

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are angineered to

Details

XF

Product Status	Active
Applications	USB Microcontroller
Core Processor	M8C
Program Memory Type	FLASH (16kB)
Controller Series	CY7C643xx
RAM Size	1K x 8
Interface	I ² C, SPI, USB
Number of I/O	11
Voltage - Supply	3V ~ 5.5V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	16-UFQFN
Supplier Device Package	16-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy7c64315-16lkxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Designing with PSoC Designer

The development process for the PSoC device differs from that of a traditional fixed-function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and lowering inventory costs. These configurable resources, called PSoC blocks, have the ability to implement a wide variety of user-selectable functions. The PSoC development process is:

- 1. Select user modules.
- 2. Configure user modules.
- 3. Organize and connect.
- 4. Generate, verify, and debug.

Select User Modules

PSoC Designer provides a library of prebuilt, pretested hardware peripheral components called user modules. User modules make selecting and implementing peripheral devices, both analog and digital, simple.

Configure User Modules

Each user module that you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a Pulse width modulator (PWM) user module configures one or more digital PSoC blocks, one for each eight bits of resolution. Using these parameters, you can establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All of the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module data sheets explain the internal operation of the user module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information that you may need to successfully implement your design.

Organize and Connect

Build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. Perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides APIs with high-level functions to control and respond to hardware events at run time, and interrupt service routines that you can adapt as needed.

A complete code development environment allows you to develop and customize your applications in C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's Debugger (accessed by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint, and watch-variable features, the debug interface provides a large trace buffer. It allows you to define complex breakpoint events that include monitoring address and data bus values, memory locations, and external signals.

32-pin part pinout

Figure 7. CY7C64343/CY7C64345/CY7C64346 32-pin enCoRe V USB Device

Pin Definitions

32-pin part pinout (QFN)

Pin No.	Туре	Name	Description
1	I/OH	P0[1]	Digital I/O
2	I/O	P2[5]	Digital I/O, crystal output (Xout)
3	I/O	P2[3]	Digital I/O, crystal Input (Xin)
4	I/O	P2[1]	Digital I/O
5	I/OHR	P1[7]	Digital I/O, I ² C SCL, SPI SS
6	I/OHR	P1[5]	Digital I/O, I ² C SDA, SPI MISO
7	I/OHR	P1[3]	Digital I/O, SPI CLK
8	I/OHR	P1[1] ^[3, 4]	Digital I/O, ISSP CLK, I ² C SCL, SPI MOSI
9	Power	V _{SS}	Ground
10	I/O	D+	USB PHY
11	I/O	D-	USB PHY
12	Power	V _{DD}	Supply voltage
13	I/OHR	P1[0] ^[3, 4]	Digital I/O, ISSP DATA, I ² C SDA, SPI CLK
14	I/OHR	P1[2]	Digital I/O
15	I/OHR	P1[4]	Digital I/O, optional external clock input (EXTCLK)
16	I/OHR	P1[6]	Digital I/O
17	Reset	XRES	Active high external reset with internal pull down
18	I/O	P3[0]	Digital I/O
19	I/O	P3[2]	Digital I/O
20	I/O	P2[0]	Digital I/O
21	I/O	P2[2]	Digital I/O
22	I/O	P2[4]	Digital I/O
23	I/O	P2[6]	Digital I/O
24	I/OH	P0[0]	Digital I/O
25	I/OH	P0[2]	Digital I/O
26	I/OH	P0[4]	Digital I/O
27	I/OH	P0[6]	Digital I/O
28	Power	V _{DD}	Supply voltage
29	I/OH	P0[7]	Digital I/O
30	I/OH	P0[5]	Digital I/O
31	I/OH	P0[3]	Digital I/O
32	Power	V _{SS}	Ground
CP	Power	V _{SS}	Ensure the center pad is connected to ground

LEGEND I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output

Notes
3. During power up or reset event, device P1[0] and P1[1] may disturb the l²C bus. Use alternate pins if issues are encountered.
4. These are the in-system serial programming (ISSP) pins that are not High Z at power on reset (POR).

Pin Definitions

48-pin Part Pinout (QFN)

Pin No.	Туре	Pin Name	Description
24	I/OHR	P1[4]	Digital I/O, optional external clock input (EXTCLK)
25	I/OHR	P1[6]	Digital I/O
26	XRES	Ext Reset	Active high external reset with internal pull down
27	I/O	P3[0]	Digital I/O
28	I/O	P3[2]	Digital I/O
29	I/O	P3[4]	Digital I/O
30	I/O	P3[6]	Digital I/O
31	I/O	P4[0]	Digital I/O
32	I/O	P4[2]	Digital I/O
33	I/O	P2[0]	Digital I/O
34	I/O	P2[2]	Digital I/O
35	I/O	P2[4]	Digital I/O
36	I/O	P2[6]	Digital I/O
37	I/OH	P0[0]	Digital I/O
38	I/OH	P0[2]	Digital I/O
39	I/OH	P0[4]	Digital I/O
40	I/OH	P0[6]	Digital I/O
41	Power	V _{DD}	Supply voltage
42	NC	NC	No connection
43	NC	NC	No connection
44	I/OH	P0[7]	Digital I/O
45	I/OH	P0[5]	Digital I/O
46	I/OH	P0[3]	Digital I/O
47	Power	V _{SS}	Supply ground
48	I/OH	P0[1]	Digital I/O
CP	Power	V _{SS}	Ensure the center pad is connected to ground

LEGEND I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output

Register Reference

The section discusses the registers of the enCoRe V device. It lists all the registers in mapping tables, in address order.

Register Conventions

The register conventions specific to this section are listed in the following table.

Table 1. Register Conventions

Convention	Description
R	Read register or bits
W	Write register or bits
L	Logical register or bits
С	Clearable register or bits
#	Access is bit specific

Register Mapping Tables

The enCoRe V device has a total register address space of 512 bytes. The register space is also referred to as I/O space and is broken into two parts: Bank 0 (user space) and Bank 1 (configuration space). The XIO bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XIO bit is set, the user is said to be in the "extended" address space or the "configuration" registers.

Table 2. Register Map Bank 0 Table: User Space

Name	Addr (0, Hex)	Access	Name	Addr (0, Hex)	Access	Name	Addr (0, Hex)	Access	Name	Addr (0, Hex)	Access
PRT0DR	00	RW	EP1_CNT0	40	#		80			C0	
PRT0IE	01	RW	EP1_CNT1	41	RW		81			C1	
	02		EP2_CNT0	42	#		82			C2	
	03		EP2_CNT1	43	RW		83			C3	
PRT1DR	04	RW	EP3_CNT0	44	#		84			C4	
PRT1IE	05	RW	EP3_CNT1	45	RW		85			C5	
	06		EP4_CNT0	46	#		86			C6	
	07		EP4_CNT1	47	RW		87			C7	
PRT2DR	08	RW	EP5_CNT0	48	#		88		I2C_XCFG	C8	RW
PRT2IE	09	RW	EP5_CNT1	49	RW		89		I2C_XSTAT	C9	R
	0A		EP6_CNT0	4A	#		8A		I2C_ADDR	CA	RW
-	0B		EP6_CNT1	4B	RW		8B		I2C_BP	CB	R
PRT3DR	0C	RW	EP7 CNT0	4C	#		8C		I2C CP	CC	R
PRT3IE	0D	RW	EP7 CNT1	4D	RW		8D		CPU BP	CD	RW
	0E		EP8 CNT0	4E	#		8E		CPU CP	CE	R
	0F		EP8 CNT1	4F	RW		8F		I2C BUF	CF	RW
PRT4DR	10	RW	-	50			90		CUR PP	D0	RW
PRT4IE	11	RW		51			91		STK PP	D1	RW
	12			52			92		-	D2	
-	13			53			93		IDX PP	D3	RW
-	14		-	54			94		MVR PP	D4	RW
-	15		-	55			95		MVW PP	D5	RW
-	16			56			96		I2C CFG	D6	RW
-	17			57			97		I2C SCR	D7	#
-	18		PMA0 DR	58	RW		98		I2C DR	D8	RW
-	19		PMA1 DR	59	RW		99			D9	
	1A		PMA2_DR	5A	RW		9A		INT CLR0	DA	RW
	1B		PMA3_DR	5B	RW		9B		INT_CLR1	DB	RW
	10		PMA4_DR	5C	RW		90		INT CLR2	DC	RW
	1D		PMA5_DR	5D	RW		9D				
	1F		PMA6_DR	5E	RW		9F		INT MSK2	DE	RW
	1F		PMA7_DR	5E	RW		9F		INT_MSK1	DE	RW
	20			60			A0		INT_MSK0	F0	RW
	21			61			A1		INT SW FN	 F1	RW
	22			62			A2		INT VC	E2	RC
	23			63			A3		RES WDT	E2	W
	24		PMA8 DR	64	RW		A4			F4	
	25			65	RW		A5			E5	
	26		PMA10 DR	66	RW		A6			E6	
	27		PMA11_DR	67	RW		A7			E0 F7	
	28		PMA12 DR	68	RW/		48			E8	
SPL TXR	29	W	PMA13_DR	69	RW		A9			F9	
SPL RXR	24	R	PMA14 DR	68 6A	RW		AA			FA	
SPL CR	2R	#	PMA15_DR	6R	RW		AB			FB	
	20	π	TMP DR0	60	RW		AC			FC	
	2D		TMP_DR1	6D	RW		AD			ED	
	2F		TMP_DR2	6F	RW		AF			EF	
	2F		TMP_DR3	6F	RW		AF			EF	
	30			70		PT0 CFG	B0	RW		FO	
USB_SOF0	31	R		71		PT0_DATA1	B1	RW		F1	
USB SOF1	32	R		72		PT0 DATA0	B2	RW		F2	
USB_CR0	33	RW		73		PT1_CFG	B3	RW		F3	
USBIO CRO	34	#		74		PT1 DATA1	B4	RW		F4	
USBIO_CR1	35	#		75		PT1 DATA0	B5	RW		F5	
EP0 CR	36	#		76		PT2 CFG	B6	RW		F6	
EP0 CNT0	37	#		77		PT2 DATA1	B7	RW	CPU F	F7	RL
EP0 DR0	38	RW		78		PT2 DATA0	B8	RW	-	F8	
EP0 DR1	39	RW		79			B9			F9	
EP0 DR2	3A	RW		7A			BA			FA	
EP0 DR3	3B	RW		7B			BB			FB	
EP0 DR4	30	RW		70			BC			FC	
EP0 DR5	3D	RW		7D			BD			FD	
EP0 DR6	3F	RW		7F			BE		CPU_SCR1	FF	#
FP0 DR7	3F	RW		7F			BE		CPU_SCR0	FF	 #
									0.0_0010		, ir

Gray fields are reserved; do not access these fields. # Access is bit specific.

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Table 4. Absolute Maximum Ratings

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{STG}	Storage temperature ^[10]	Higher storage temperatures reduces data retention time. Recommended Storage Temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 85°C degrades reliability.	-55	+25	+125	°C
V _{DD}	Supply voltage relative to V_{SS}		-0.5	-	+6.0	V
V _{IO}	DC input voltage		$V_{SS} - 0.5$	-	V _{DD} + 0.5	V
V _{IOZ}	DC voltage applied to tristate		$V_{SS} - 0.5$	-	V _{DD} + 0.5	V
I _{MIO}	Maximum current into any port pin		-25	-	+50	mA
ESD	Electrostatic discharge voltage	Human body model ESD	2000	_	-	V
LU ^[8]	Latch up current	In accordance with JESD78 standard	-	-	200	mA

Operating Temperature

Table 5. Operating Temperature

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{AI}	Ambient industrial temperature		-40	-	+85	°C
T _{AC}	Ambient commercial temperature		0	-	+70	°C
T _{JI}	Operational industrial die temperature ^[11]	The temperature rise from ambient to junction is package specific. Refer the table Thermal Impedances per Package on page 31. The user must limit the power consumption to comply with this requirement.	-40	-	+100	°C
T _{JC}	Operational commercial die temperature	The temperature rise from ambient to junction is package specific. Refer the table Thermal Impedances per Package on page 31. The user must limit the power consumption to comply with this requirement.	0	_	+85	°C

Notes

When V_{DD} remains in the range from 1.71 V to 1.9 V for more than 50 µsec, the slew rate when moving from the 1.71 V to 1.9 V range to greater than 2 V must be slower than 1 V/500 µsec to avoid triggering POR. The only other restriction on slew rates for any other voltage range or transition is the SRPOWER_UP parameter.

Errata: For Port 1 pins P1[1], P1[4], and P1[5] 300 Ohm external resistor is needed to meet this spec. Refer to "Errata" on page 35 for more details.
 If powering down in standby sleep mode, to properly detect and recover from a V_{DD} brown out condition any of the following actions must be taken:

Bring the device out of sleep before powering down.
Assure that V_{DD} falls below 100 mV before powering back up.
Set the No Buzz bit in the OSC_CR0 register to keep the voltage monitoring circuit powered during sleep.
Increase the buzz rate to assure that the falling edge of V_{DD} is captured. The rate is configured through the PSSDC bits in the SLP_CFG register. For the referenced registers, refer to the enCoRe V Technical Reference Manual. In deep sleep mode, additional low power voltage monitoring circuitry allows V_{DD} brown out conditions to be detected for edge rates slower than 1 V/ms.

DC Electrical Characteristics

DC Chip Level Specifications

Table 6 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 6. DC Chip Level Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{DD}	Operating voltage ^[7, 9]	No USB activity.	3.0	-	5.5	V
I _{DD24,3}	Supply current, CPU = 24 MHz	Conditions are V_{DD} = 3.0 V, T_A = 25 °C, CPU = 24 MHz, No USB/I ² C/SPI.	-	2.9	4.0	mA
I _{DD12,3}	Supply current, CPU = 12 MHz	Conditions are V _{DD} = 3.0 V, T _A = 25 °C, CPU = 12 MHz, No USB/I ² C/SPI.	-	1.7	2.6	mA
I _{DD6,3}	Supply current, CPU = 6 MHz	Conditions are V_{DD} = 3.0 V, T_A = 25 °C, CPU = 6 MHz, No USB/I ² C/SPI.	-	1.2	1.8	mA
I _{SB1,3}	Standby current with POR, LVD, and sleep timer	V _{DD} = 3.0 V, T _A = 25 °C, I/O regulator turned off.	-	1.1	1.5	μA
I _{SB0,3}	Deep sleep current	V _{DD} = 3.0 V, T _A = 25 °C, I/O regulator turned off.	-	0.1	-	μA
V _{DDUSB}	Operating voltage	USB activity, USB regulator enabled	4.35	-	5.25	V
I _{DD24,5}	Supply current, CPU = 24 MHz	Conditions are V _{DD} = 5.0 V, T _A = 25 °C, CPU = 24 MHz, IMO = 24 MHz USB Active, No I ² C/SPI.	-	7.1	-	mA
I _{DD12,5}	Supply current, CPU = 12 MHz	Conditions are V _{DD} = 5.0 V, T _A = 25 °C, CPU = 12 MHz, IMO = 24 MHz USB Active, No I ² C/SPI.	-	6.2	_	mA
I _{DD6,5}	Supply current, CPU = 6 MHz	Conditions are V _{DD} = 5.0 V, T _A = 25 °C, CPU = 6 MHz, IMO = 24 MHz USB Active, No I ² C/SPI	-	5.8	-	mA
I _{SB1,5}	Standby current with POR, LVD, and sleep timer	V _{DD} = 5.0 V, T _A = 25 °C, I/O regulator turned off.	-	1.1	-	μA
I _{SB0,5}	Deep sleep current	V_{DD} = 5.0 V, T_A = 25 °C, I/O regulator turned off.	_	0.1	-	μA
V _{DDUSB}	Operating voltage	USB activity, USB regulator bypassed	3.15	3.3	3.60	V

Notes

^{10.} Higher storage temperatures reduce data retention time. Recommended storage temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 85 °C degrade reliability.

^{11.} The temperature rise from ambient to junction is package specific. See Package Handling on page 31. The user must limit the power consumption to comply with this requirement.

Table 7. DC Characteristics – USB Interface

Symbol	Description	Conditions	Min	Тур	Max	Units
Rusbi	USB D+ pull-up resistance	With idle bus	0.900	-	1.575	kΩ
Rusba	USB D+ pull-up resistance	While receiving traffic	1.425	-	3.090	kΩ
Vohusb	Static output high		2.8	-	3.6	V
Volusb	Static output low		-	-	0.3	V
Vdi	Differential input sensitivity		0.2	-	-	V
Vcm	Differential input common mode range		0.8	-	2.5	V
Vse	Single-ended receiver threshold		0.8	-	2.0	V
Cin	Transceiver capacitance			-	50	pF
lio	High Z state data Line Leakage	On D+ or D– line	-10	-	+10	μA
Rps2	PS/2 Pull Up Resistance		3	5	7	kΩ
Rext	External USB Series Resistor	In series with each USB pin	21.78	22.0	22.22	Ω

