction
W = 37h
Contents
of 0A2Ch = 20h

BSF Bit Set Indexed
(Indexed Literal Offset mode)

Syntax: BSF [k], b

Operands: 0 ≤ f ≤ 95
0 ≤ b ≤ 7

Operation: 1 → ((FSR2) + k)

Status Affected: None

Encoding: 1000 bbb0 kkkk kkkk

Description: Bit ‘b’ of the register indicated by FSR2,
offset by the value ‘k’, is set.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: BSF [FLAG_OFST], 7

Before Instruction
FLAG_OFST = 0Ah
FSR2 = 0A00h
Contents
of 0A0Ah = 55h

After Instruction
Contents
of 0A0Ah = D5h

SETF Set Indexed
(Indexed Literal Offset mode)

Syntax: SETF [k]

Operands: 0 ≤ k ≤ 95

Operation: FFh → ((FSR2) + k)

Status Affected: None

Encoding: 0110 1000 kkkk kkkk

Description: The contents of the register indicated by
FSR2, offset by ‘k’, are set to FFh.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read ‘k’ Process
Data

Write
register

Example: SETF [OFST]

Before Instruction
OFST = 2Ch
FSR2 = 0A00h
Contents
of 0A2Ch = 00h

After Instruction
Contents
of 0A2Ch = FFh

PIC18F2525/2620/4525/4620

DS39626E-page 360 © 2008 Microchip Technology Inc.

FIGURE 26-23: A/D CONVERSION TIMING

TABLE 26-25: A/D CONVERSION REQUIREMENTS

131

130

132

BSF ADCON0, GO

Q4

A/D CLK(1)

A/D DATA

ADRES

ADIF

GO

SAMPLE

OLD_DATA

SAMPLING STOPPED

DONE

NEW_DATA

(Note 2)

9 8 7 2 1 0

Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts.
This allows the SLEEP instruction to be executed.

2: This is a minimal RC delay (typically 100 ns), which also disconnects the holding capacitor from the analog input.

.

TCY

Param
No. Symbol Characteristic Min Max Units Conditions

130 TAD A/D Clock Period PIC18FXXXX 0.7 25.0(1) μs TOSC based, VREF ≥ 3.0V
PIC18LFXXXX 1.4 25.0(1) μs VDD = 2.0V;

TOSC based, VREF full range
PIC18FXXXX — 1 μs A/D RC mode
PIC18LFXXXX — 3 μs VDD = 2.0V; A/D RC mode

131 TCNV Conversion Time
(not including acquisition time) (Note 2)

11 12 TAD

132 TACQ Acquisition Time (Note 3) 1.4 — μs -40°C to +85°C
135 TSWC Switching Time from Convert → Sample — (Note 4)
TBD TDIS Discharge Time 0.2 — μs
Note 1: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

2: ADRES register may be read on the following TCY cycle.
3: The time for the holding capacitor to acquire the “New” input voltage when the voltage changes full scale

after the conversion (VDD to VSS or VSS to VDD). The source impedance (RS) on the input channels is 50Ω.
4: On the following cycle of the device clock.

PIC18F2525/2620/4525/4620

DS39626E-page 380 © 2008 Microchip Technology Inc.

FIGURE 27-37: INTOSC FREQUENCY vs. VDD, TEMPERATURE (-40°C, +25°C, +85°C, +125°C)

FIGURE 27-38: INTRC vs. VDD ACROSS TEMPERATURE (-40°C TO +125°C)

(, , ,)

7.6

7.7

7.8

7.9

8.0

8.1

8.2

8.3

8.4

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

VDD (V)

Fr
eq

 (M
H

z)

125C Typ

85C Typ

25C Typ

-40C Typ

Max Freq

Min Freq

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

VDD (V)

Fr
eq

 (k
H

z)

Min (85C)

Min (125C)

Typ (25C)

Max (-40C)

Max (125C)

© 2008 Microchip Technology Inc. DS39626E-page 381

PIC18F2525/2620/4525/4620
FIGURE 27-39: WDT PERIOD vs. VDD ACROSS TEMPERATURE (1:1 POSTSCALER,

-40°C TO +125°C)

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

VDD (V)

Pe
rio

d
(m

s)

Longest

Typical (25C) Shortest
(85C)

Shortest
(125C)

PIC18F2525/2620/4525/4620

DS39626E-page 382 © 2008 Microchip Technology Inc.

NOTES:

© 2008 Microchip Technology Inc. DS39626E-page 391

PIC18F2525/2620/4525/4620

**�����	�������	12�	,���	-���3���	��1�	�	4�04�04	��	����%	�'��	��	�1,-�

!���" 3
	�&���'
!&��"		��&����4����#	�*���!(�����!��!���&������	
��������4�����������%���&�
���
��&�#��&�
�&&�255***�'��	
������
'5���4�����

