

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application charific microcontrollars are analyzared to

Details

Details	
Product Status	Active
Applications	USB Microcontroller
Core Processor	M8C
Program Memory Type	FLASH (8kB)
Controller Series	CY7C643xx
RAM Size	1K x 8
Interface	I ² C, SPI, USB
Number of I/O	25
Voltage - Supply	3V ~ 5.5V
Operating Temperature	0°C ~ 70°C
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy7c64343-32lqxct

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SPI configuration register (SPI_CFG) sets master/slave functionality, clock speed, and interrupt select. SPI control register (SPI_CR) provides four control bits and four status bits for device interfacing and synchronization.

The SPIM hardware has no support for driving the Slave Select (SS_) signal. The behavior and use of this signal is dependent on the application and enCoRe V device and, if required, must be implemented in firmware.

There is an additional data input in the SPIS, Slave Select (SS_), which is an active low signal. SS_ must be asserted to enable the SPIS to receive and transmit. SS_ has two high level functions:

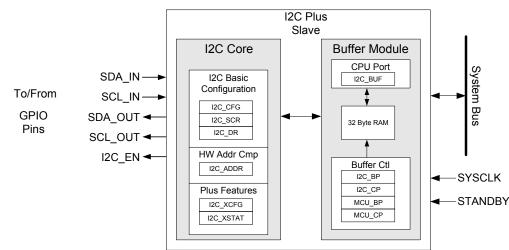
- To allow for the selection of a given slave in a multi-slave environment.
- To provide additional clocking for TX data queuing in SPI modes 0 and 1.

I²C Slave

The I^2C slave enhanced communications block is a serial-to-parallel processor, designed to interface the enCoRe V device to a two-wire I^2C serial communications bus. To eliminate the need for excessive CPU intervention and overhead, the block provides I^2C -specific support for status detection and generation of framing bits. By default, the I^2C slave enhanced module is firmware compatible with the previous generation of I^2C slave functionality. However, this module provides new features that are configurable to implement significant flexibility for both internal and external interfacing. The basic I^2C features include:

- Slave, transmitter, and receiver operation.
- Byte processing for low CPU overhead.

- Interrupt or polling CPU interface.
- Support for clock rates of up to 400 kHz.
- 7- or 10-bit addressing (through firmware support).
- SMBus operation (through firmware support).


Enhanced features of the I²C Slave Enhanced Module include:

- Support for 7-bit hardware address compare.
- Flexible data buffering schemes.
- A "no bus stalling" operating mode.
- A low power bus monitoring mode.

The l^2C block controls the data (SDA) and the clock (SCL) to the external l^2C interface through direct connections to two dedicated GPIO pins. When l^2C is enabled, these GPIO pins are not available for general purpose use. The enCoRe V CPU firmware interacts with the block through I/O register reads and writes, and firmware synchronization is implemented through polling and/or interrupts.

In the default operating mode, which is firmware compatible with previous versions of I^2C slave modules, the I^2C bus is stalled upon every received address or byte, and the CPU is required to read the data or supply data as required before the I^2C bus continues. However, this I^2C Slave Enhanced module provides new data buffering capability as an enhanced feature. In the EZI²C buffering mode, the I^2C slave interface appears as a 32-byte RAM buffer to the external I^2C master. Using a simple predefined protocol, the master controls the read and write pointers into the RAM. When this method is enabled, the slave never stalls the bus. In this protocol, the data available in the RAM (this is managed by the CPU) is valid.

Additional System Resources

System resources, some of which have been previously listed, provide additional capability useful to complete systems. Additional resources include low voltage detection and power on reset. The following statements describe the merits of each system resource.

- Low voltage detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced POR (power on reset) circuit eliminates the need for a system supervisor.
- The 5 V maximum input, 1.8, 2.5, or 3 V selectable output, LDO regulator provides regulation for I/Os. A register controlled bypass mode enables the user to disable the LDO.
- Standard Cypress PSoC IDE tools are available for debugging the enCoRe V family of parts.

Getting Started

The quickest path to understanding the enCoRe V silicon is by reading this data sheet and using the PSoC Designer Integrated Development Environment (IDE). This datasheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications. For in-depth information, along with detailed programming information, see the enCoReTM V CY7C643xx, enCoReTM V LV CY7C604xx Technical Reference Manual (TRM) for this PSoC device.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device data sheets on the web at http://www.cypress.com.

Application Notes

Application notes are an excellent introduction to the wide variety of possible PSoC designs and are available at http://www.cypress.com.

Development Kits

PSoC development kits are available online from Cypress at http://www.cypress.com and through a growing number of regional and global distributors, including Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

Training

Free PSoC technical training (on demand, webinars, and workshops) is available online at http://www.cypress.com. The training covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC Consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC Consultant, go to http://www.cypress.com and look for CYPros Consultants.

Solutions Library

Visit our growing library of solution-focused designs at http://www.cypress.com. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

For assistance with technical issues, search KnowledgeBase articles and forums at http://www.cypress.com. If you cannot find an answer to your question, call technical support at 1-800-541-4736.

Development Tools

PSoC Designer™ is the revolutionary Integrated Design Environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes:

- Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration
- Extensive user module catalog
- Integrated source-code editor (C and assembly)
- Free C compiler with no size restrictions or time limits
- Built-in debugger
- In-circuit emulation
- Built-in support for communication interfaces:
- Hardware and software I²C slaves and masters
- □ Full-speed USB 2.0
- Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless

PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7.

PSoC Designer Software Subsystems

Design Entry

In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use the PSoC blocks, which are called user modules. Examples of user modules are analog-to-digital converters (ADCs), digital-to-analog converters (DACs), amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run time. In essence, this allows you to use more than 100 percent of PSoC's resources for a given application.

Code Generation Tools

The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. You can develop your design in C, assembly, or a combination of the two.

Assemblers. The assemblers allow you to merge assembly code seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all of the features of C, tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow you to read and program and read and write data memory, and read and write I/O registers. You can read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also allows you to create a trace buffer of registers and memory locations of interest.

Online Help System

The online help system displays online, context-sensitive help. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer.

In-Circuit Emulator

A low-cost, high-functionality In-Circuit Emulator (ICE) is available for development support. This hardware can program single devices.

The emulator consists of a base unit that connects to the PC using a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full-speed (24-MHz) operation.

Pin Information

The enCoRe V USB device is available in a variety of packages which are listed and illustrated in the subsequent tables.

16-pin part pinout

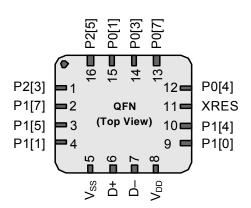


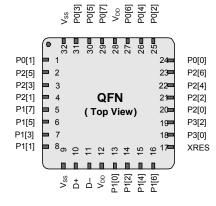
Figure 6. CY7C64315/CY7C64316 16-pin enCoRe V USB Device

Pin Definitions

16-pin part pinout (QFN)

Pin No.	Туре	Name	Description
1	I/O	P2[3]	Digital I/O, crystal input (Xin)
2	I/OHR	P1[7]	Digital I/O, SPI SS, I ² C SCL
3	I/OHR	P1[5]	Digital I/O, SPI MISO, I ² C SDA
4	I/OHR	P1[1] ^[1, 2]	Digital I/O, ISSP CLK, I ² C SCL, SPI MOSI
5	Power	V _{SS}	Ground connection
6	USB line	D+	USB PHY
7	USB line	D-	USB PHY
8	Power	V _{DD}	Supply
9	I/OHR	P1[0] ^[1, 2]	Digital I/O, ISSP DATA, I ² C SDA, SPI CLK
10	I/OHR	P1[4]	Digital I/O, optional external clock input (EXTCLK)
11	Input	XRES	Active high external reset with internal pull-down
12	I/OH	P0[4]	Digital I/O
13	I/OH	P0[7]	Digital I/O
14	I/OH	P0[3]	Digital I/O
15	I/OH	P0[1]	Digital I/O
16	I/O	P2[5]	Digital I/O, crystal output (Xout)

LEGEND I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output


Notes

During power up or reset event, device P1[0] and P1[1] may disturb the I²C bus. Use alternate pins if issues are encountered.
 These are the in-system serial programming (ISSP) pins that are not High Z at power on reset (POR).

32-pin part pinout

Figure 7. CY7C64343/CY7C64345/CY7C64346 32-pin enCoRe V USB Device

Pin Definitions

32-pin part pinout (QFN)

Pin No.	Туре	Name	Description
1	I/OH	P0[1]	Digital I/O
2	I/O	P2[5]	Digital I/O, crystal output (Xout)
3	I/O	P2[3]	Digital I/O, crystal Input (Xin)
4	I/O	P2[1]	Digital I/O
5	I/OHR	P1[7]	Digital I/O, I ² C SCL, SPI SS
6	I/OHR	P1[5]	Digital I/O, I ² C SDA, SPI MISO
7	I/OHR	P1[3]	Digital I/O, SPI CLK
8	I/OHR	P1[1] ^[3, 4]	Digital I/O, ISSP CLK, I ² C SCL, SPI MOSI
9	Power	V _{SS}	Ground
10	I/O	D+	USB PHY
11	I/O	D–	USB PHY
12	Power	V _{DD}	Supply voltage
13	I/OHR	P1[0] ^[3, 4]	Digital I/O, ISSP DATA, I ² C SDA, SPI CLK
14	I/OHR	P1[2]	Digital I/O
15	I/OHR	P1[4]	Digital I/O, optional external clock input (EXTCLK)
16	I/OHR	P1[6]	Digital I/O
17	Reset	XRES	Active high external reset with internal pull down
18	I/O	P3[0]	Digital I/O
19	I/O	P3[2]	Digital I/O
20	I/O	P2[0]	Digital I/O
21	I/O	P2[2]	Digital I/O
22	I/O	P2[4]	Digital I/O
23	I/O	P2[6]	Digital I/O
24	I/OH	P0[0]	Digital I/O
25	I/OH	P0[2]	Digital I/O
26	I/OH	P0[4]	Digital I/O
27	I/OH	P0[6]	Digital I/O
28	Power	V _{DD}	Supply voltage
29	I/OH	P0[7]	Digital I/O
30	I/OH	P0[5]	Digital I/O
31	I/OH	P0[3]	Digital I/O
32	Power	V _{SS}	Ground
CP	Power	V _{SS}	Ensure the center pad is connected to ground

LEGEND I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output

Notes
3. During power up or reset event, device P1[0] and P1[1] may disturb the l²C bus. Use alternate pins if issues are encountered.
4. These are the in-system serial programming (ISSP) pins that are not High Z at power on reset (POR).

Table 3. Register Map Bank 1 Table: Configuration Space

			Table: Cont								
Name	Addr (1, Hex)			Addr (1, Hex)		Name	Addr (1, Hex)	Access	Name	Addr (1, Hex) Access
PRT0DM0	00	RW	PMA4_RA	40	RW		80			C0	
PRT0DM1	01	RW	PMA5_RA	41	RW		81			C1	
	02		PMA6_RA	42	RW		82			C2	_
	03	514	PMA7_RA	43	RW		83			C3	_
PRT1DM0	04	RW	PMA8_WA	44	RW		84			C4	_
PRT1DM1	05	RW	PMA9_WA	45	RW		85			C5	
	06		PMA10_WA	46	RW		86			C6	
	07		PMA11_WA	47	RW		87			C7	
PRT2DM0	08	RW	PMA12_WA	48	RW		88			C8	
PRT2DM1	09	RW	PMA13_WA	49	RW		89			C9	
	0A		PMA14_WA	4A	RW		8A			CA	
	0B		PMA15_WA	4B	RW		8B			CB	
PRT3DM0	0C	RW	PMA8_RA	4C	RW		8C			CC	
PRT3DM1	0D	RW	PMA9_RA	4D	RW		8D			CD	
	0E		PMA10_RA	4E	RW		8E			CE	
	0F		PMA11_RA	4F	RW		8F			CF	
PRT4DM0	10	RW	PMA12_RA	50	RW		90			D0	
PRT4DM1	11	RW	PMA13_RA	51	RW		91			D1	
	12		PMA14_RA	52	RW		92		ECO ENBUS	D2	RW
	13		PMA15_RA	53	RW		93		ECO_TRIM	D3	RW
	14		EP1 CR0	54	#		94			D4	
	15		EP2 CR0	55	#		95			D5	
	16		EP3 CR0	56	#		96			D6	
	17		EP4 CR0	57	#		97			D7	
	18		EP5_CR0	58	#		98		MUX CR0	D8	RW
	19		EP6 CRO	59	#		99		MUX CR1	D9	RW
	1A		EP7 CR0	5A	#		9A		MUX_CR2	DA	RW
	1B		EP8_CR0	5B	#		9B		MUX CR3	DB	RW
	10			5C	"		90		IO_CFG1	DC	RW
	10 1D			5D			9D		OUT P1	DD	RW
	1E			5E			9E		IO CFG2	DE	RW
	1E			5F			9F		MUX CR4	DF	RW
	20			60			A0		OSC CR0	E0	RW
	20			61	1		A0 A1		ECO CFG	E1	#
	21			62			A1 A2		OSC CR2	E2	# RW
	23			63			A2 A3		VLT_CR	E3	RW
	23			64			A3 A4		VLT_CR VLT_CMP	E3 E4	R
					-						ĸ
	25			65		-	A5			E5	
	26			66		-	A6			E6	
	27			67			A7		110 TD	E7	
001 050	28	514		68			A8		IMO_TR	E8	W
SPI_CFG	29	RW		69			A9		ILO_TR	E9	W
	2A			6A			AA			EA	
	2B			6B			AB		SLP_CFG	EB	RW
	2C		TMP_DR0	6C	RW		AC		SLP_CFG2	EC	RW
	2D		TMP_DR1	6D	RW		AD		SLP_CFG3	ED	RW
	2E		TMP_DR2	6E	RW		AE			EE	
	2F		TMP_DR3	6F	RW		AF			EF	
USB_CR1	30	#		70			B0			F0	
	31			71			B1			F1	
	32			72			B2			F2	
	33			73			B3			F3	
PMA0_WA	34	RW		74			B4			F4	
PMA1_WA	35	RW		75			B5			F5	
PMA2_WA	36	RW		76			B6			F6	
PMA3_WA	37	RW		77			B7		CPU_F	F7	RL
PMA4_WA	38	RW		78			B8			F8	
PMA5_WA	39	RW		79			B9			F9	
PMA6_WA	3A	RW		7A			BA		IMO_TR1	FA	RW
PMA7_WA	3B	RW		7B	1		BB		_	FB	
PMA0_RA	3C	RW		7C	1		BC			FC	
_	3D	RW		7D		USB MISC CR	BD	RW		FD	
PMA1 RA	30										
PMA1_RA PMA2_RA	3D 3E	RW		7E	<u> </u>		BE			FE	

DC Electrical Characteristics

DC Chip Level Specifications

Table 6 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 6. DC Chip Level Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{DD}	Operating voltage ^[7, 9]	No USB activity.	3.0	_	5.5	V
I _{DD24,3}	Supply current, CPU = 24 MHz	Conditions are V_{DD} = 3.0 V, T_A = 25 °C, CPU = 24 MHz, No USB/I ² C/SPI.	-	2.9	4.0	mA
I _{DD12,3}	Supply current, CPU = 12 MHz	Conditions are V_{DD} = 3.0 V, T_A = 25 °C, CPU = 12 MHz, No USB/I ² C/SPI.	-	1.7	2.6	mA
I _{DD6,3}	Supply current, CPU = 6 MHz	Conditions are V_{DD} = 3.0 V, T_A = 25 °C, CPU = 6 MHz, No USB/I ² C/SPI.	-	1.2	1.8	mA
I _{SB1,3}	Standby current with POR, LVD, and sleep timer	V_{DD} = 3.0 V, T _A = 25 °C, I/O regulator turned off.	-	1.1	1.5	μA
I _{SB0,3}	Deep sleep current	V _{DD} = 3.0 V, T _A = 25 °C, I/O regulator turned off.	-	0.1	-	μA
V _{DDUSB}	Operating voltage	USB activity, USB regulator enabled	4.35	-	5.25	V
I _{DD24,5}	Supply current, CPU = 24 MHz	Conditions are V _{DD} = 5.0 V, T _A = 25 °C, CPU = 24 MHz, IMO = 24 MHz USB Active, No I ² C/SPI.	-	7.1	-	mA
I _{DD12,5}	Supply current, CPU = 12 MHz	Conditions are V _{DD} = 5.0 V, T _A = 25 °C, CPU = 12 MHz, IMO = 24 MHz USB Active, No I ² C/SPI.	-	6.2	_	mA
I _{DD6,5}	Supply current, CPU = 6 MHz	Conditions are V _{DD} = 5.0 V, T _A = 25 °C, CPU = 6 MHz, IMO = 24 MHz USB Active, No I ² C/SPI	-	5.8	-	mA
I _{SB1,5}	Standby current with POR, LVD, and sleep timer	V_{DD} = 5.0 V, T _A = 25 °C, I/O regulator turned off.	_	1.1	-	μA
I _{SB0,5}	Deep sleep current	V_{DD} = 5.0 V, T _A = 25 °C, I/O regulator turned off.	-	0.1	-	μA
V _{DDUSB}	Operating voltage	USB activity, USB regulator bypassed	3.15	3.3	3.60	V

Notes

^{10.} Higher storage temperatures reduce data retention time. Recommended storage temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 85 °C degrade reliability.

^{11.} The temperature rise from ambient to junction is package specific. See Package Handling on page 31. The user must limit the power consumption to comply with this requirement.

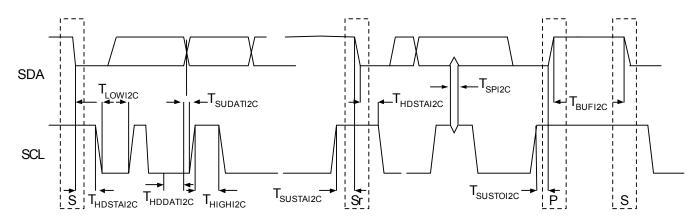
Table 7. DC Characteristics – USB Interface

Symbol	Description	Conditions	Min	Тур	Max	Units
Rusbi	USB D+ pull-up resistance	With idle bus	0.900	-	1.575	kΩ
Rusba	USB D+ pull-up resistance	While receiving traffic	1.425	-	3.090	kΩ
Vohusb	Static output high		2.8	-	3.6	V
Volusb	Static output low		-	-	0.3	V
Vdi	Differential input sensitivity		0.2	-	-	V
Vcm	Differential input common mode range		0.8	-	2.5	V
Vse	Single-ended receiver threshold		0.8	-	2.0	V
Cin	Transceiver capacitance			-	50	pF
lio	High Z state data Line Leakage	On D+ or D– line	-10	-	+10	μA
Rps2	PS/2 Pull Up Resistance		3	5	7	kΩ
Rext	External USB Series Resistor	In series with each USB pin	21.78	22.0	22.22	Ω

ADC Electrical Specifications

Table 8. ADC User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Input		I				
V _{IN}	Input voltage range		0	-	VREFADC	V
C _{IIN}	Input capacitance		_	-	5	pF
R _{IN}	Input resistance	Equivalent switched cap input resistance for 8-, 9-, or 10-bit resolution	1/(500fF* Data Clock)	1/(400fF* Data Clock)	1/(300fF* Data Clock)	Ω
Reference		I	1		I	
V _{REFADC}	ADC reference voltage		1.14	-	1.26	V
Conversion Rate)	I	1		I	
F _{CLK}	Data clock	Source is chip's internal main oscillator. See AC Chip-Level Specifications for accuracy	2.25	_	6	MHz
S8	8-bit sample rate	Data Clock set to 6 MHz. Sample Rate = 0.001/ (2^Resolution/Data Clock)	_	23.4375	_	ksps
S10	10-bit sample rate	Data Clock set to 6 MHz. Sample Rate = 0.001/ (2^Resolution/Data Clock)	_	5.859	_	ksps
DC Accuracy		I	1		I	
RES	Resolution	Can be set to 8-, 9-, or 10-bit	8	_	10	bits
DNL	Differential nonlinearity		-1	_	+2	LSB
INL	Integral nonlinearity		-2	-	+2	LSB
E _{Offset}	Offset error	8-bit resolution	0	3.2	19.2	LSB
		10-bit resolution	0	12.8	76.8	LSB
E _{gain}	Gain error	For any resolution	-5	-	+5	%FSR
Power						
I _{ADC}	Operating current		-	2.1	2.6	mA
PSRR	Power supply rejection ratio	PSRR (V _{DD} > 3.0 V)	-	24	-	dB
		PSRR (V _{DD} < 3.0 V)	_	30	-	dB

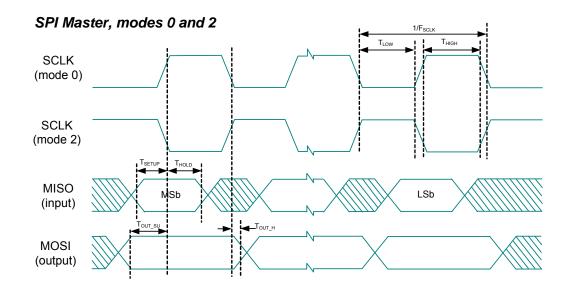


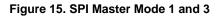
AC I²C Specifications

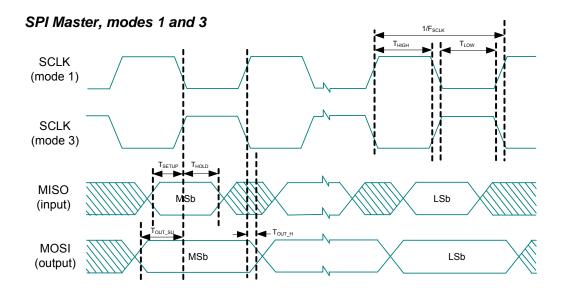
Table 18 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Symbol	Description	Standar	d Mode	Fast	Units	
Symbol	Description	Min	Max	Min	Max	Units
F _{SCLI2C}	SCL clock frequency	0	100	0	400	kHz
T _{HDSTAI2C}	Hold time (repeated) START condition. After this period, the first clock pulse is generated		-	0.6	-	μS
T _{LOWI2C}	LOW period of the SCL clock	4.7	-	1.3	-	μS
T _{HIGHI2C}	HIGH period of the SCL clock	4.0	-	0.6	-	μS
T _{SUSTAI2C}	Setup time for a repeated START condition	4.7	-	0.6	-	μS
T _{HDDATI2C}	Data hold time	0	-	0	-	μS
T _{SUDATI2C}	Data setup time	250	-	100 ^[20]	-	ns
T _{SUSTOI2C}	Setup time for STOP condition	4.0	-	0.6	-	μS
T _{BUFI2C}	Bus free time between a STOP and START condition	4.7	-	1.3	-	μS
T _{SPI2C}	Pulse width of spikes are suppressed by the input filter	-	-	0	50	ns

Figure 13. Definition of Timing for Fast/Standard Mode on the I²C Bus

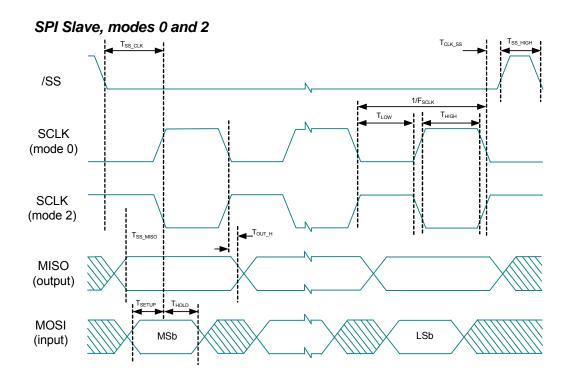

^{20.} A Fast mode I²C bus device can be used in a standard mode I²C bus system, but the requirement t_{SUDAT} ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + t_{SUDAT} = 1000 + 250 = 1250 ns (according to the standard mode I²C bus specification) before the SCL line is released.

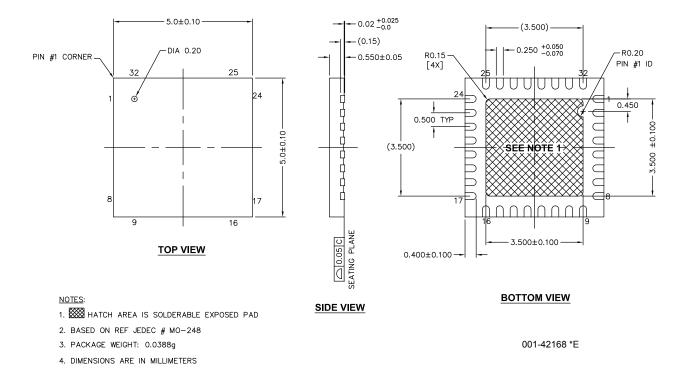



Table 19. SPI Master AC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{SCLK}	SCLK clock frequency		-	-	6	MHz
DC	SCLK duty cycle		-	50	-	%
T _{SETUP}	MISO to SCLK setup time		60	-	-	ns
T _{HOLD}	SCLK to MISO hold time		40	-	-	ns
T _{OUT_VAL}	SCLK to MOSI valid time		-	-	40	ns
T _{OUT_H}	SCLK to MOSI hold time		40	_	_	ns

Figure 14. SPI Master Mode 0 and 2




Table 20. SPI Slave AC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{SCLK}	SCLK clock frequency		0.0469	-	12	MHz
T _{LOW}	SCLK low time		41.67	-	-	ns
T _{HIGH}	SCLK high time		41.67	-	-	ns
T _{SETUP}	MOSI to SCLK setup time		30	-	-	ns
T _{HOLD}	SCLK to MOSI hold time		50	-	-	ns
T _{SS_MISO}	SS low to MISO valid		-	-	153	ns
T _{SCLK_MISO}	SCLK to MISO valid		-	-	125	ns
T _{SS_HIGH}	SS high time		50	-	-	ns
T _{SS_CLK}	Time from SS low to first SCLK		2/F _{SCLK}	-	-	ns
T _{CLK_SS}	Time from last SCLK to SS high		2/F _{SCLK}	-	_	ns

Figure	16.	SPI	Slave	Mode	0	and 2
riguic		0.1	Oluve	mouc	v	

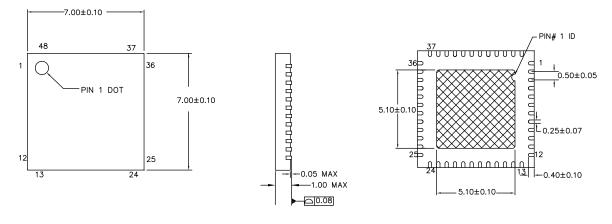
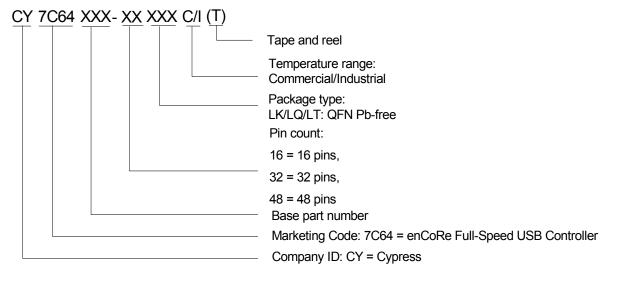

Figure 19. 32-pin QFN (5 × 5 × 0.55 mm) LQ32 3.5 × 3.5 E-Pad (Sawn) Package Outline, 001-42168

Figure 20. 48-pin QFN (7 × 7 × 1.00 mm) LT48A 5.1 × 5.1 E-Pad (Sawn) Package Outline, 001-13191

TOP VIEW

<u>SIDE VIEW</u>

BOTTOM VIEW


NOTES:

- 1. 🗱 HATCH AREA IS SOLDERABLE EXPOSED METAL.
- 2. REFERENCE JEDEC#: MO-220
- 3. PACKAGE WEIGHT: 13 ± 1 mg
- 4. ALL DIMENSIONS ARE IN MILLIMETERS

001-13191 *H

Ordering Code Definitions

Acronyms

Acronym	Description			
API	Application Programming Interface			
CPU	Central Processing Unit			
GPIO	General Purpose I/O			
ICE	In-Circuit Emulator			
ILO	Internal Low speed Oscillator			
IMO	Internal Main Oscillator			
I/O	Input/Output			
LSb	Least Significant Bit			
LVD	Low Voltage Detect			
MSb	Most Significant Bit			
POR	Power On Reset			
PPOR	Precision Power On Reset			
PSoC	Programmable System-on-Chip			
SLIMO	Slow IMO			
SRAM	Static Random Access Memory			

Document Conventions

Units of Measure

Symbol	Unit of Measure		
°C	degree Celsius		
dB	decibel		
fF	femtofarad		
Hz	hertz		
KB	1024 bytes		
Kbit	1024 bits		
kHz	kilohertz		
kΩ	kilohm		
MHz	megahertz		
MΩ	megaohm		
μA	microampere		
μF	microfarad		
μH	microhenry		
μS	microsecond		
μV	microvolt		
μVrms	microvolts root-mean-square		
μW	microwatt		
mA	milliampere		
ms	milli-second		
mV	millivolt		
nA	nanoampere		
ns	nanosecond		
nV	nanovolt		
W	ohm		
pА	picoampere		
pF	picofarad		
рр	peak-to-peak		
ppm	parts per million		
ps	picosecond		
sps	samples per second		
σ	sigma: one standard deviation		
V	volt		

Numeric Naming

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, '01010100b' or '01000011b'). Numbers not indicated by an 'h', 'b', or '0x' are decimal.

Errata

This section describes the errata for the enCoRe V – CY7C643xx. Details include errata trigger conditions, scope of impact, available workaround, and silicon revision applicability.

Contact your local Cypress Sales Representative if you have questions.

CY7C643xx Errata Summary

The following Errata item applies to the CY7C643xx data sheets.

1. Latch up susceptibility when maximum I/O sink current exceeded

■PROBLEM DEFINITION

P1[3], P1[6], and P1[7] pins are susceptible to latch up when the I/O sink current exceeds 25 mA per pin on these pins.

■PARAMETERS AFFECTED

LU – Latch up current. Per JESD78A, the maximum allowable latch up current per pin is 100 mA. Cypress internal specification is 200 mA latch up current limit.

■TRIGGER CONDITIONS

Latch up occurs when both the following conditions are met:

- A.The offending I/O is externally connected to a voltage higher than the I/O high state, causing a current to flow into the pin that exceeds 25 mA.
- B.A Port1 I/O (P1[1], P1[4], and P1[5] respectively) adjacent to the offending I/O is connected to a voltage lower than the I/O low state. This causes a signal that drops below Vss (signal undershoot) and a current greater than 200 mA to flow out of the pin.

■SCOPE OF IMPACT

The trigger conditions outlined in this item exceed the maximum ratings specified in the CY7C643xx data sheets.

■WORKAROUND

Add a series resistor > 300 Ω to P1[3], P1[6], and P1[7] pins to restrict current to within latch up limits.

■FIX STATUS

This issue will be corrected in the next new silicon revision.

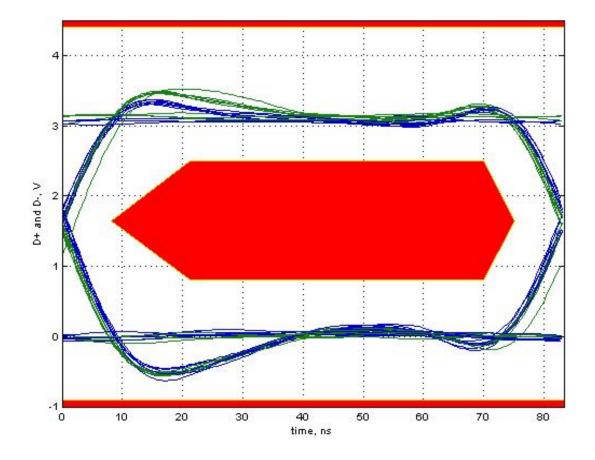
2. Does not meet USB 2.0 specification for D+ and D- rise/fall matching when supply voltage is under 3.3 V PROBLEM DEFINITION

Rising to falling rate matching of the USB D+ and D- lines has a corner case at lower supply voltages, such as those under 3.3 V.

■PARAMETERS AFFECTED

Rising to falling rate matching of the USB data lines.

■TRIGGER CONDITION(S)


Operating the VCC supply voltage at the low end of the chip's specification (under 3.3 V) may cause a mismatch in the rising to falling rate.

SCOPE OF IMPACT

This condition does not affect USB communications but could cause corner case issues with USB lines' rise/fall matching specification. Signal integrity tests were run using the Cypress development kit and excellent eye was observed with supply voltage of 3.15 V.

Figure 21. Eye Diagram

■WORKAROUND

Avoid the trigger condition by using lower tolerance voltage regulators.

■FIX STATUS

This issue will not be corrected in the next new silicon revision.