ADC Electrical Specifications

Table 8. ADC User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Input						
V _{IN}	Input voltage range		0	_	VREFADC	V
C _{IIN}	Input capacitance		-	-	5	pF
R _{IN}	Input resistance	Equivalent switched cap input resistance for 8-, 9-, or 10-bit resolution	1/(500fF* Data Clock)	1/(400fF* Data Clock)	1/(300fF* Data Clock)	Ω
Reference						
V _{REFADC}	ADC reference voltage		1.14	-	1.26	V
Conversion Rate						
F _{CLK}	Data clock	Source is chip's internal main oscillator. See AC Chip-Level Specifications for accuracy	2.25	_	6	MHz
S8	8-bit sample rate	Data Clock set to 6 MHz. Sample Rate = 0.001/ (2^Resolution/Data Clock)	_	23.4375	-	ksps
S10	10-bit sample rate	Data Clock set to 6 MHz. Sample Rate = 0.001/ (2^Resolution/Data Clock)	_	5.859	-	ksps
DC Accuracy						
RES	Resolution	Can be set to 8-, 9-, or 10-bit	8	-	10	bits
DNL	Differential nonlinearity		-1	-	+2	LSB
INL	Integral nonlinearity		-2	-	+2	LSB
E _{Offset}	Offset error	8-bit resolution	0	3.2	19.2	LSB
		10-bit resolution	0	12.8	76.8	LSB
E _{gain}	Gain error	For any resolution	-5	-	+5	%FSR
Power						
I _{ADC}	Operating current		-	2.1	2.6	mA
PSRR	Power supply rejection ratio	PSRR (V _{DD} > 3.0 V)	_	24	_	dB
		PSRR (V _{DD} < 3.0 V)	_	30	_	dB

DC POR and LVD Specifications

Table 10 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 10. DC POR and LVD Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{PPOR}	V _{DD} value for PPOR trip ^[12] PORLEV[1:0] = 10b		_	2.82	2.95	V
V _{LVD0} V _{LVD1} V _{LVD2} V _{LVD3} V _{LVD4} V _{LVD5} V _{LVD6} V _{LVD7}	$\begin{array}{l} V_{DD} \text{ value for LVD trip} \\ VM[2:0] = 000b \\ VM[2:0] = 001b \\ VM[2:0] = 010b \\ VM[2:0] = 011b \\ VM[2:0] = 100b \\ VM[2:0] = 101b \\ VM[2:0] = 110b \\ VM[2:0] = 111b \end{array}$		- 2.85 2.95 3.06 4.62	- 2.92 3.02 3.13 - 4.73	- 2.99 3.09 3.20 - 4.83	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

DC Programming Specifications

Table 11 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 11. DC Programming Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{DDIWRITE}	Supply voltage for flash write operations		1.71		5.25	V
I _{DDP}	Supply current during programming or verify		-	5	25	mA
V _{ILP}	Input low voltage during programming or verify	See appropriate DC General Purpose I/O Specifications table	_	-	V _{IL}	V
V _{IHP}	Input high voltage during programming or verify		1.71	_	V _{DDIWRITE} + 0.3	V
I _{ILP}	Input current when applying Vilp to P1[0] or P1[1] during programming or verify ^[13]		_	-	0.2	mA
I _{IHP}	Input current when applying Vihp to P1[0] or P1[1] during programming or verify ^[13]		_	_	1.5	mA
V _{OLP}	Output low voltage during programming or verify		-	-	V _{SS} + 0.75	V
V _{OHP}	Output high voltage during programming or verify		V _{DDIWRITE} – 0.9	-	V _{DDIWRITE}	V
Flash _{ENPB}	Flash write endurance ^[14]		50,000	-	-	Cycles
Flash _{DR}	Flash data retention ^[15]		10	20	-	Years

Notes

- 12. Always greater than 50 mV above V_{PPOR} (PORLEV = 10) for falling supply.
- 13. Driving internal pull down resistor.
- 14. Erase/write cycles per block.
- 15. Following maximum Flash write cycles at Tamb = 55 $^{\circ}$ C and Tj = 70 $^{\circ}$ C.

AC Electrical Characteristics

AC Chip Level Specifications

The following tables list guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 12. AC Chip Level Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{CPU}	Processing frequency ^[16]		5.7	-	25.2	MHz
F _{32K1}	Internal low-speed oscillator (ILO) frequency	Trimmed ^[17]	19	32	50	kHz
F _{32K_U}	ILO untrimmed frequency)		13	32	82	kHz
F _{32K2}	ILO frequency	Untrimmed	13	32	82	kHz
F _{IMO24}	Internal main oscillator (IMO) stability for 24 MHz \pm 5% ⁽¹²⁾		22.8	24	25.2	MHz
F _{IMO12}	IMO stability for 12 MHz ^[17]		11.4	12	12.6	MHz
F _{IMO6}	IMO stability for 6 MHz ^[17]		5.7	6.0	6.3	MHz
DCIMO	Duty cycle of IMO		40	50	60	%
DC _{ILO}	ILO duty cycle		40	50	60	%
SR _{POWER_UP}	Power supply slew rate		-	-	250	V/ms
T _{XRST}	External reset pulse width at power-up	After supply voltage is valid	1	-	-	ms
T _{XRST2}	External reset pulse width after power-up ^[18]	Applies after part has booted	10	-	-	μS

Table 13. AC Characteristics – USB Data Timings

Symbol	Description	Conditions	Min	Тур	Max	Units
Tdrate	Full speed data rate	Average bit rate	11.97	12	12.03	MHz
Tdjr1	Receiver data jitter tolerance	To next transition	-18.5	-	18.5	ns
Tdjr2	Receiver data jitter tolerance	To pair transition	-9	-	9	ns
Tudj1	Driver differential jitter	To next transition	-3.5	-	3.5	ns
Tudj2	Driver differential jitter	To pair transition	-4.0	-	4.0	ns
Tfdeop	Source jitter for differential transition	To SE0 transition	-2	-	5	ns
Tfeopt	Source SE0 interval of EOP		160	-	175	ns
Tfeopr	Receiver SE0 interval of EOP		82	-	-	ns
Tfst	Width of SE0 interval during differential transition		-	-	14	ns

Table 14. AC Characteristics – USB Driver

Symbol	Description	Conditions	Min	Тур	Max	Units
Tr	Transition rise time	50 pF	4	-	20	ns
Tf	Transition fall time	50 pF	4	-	20	ns
TR ^[19]	Rise/fall time matching		90.00	-	111.1	%
Vcrs	Output signal crossover voltage		1.3	_	2.0	V

Notes

16. V_{DD} = 3.0 V and T_J = 85 °C, CPU speed.
17. Trimmed for 3.3 V operation using factory trim values.
18. The minimum required XRES pulse length is longer when programming the device (see Table 17 on page 24).
19. Errata: Rising to falling rate matching of the USB D+ and D- lines has a corner case issue when operating voltage is below 3.3 V. Refer to "Errata" on page 35 for more details.

AC General Purpose I/O Specifications

Table 15 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{GPIO}	GPIO operating frequency	Normal strong mode, Ports 0, 1	-	-	12	MHz
TRise23	Rise time, strong mode Ports 2, 3	V _{DD} = 3.0 to 3.6 V, 10% - 90%	15	-	80	ns
TRise01	Rise time, strong mode Ports 0, 1	V _{DD} = 3.0 to 3.6 V, 10% - 90%	10	-	50	ns
TFall	Fall time, strong mode All Ports	V _{DD} = 3.0 to 3.6 V, 10% - 90%	10	_	50	ns

Table 15. AC GPIO Specifications

Figure 11. GPIO Timing Diagram

AC External Clock Specifications

Table 16 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 16. AC External Clock Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{OSCEXT}	Frequency		0.750	-	25.2	MHz
-	High period		20.6	-	5300	ns
-	Low period		20.6	-	-	ns
_	Power-up IMO to switch		150	-	_	μS

AC Programming Specifications

Table 17 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 17. AC Programming Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{RSCLK}	Rise time of SCLK		1	-	20	ns
T _{FSCLK}	Fall time of SCLK		1	-	20	ns
T _{SSCLK}	Data setup time to falling edge of SCLK		40	-	-	ns
T _{HSCLK}	Data hold time from falling edge of SCLK		40	-	-	ns
F _{SCLK}	Frequency of SCLK		0	-	8	MHz
T _{ERASEB}	Flash erase time (Block)		-	-	18	ms
T _{WRITE}	Flash block write time		-	-	25	ms
T _{DSCLK1}	Data out delay from falling edge of SCLK,	V _{DD} > 3.6 V	-	-	60	ns
T _{DSCLK2}	Data out delay from falling edge of SCLK	3.0 V < V _{DD} < 3.6 V	-	-	85	ns
T _{XRST3}	External reset pulse width after power-up	Required to enter programming mode when coming out of sleep	263	-	-	μS

AC I²C Specifications

Table 18 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table To. AC Characteristics of the FC SDA and SCL Fin	Table 18.	AC Characteristics	of the I ² C SDA a	nd SCL Pins
--	-----------	---------------------------	-------------------------------	-------------

Symbol	Description		Standard Mode		Fast Mode	
Symbol	Description	Min	Max	Min	Max	Units
F _{SCLI2C}	SCL clock frequency	0	100	0	400	kHz
T _{HDSTAI2C}	Hold time (repeated) START condition. After this period, the first clock pulse is generated	4.0	-	0.6	-	μS
T _{LOWI2C}	LOW period of the SCL clock	4.7	-	1.3	-	μS
T _{HIGHI2C}	HIGH period of the SCL clock	4.0	Ι	0.6	Ι	μS
T _{SUSTAI2C}	Setup time for a repeated START condition	4.7	Ι	0.6	Ι	μS
T _{HDDATI2C}	Data hold time	0	-	0	-	μS
T _{SUDATI2C}	Data setup time	250	-	100 ^[20]	-	ns
T _{SUSTOI2C}	Setup time for STOP condition	4.0	-	0.6	-	μS
T _{BUFI2C}	Bus free time between a STOP and START condition	4.7	-	1.3	-	μS
T _{SPI2C}	Pulse width of spikes are suppressed by the input filter	-	-	0	50	ns

Figure 13. Definition of Timing for Fast/Standard Mode on the I²C Bus

^{20.} A Fast mode I²C bus device can be used in a standard mode I²C bus system, but the requirement t_{SUDAT} ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + t_{SUDAT} = 1000 + 250 = 1250 ns (according to the standard mode I²C bus specification) before the SCL line is released.

Table 19. SPI Master AC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{SCLK}	SCLK clock frequency		-	-	6	MHz
DC	SCLK duty cycle		-	50	-	%
T _{SETUP}	MISO to SCLK setup time		60	-	-	ns
T _{HOLD}	SCLK to MISO hold time		40	-	-	ns
T _{OUT_VAL}	SCLK to MOSI valid time		-	-	40	ns
T _{OUT_H}	SCLK to MOSI hold time		40	-	_	ns

Figure 14. SPI Master Mode 0 and 2

Figure 17. SPI Slave Mode 1 and 3

Package Handling

Some IC packages require baking before they are soldered onto a PCB to remove moisture that may have been absorbed after leaving the factory. A label on the package has details about the actual bake temperature and the minimum bake time to remove this moisture. The maximum bake time is the aggregate time that the parts exposed to the bake temperature. Exceeding this exposure may degrade device reliability.

Table 21. Package Handling

Parameter	Description	Minimum	Typical	Maximum	Unit
TBAKETEMP	Bake temperature	-	125	See package label	°C
TBAKETIME	Bake time	See package label	-	72	hours

Thermal Impedances

Table 22. Thermal Impedances per Package

Package	Typical θ _{JA} ^[21]
16-pin QFN	32.69 °C / W
32-pin QFN ^[22]	19.51 °C / W
48-pin QFN ^[22]	17.68 °C / W

Capacitance on Crystal Pins

Table 23. Typical Package Capacitance on Crystal Pins

Package	Package Capacitance
32-pin QFN	3.2 pF
48-pin QFN	3.3 pF

Solder Reflow Peak Temperature

Following is the minimum solder reflow peak temperature to achieve good solderability.

Table 24. Solder Reflow Peak Temperature

Package	Minimum Peak Temperature ^[23]	Maximum Peak Temperature
16-pin QFN	240 °C	260 °C
32-pin QFN	240 °C	260 °C
48-pin QFN	240 °C	260 °C

^{21.} $T_J = T_A + Power \times \theta_{JA}$. 22. To achieve the thermal impedance specified for the package, solder the center thermal pad to the PCB ground plane.

^{23.} Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220 ± 5 °C with Sn-Pb or 245 ± 5 °C with Sn-Ag-Cu paste. Refer to the solder manufacturer specifications.

Ordering Code Definitions

Figure 21. Eye Diagram

■WORKAROUND

Avoid the trigger condition by using lower tolerance voltage regulators.

■FIX STATUS

This issue will not be corrected in the next new silicon revision.

Document History Page (continued)

Document Title: CY7C6431x/CY7C6434x/CY7C6435x, enCoRe™ V Full Speed USB Controller Document Number: 001-12394						
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change		
۴F	2583853	TYJ / PYRS / HMT	10/10/08	Converted from Preliminary to Final Added operating voltage ranges with USB ADC resolution changed from 10-bit to 8-bit Rephrased battery monitoring clause in page 1 to include "with external components" Included ADC specifications table Included Voh7, Voh8, Voh9, Voh10 specs Flash data retention – condition added to Note [11] Input leakage spec changed to 25 nA max Under AC Char, Frequency accuracy of ILO corrected GPIO rise time for ports 0,1 and ports 2,3 made common AC Programming specifications updated Included AC Programming cycle timing diagram AC SPI specification updated Spec change for 32-QFN package Input Leakage Current maximum value changed to 1 µA Updated V _{OHV} parameter in Table 13 Updated thermal impedances for the packages Update Development Tools, add Designing with PSoC Designer. Edit, fix links and table format. Update TMs.		
*G	2653717	DVJA / PYRS	02/04/09	Updated Features, Functional Overview, Development Tools, and Designing with PSoC Designer sections with edits. Removed 'GUI - graphical user interface' from Document Conventions acronym table. Removed 'O - Only a read/write register or bits' in Table 4 Edited Table 8: removed 10-bit resolution information and corrected units column. Added package handling section Added 8K part 'CY7C64343-32LQXC' to Ordering Information.		
*H	2714694	DVJA / AESA	06/04/2009	Updated Block Diagram. Added Full Speed USB, 10-bit ADC, SPI, and I2C Slave sections. ADC Resolution changed from 8-bit to 10-bit Updated Table 9 DC Chip Level Specs Updated Table10 DC Char - USB Interface Updated Table 12 DC POR and LDV Specs Changed operating temperature from Commercial to Industrial Changed Temperature Range to Industrial: -40 to 85°C Figure 9: Changed minimum CPU Frequency from 750 kHz to 5.7 MHz Table 14: Removed "Maximum" from the F _{CPU} description Ordering Information: Replaced 'C' with 'I' in all part numbers to denote Industrial Temp Range		
*1	2764460	DVJA / AESA	09/16/2009	Changed Table 12: ADC Specs Added F_{32K2} (Untrimmed) spec to Table 16: AC Chip level Specs Changed T_{RAMP} spec to $SR_{POWER UP}$ in Table 16: AC Chip Level Specs Added Table 27: Typical Package Capacitance on Crystal Pins		
*J	2811903	DVJA	11/20/2009	Added USB-IF TID number in Features on page 1. Added Note 5 on page 18. Changed $\rm V_{IHP}$ in Table 12 on page 22.		

Document History Page (continued)

Document Title: CY7C6431x/CY7C6434x/CY7C6435x, enCoRe™ V Full Speed USB Controller Document Number: 001-12394					
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change	
*S	4578605	GINS	12/11/2014	Updated Pin Information: Updated 32-pin part pinout: Updated Figure 7 (No change in figure, included CY7C64346 in figure caption). Updated Package Diagrams: spec 001-09116 – Changed revision from *I to *J. Updated Ordering Information: Updated Table 25: Updated part numbers.	
*Т	5548557	ANKC	12/12/2016	Updated Cypress Logo, Sales Page and Disclaimer. Updated Figure 20 (spec 001-13191 *G to *H) in Package Diagrams. Removed the following obsolete part numbers (Table 26) in Ordering Information: CY7C64343-32LQXI, CY7C64343-32LQXIT, CY7C64345-32LQXI, CY7C64345-32LQXIT, CY7C64356-48LTXI, CY7C64356-48LTXIT.	