Document History Page

Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
**	626256	TYJ	See ECN	New data sheet.
*A	735718	TYJ / ARI	See ECN	Filled in TBDs, added new block diagram, and corrected some values. Part numbers updated as per new specifications.
*B	1120404	ARI	See ECN	Corrected the block diagram and Figure 3, which is the 16-pin enCoRe V device. Corrected the description to pin 29 on Table 2, the Typ/Max values for I _{SB0} on the DC chip-level specifications, the current value for the latch-up current in the Electrical Characteristics section, and corrected the 16 QFN package information in the Thermal Impedance table. Corrected some of the bulleted items on the first page. Added DC Characteristics–USB Interface table. Added AC Characteristics–USB Data Timings table. Added AC Characteristics–USB Driver table. Corrected Flash Write Endurance minimum value in the DC Programming Specifications table. Corrected the Flash Erase Time max value and the Flash Block Write Time max value in the AC Programming Specifications table. Implemented new latest template. Include parameters: Vcrs, Rpu (USB, active), Rpu (USB suspend), Tfdeop, Tfeopr2, Tfeopt, Tfst. Added register map tables. Corrected a value in the DC Chip-Level Specifications table.
*C	1241024	TYJ / ARI	See ECN	Corrected Idd values in Table 6 - DC Chip-Level Specifications.
*D	1639963	AESA	See ECN	Post to www.cypress.com
*E	2138889	TYJ <i>I</i> PYRS	See ECN	Updated Ordering Code table: - Ordering code changed for 32-QFN package: From -32LKXC to -32LTXC - Added a new package type – "LTXC" for 48-QFN - Included Tape and Reel ordering code for 32-QFN and 48-QFN packages Changed active current values at 24, 12 and 6MHz in table "DC Chip-Level Specifications" - IDD24: 2.15 to 3.1mA - IDD12: 1.45 to 2.0mA - IDD6: 1.1 to 1.5mA Added information on using P1[0] and P1[1] as the I2C interface during POR or reset events

Document History Page (continued)

Document Title: CY7C6431x/CY7C6434x/CY7C6435x, enCoRe™ V Full Speed USB Controller Document Number: 001-12394				
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
*К	2874274	KKU / PYRS	02/05/10	On page 4, changed the input voltage range from '0 V to 1.3 V' to '0 V to V_{REFADC} '. Added note for Operating Voltage in Table 6. Updated Register Map. Added SPI slave and master mode diagrams; in Table 19, changed T_{OUT_HIGH} parameter to T_{OUT_H} and modified description; in Table 20, updated T_{SS_CLK} and T_{CLK} $_{SS}$ min values to 2/F _{SCLK} and changed description of T_{SS_MISO} . Added Vdd _{USB} parameter in Table 6. Updated package diagrams.
*L	3028310	XUT	09/13/2010	Removed HPOR bit reference from DC POR and LVD Specifications Updated Development Tools and Designing with PSoC Designer. Added Ordering Code Definitions Moved Acronyms and Document Conventions to end of document.
*M	3048308	NXZ	10/06/2010	Updated Features section as furnished in the CDT 74890 Updated datasheet as per new template All footnotes updated sequentially
*N	3557631	CSAI	03/21/2012	Updated Getting Started. Updated Package Diagrams. Updated in new template.
*0	3912957	NXZ	03/06/2013	Updated Functional Overview (Updated The enCoRe V Core (Updated contents in the section), updated Full-Speed USB (Updated contents in the section)). Updated Register Mapping Tables (Updated Table 3 (Replaced "EC0_ENBUS" with "ECO_ENBUS" and replaced "EC0_TRIM" with "ECO_TRIM")). Updated Package Diagrams: spec 001-09116 – Changed revision from *F to *H. spec 001-42168 – Changed revision from *D to *E. spec 001-13191 – Changed revision from *F to *G.
*P	3979449	ANKC	04/23/2013	Added Errata.
*Q	4074443	ANKC	07/23/2013	Added Errata footnotes (Note 8, 19). Updated Electrical Specifications: Updated Absolute Maximum Ratings: Added Note 8 and referred the same note in LU parameter. Updated AC Electrical Characteristics Updated AC Chip Level Specifications: Added Note 19 and referred the same note in TR parameter in Table 14. Updated to new template.
*R	4197134	ANKC	11/20/2013	Updated Package Diagrams: spec 001-09116 – Changed revision from *H to *I. Completing Sunset Review.

Document History Page (continued)

Document Title: CY7C6431x/CY7C6434x/CY7C6435x, enCoRe™ V Full Speed USB Controller Document Number: 001-12394				
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
*S	4578605	GINS	12/11/2014	Updated Pin Information: Updated 32-pin part pinout: Updated Figure 7 (No change in figure, included CY7C64346 in figure caption). Updated Package Diagrams: spec 001-09116 – Changed revision from *I to *J. Updated Ordering Information: Updated Table 25: Updated part numbers.
*Т	5548557	ANKC	12/12/2016	Updated Cypress Logo, Sales Page and Disclaimer. Updated Figure 20 (spec 001-13191 *G to *H) in Package Diagrams. Removed the following obsolete part numbers (Table 26) in Ordering Information: CY7C64343-32LQXI, CY7C64343-32LQXIT, CY7C64345-32LQXI, CY7C64345-32LQXIT, CY7C64356-48LTXI, CY7C64356-48LTXIT.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2006-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners

Document Number: 001-12394 Rev. *T

Revised December 12, 2016 Page 41 of 41 Purchase of I²C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors.