

Welcome to **E-XFL.COM**

<u>Embedded - Microcontrollers - Application</u>
<u>Specific</u>: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

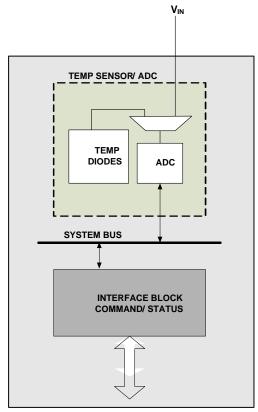
What Are <u>Embedded - Microcontrollers - Application Specific</u>?

Application enacific microcontrollars are anaineared to

Details	
Product Status	Active
Applications	USB Microcontroller
Core Processor	M8C
Program Memory Type	FLASH (16kB)
Controller Series	CY7C643xx
RAM Size	1K x 8
Interface	I ² C, SPI, USB
Number of I/O	36
Voltage - Supply	3V ~ 5.5V
Operating Temperature	0°C ~ 70°C
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy7c64355-48ltxc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Firmware is required to handle various parts of the USB interface. The SIE issues interrupts after key USB events to direct firmware to appropriate tasks:

- Fill and empty the USB data buffers in USB SRAM.
- Enable PMA channels appropriately.
- Coordinate enumeration by decoding USB device requests.
- Suspend and resume coordination.
- Verify and select data toggle values.

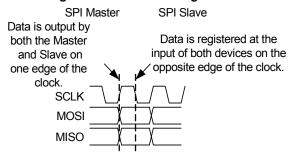
10-bit ADC

The ADC on enCoRe V device is an independent block with a state machine interface to control accesses to the block. The ADC is housed together with the temperature sensor core and can be connected to this or the Analog mux bus. As a default operation, the ADC is connected to the temperature sensor diodes to give digital values of the temperature.

Figure 2. ADC System Performance Block Diagram

Interface to the M8 C (Processor) Core

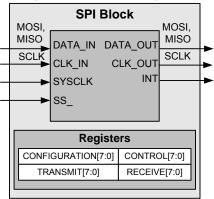
The ADC User Module contains an integrator block and one comparator with positive and negative input set by the MUXes. The input to the integrator stage comes from the analog global


input mux or the temperature sensor with an input voltage range of 0 V to $V_{\mbox{\scriptsize REFADC}}$.

In the ADC only configuration (the ADC MUX selects the Analog mux bus, not the default temperature sensor connection), an external voltage can be connected to the input of the modulator for voltage conversion. The ADC is run for a number of cycles set by the timer, depending upon the desired resolution of the ADC. A counter counts the number of trips by the comparator, which is proportional to the input voltage. The Temp Sensor block clock speed is 36 MHz and is divided down to 1 to 12 MHz for ADC operation.

SPI

The serial peripheral interconnect (SPI) 3-wire protocol uses both edges of the clock to enable synchronous communication without the need for stringent setup and hold requirements.


Figure 3. Basic SPI Configuration

A device can be a master or slave. A master outputs clock and data to the slave device and inputs slave data. A slave device inputs clock and data from the master device and outputs data for input to the master. Together, the master and slave are essentially a circular Shift register, where the master generates the clocking and initiates data transfers.

A basic data transfer occurs when the master sends eight bits of data, along with eight clocks. In any transfer, both master and slave transmit and receive simultaneously. If the master only sends data, the received data from the slave is ignored. If the master wishes to receive data from the slave, the master must send dummy bytes to generate the clocking for the slave to send data back.

Figure 4. SPI Block Diagram

SPI configuration register (SPI_CFG) sets master/slave functionality, clock speed, and interrupt select. SPI control register (SPI_CR) provides four control bits and four status bits for device interfacing and synchronization.

The SPIM hardware has no support for driving the Slave Select (SS_) signal. The behavior and use of this signal is dependent on the application and enCoRe V device and, if required, must be implemented in firmware.

There is an additional data input in the SPIS, Slave Select (SS_), which is an active low signal. SS_ must be asserted to enable the SPIS to receive and transmit. SS_ has two high level functions:

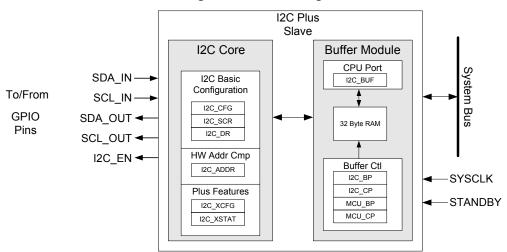
- To allow for the selection of a given slave in a multi-slave environment.
- To provide additional clocking for TX data queuing in SPI modes 0 and 1.

I²C Slave

The I^2C slave enhanced communications block is a serial-to-parallel processor, designed to interface the enCoRe V device to a two-wire I^2C serial communications bus. To eliminate the need for excessive CPU intervention and overhead, the block provides I^2C -specific support for status detection and generation of framing bits. By default, the I^2C slave enhanced module is firmware compatible with the previous generation of I^2C slave functionality. However, this module provides new features that are configurable to implement significant flexibility for both internal and external interfacing. The basic I^2C features include:

- Slave, transmitter, and receiver operation.
- Byte processing for low CPU overhead.

- Interrupt or polling CPU interface.
- Support for clock rates of up to 400 kHz.
- 7- or 10-bit addressing (through firmware support).
- SMBus operation (through firmware support).


Enhanced features of the I²C Slave Enhanced Module include:

- Support for 7-bit hardware address compare.
- Flexible data buffering schemes.
- A "no bus stalling" operating mode.
- A low power bus monitoring mode.

The I^2C block controls the data (SDA) and the clock (SCL) to the external I^2C interface through direct connections to two dedicated GPIO pins. When I^2C is enabled, these GPIO pins are not available for general purpose use. The enCoRe V CPU firmware interacts with the block through I/O register reads and writes, and firmware synchronization is implemented through polling and/or interrupts.

In the default operating mode, which is firmware compatible with previous versions of $\rm I^2C$ slave modules, the $\rm I^2C$ bus is stalled upon every received address or byte, and the CPU is required to read the data or supply data as required before the $\rm I^2C$ bus continues. However, this $\rm I^2C$ Slave Enhanced module provides new data buffering capability as an enhanced feature. In the EZI^2C buffering mode, the $\rm I^2C$ slave interface appears as a 32-byte RAM buffer to the external $\rm I^2C$ master. Using a simple predefined protocol, the master controls the read and write pointers into the RAM. When this method is enabled, the slave never stalls the bus. In this protocol, the data available in the RAM (this is managed by the CPU) is valid.

Figure 5. I²C Block Diagram

Additional System Resources

System resources, some of which have been previously listed, provide additional capability useful to complete systems. Additional resources include low voltage detection and power on reset. The following statements describe the merits of each system resource.

- Low voltage detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced POR (power on reset) circuit eliminates the need for a system supervisor.
- The 5 V maximum input, 1.8, 2.5, or 3 V selectable output, LDO regulator provides regulation for I/Os. A register controlled bypass mode enables the user to disable the LDO.
- Standard Cypress PSoC IDE tools are available for debugging the enCoRe V family of parts.

Getting Started

The quickest path to understanding the enCoRe V silicon is by reading this data sheet and using the PSoC Designer Integrated Development Environment (IDE). This datasheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications. For in-depth information, along with detailed programming information, see the enCoReTM V CY7C643xx, enCoReTM V LV CY7C604xx Technical Reference Manual (TRM) for this PSoC device.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device data sheets on the web at http://www.cypress.com.

Application Notes

Application notes are an excellent introduction to the wide variety of possible PSoC designs and are available at http://www.cypress.com.

Development Kits

PSoC development kits are available online from Cypress at http://www.cypress.com and through a growing number of regional and global distributors, including Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

Training

Free PSoC technical training (on demand, webinars, and workshops) is available online at http://www.cypress.com. The training covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC Consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC Consultant, go to http://www.cypress.com and look for CYPros Consultants.

Solutions Library

Visit our growing library of solution-focused designs at http://www.cypress.com. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

For assistance with technical issues, search KnowledgeBase articles and forums at http://www.cypress.com. If you cannot find an answer to your question, call technical support at 1-800-541-4736.

Development Tools

PSoC Designer™ is the revolutionary Integrated Design Environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes:

- Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration
- Extensive user module catalog
- Integrated source-code editor (C and assembly)
- Free C compiler with no size restrictions or time limits
- Built-in debugger
- In-circuit emulation
- Built-in support for communication interfaces:
 - ☐ Hardware and software I²C slaves and masters
 - □ Full-speed USB 2.0
 - □ Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless

PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7.

PSoC Designer Software Subsystems

Design Entry

In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use the PSoC blocks, which are called user modules. Examples of user modules are analog-to-digital converters (ADCs), digital-to-analog converters (DACs), amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run time. In essence, this allows you to use more than 100 percent of PSoC's resources for a given application.

Code Generation Tools

The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. You can develop your design in C, assembly, or a combination of the two.

Assemblers. The assemblers allow you to merge assembly code seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all of the features of C, tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow you to read and program and read and write data memory, and read and write I/O registers. You can read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also allows you to create a trace buffer of registers and memory locations of interest.

Online Help System

The online help system displays online, context-sensitive help. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer.

In-Circuit Emulator

A low-cost, high-functionality In-Circuit Emulator (ICE) is available for development support. This hardware can program single devices.

The emulator consists of a base unit that connects to the PC using a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full-speed (24-MHz) operation.

Designing with PSoC Designer

The development process for the PSoC device differs from that of a traditional fixed-function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and lowering inventory costs. These configurable resources, called PSoC blocks, have the ability to implement a wide variety of user-selectable functions. The PSoC development process is:

- 1. Select user modules.
- 2. Configure user modules.
- 3. Organize and connect.
- 4. Generate, verify, and debug.

Select User Modules

PSoC Designer provides a library of prebuilt, pretested hardware peripheral components called user modules. User modules make selecting and implementing peripheral devices, both analog and digital, simple.

Configure User Modules

Each user module that you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a Pulse width modulator (PWM) user module configures one or more digital PSoC blocks, one for each eight bits of resolution. Using these parameters, you can establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All of the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module

data sheets explain the internal operation of the user module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information that you may need to successfully implement your design.

Organize and Connect

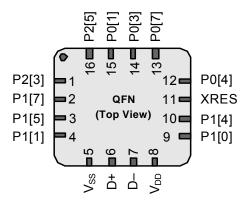
Build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. Perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides APIs with high-level functions to control and respond to hardware events at run time, and interrupt service routines that you can adapt as needed.

A complete code development environment allows you to develop and customize your applications in C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's Debugger (accessed by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint, and watch-variable features, the debug interface provides a large trace buffer. It allows you to define complex breakpoint events that include monitoring address and data bus values, memory locations, and external signals.



Pin Information

The enCoRe V USB device is available in a variety of packages which are listed and illustrated in the subsequent tables.

16-pin part pinout

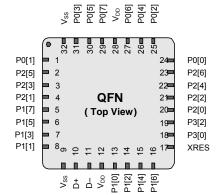
Figure 6. CY7C64315/CY7C64316 16-pin enCoRe V USB Device

Pin Definitions

16-pin part pinout (QFN)

Pin No.	Туре	Name	Description
1	I/O	P2[3]	Digital I/O, crystal input (Xin)
2	I/OHR	P1[7]	Digital I/O, SPI SS, I ² C SCL
3	I/OHR	P1[5]	Digital I/O, SPI MISO, I ² C SDA
4	I/OHR	P1[1] ^[1, 2]	Digital I/O, ISSP CLK, I ² C SCL, SPI MOSI
5	Power	V_{SS}	Ground connection
6	USB line	D+	USB PHY
7	USB line	D-	USB PHY
8	Power	V_{DD}	Supply
9	I/OHR	P1[0] ^[1, 2]	Digital I/O, ISSP DATA, I ² C SDA, SPI CLK
10	I/OHR	P1[4]	Digital I/O, optional external clock input (EXTCLK)
11	Input	XRES	Active high external reset with internal pull-down
12	I/OH	P0[4]	Digital I/O
13	I/OH	P0[7]	Digital I/O
14	I/OH	P0[3]	Digital I/O
15	I/OH	P0[1]	Digital I/O
16	I/O	P2[5]	Digital I/O, crystal output (Xout)

LEGEND I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output


Notes

- During power up or reset event, device P1[0] and P1[1] may disturb the I²C bus. Use alternate pins if issues are encountered.
 These are the in-system serial programming (ISSP) pins that are not High Z at power on reset (POR).

32-pin part pinout

Figure 7. CY7C64343/CY7C64345/CY7C64346 32-pin enCoRe V USB Device

Pin Definitions

32-pin part pinout (QFN)

Pin No.	Туре	Name	Description			
1	I/OH	P0[1]	Digital I/O			
2	I/O	P2[5]	Digital I/O, crystal output (Xout)			
3	I/O	P2[3]	Digital I/O, crystal Input (Xin)			
4	I/O	P2[1]	gital I/O			
5	I/OHR	P1[7]	Digital I/O, I ² C SCL, SPI SS			
6	I/OHR	P1[5]	Digital I/O, I ² C SDA, SPI MISO			
7	I/OHR	P1[3]	Digital I/O, SPI CLK			
8	I/OHR	P1[1] ^[3, 4]	Digital I/O, ISSP CLK, I ² C SCL, SPI MOSI			
9	Power	V_{SS}	Ground			
10	I/O	D+	USB PHY			
11	I/O	D-	USB PHY			
12	Power	V_{DD}	Supply voltage			
13	I/OHR	P1[0] ^[3, 4]	Digital I/O, ISSP DATA, I ² C SDA, SPI CLK			
14	I/OHR	P1[2]	Digital I/O			
15	I/OHR	P1[4]	Digital I/O, optional external clock input (EXTCLK)			
16	I/OHR	P1[6]	Digital I/O			
17	Reset	XRES	Active high external reset with internal pull down			
18	I/O	P3[0]	Digital I/O			
19	I/O	P3[2]	Digital I/O			
20	I/O	P2[0]	Digital I/O			
21	I/O	P2[2]	Digital I/O			
22	I/O	P2[4]	Digital I/O			
23	I/O	P2[6]	Digital I/O			
24	I/OH	P0[0]	Digital I/O			
25	I/OH	P0[2]	Digital I/O			
26	I/OH	P0[4]	Digital I/O			
27	I/OH	P0[6]	Digital I/O			
28	Power	V_{DD}	Supply voltage			
29	I/OH	P0[7]	Digital I/O			
30	I/OH	P0[5]	Digital I/O			
31	I/OH	P0[3]	Digital I/O			
32	Power	V_{SS}	Ground			
CP	Power	V_{SS}	Ensure the center pad is connected to ground			

LEGEND I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output

- Notes

 3. During power up or reset event, device P1[0] and P1[1] may disturb the I²C bus. Use alternate pins if issues are encountered.

 4. These are the in-system serial programming (ISSP) pins that are not High Z at power on reset (POR).

Pin Definitions

48-pin Part Pinout (QFN)

Pin No.	Туре	Pin Name	Description
24	I/OHR	P1[4]	Digital I/O, optional external clock input (EXTCLK)
25	I/OHR	P1[6]	Digital I/O
26	XRES	Ext Reset	Active high external reset with internal pull down
27	I/O	P3[0]	Digital I/O
28	I/O	P3[2]	Digital I/O
29	I/O	P3[4]	Digital I/O
30	I/O	P3[6]	Digital I/O
31	I/O	P4[0]	Digital I/O
32	I/O	P4[2]	Digital I/O
33	I/O	P2[0]	Digital I/O
34	I/O	P2[2]	Digital I/O
35	I/O	P2[4]	Digital I/O
36	I/O	P2[6]	Digital I/O
37	I/OH	P0[0]	Digital I/O
38	I/OH	P0[2]	Digital I/O
39	I/OH	P0[4]	Digital I/O
40	I/OH	P0[6]	Digital I/O
41	Power	V_{DD}	Supply voltage
42	NC	NC	No connection
43	NC	NC	No connection
44	I/OH	P0[7]	Digital I/O
45	I/OH	P0[5]	Digital I/O
46	I/OH	P0[3]	Digital I/O
47	Power	V _{SS}	Supply ground
48	I/OH	P0[1]	Digital I/O
CP	Power	V _{SS}	Ensure the center pad is connected to ground

LEGEND I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output

Table 3. Register Map Bank 1 Table: Configuration Space

Table 3. Re	egister Map	Bank 1	Table: Conf	iguration S	pace						
Name	Addr (1, Hex)		Name	Addr (1, Hex)	Access	Name	Addr (1, Hex)	Access	Name	Addr (1, Hex)	Access
PRT0DM0	00	RW	PMA4_RA	40	RW		80			C0	
PRT0DM1	01	RW	PMA5_RA	41	RW		81			C1	
	02		PMA6_RA	42	RW		82			C2	
	03		PMA7_RA	43	RW		83			C3	
PRT1DM0	04	RW	PMA8_WA	44	RW		84			C4	
PRT1DM1	05	RW	PMA9 WA	45	RW		85			C5	
TICTIDIVIT	06	IXVV	PMA10_WA	46	RW		86			C6	
	07			47	RW		87			C6	
DDTODAM		D)A/	PMA11_WA								
PRT2DM0	08	RW	PMA12_WA	48	RW		88			C8	
PRT2DM1	09	RW	PMA13_WA	49	RW		89			C9	
	0A		PMA14_WA	4A	RW		8A			CA	
	0B		PMA15_WA	4B	RW		8B			CB	
PRT3DM0	0C	RW	PMA8_RA	4C	RW		8C			CC	
PRT3DM1	0D	RW	PMA9_RA	4D	RW		8D			CD	
	0E		PMA10_RA	4E	RW		8E			CE	
	0F		PMA11_RA	4F	RW		8F			CF	
PRT4DM0	10	RW	PMA12_RA	50	RW		90			D0	
PRT4DM1	11	RW	PMA13 RA	51	RW		91			D1	
	12		PMA14_RA	52	RW		92		ECO_ENBUS	D2	RW
	13		PMA15_RA	53	RW		93		ECO_TRIM	D3	RW
	14		EP1 CR0	54	#		94		LCC_ITAIN	D4	1744
	15										
			EP2_CR0	55	#		95			D5	
	16		EP3_CR0	56	#		96			D6	
	17		EP4_CR0	57	#		97			D7	
	18		EP5_CR0	58	#		98		MUX_CR0	D8	RW
	19		EP6_CRO	59	#		99		MUX_CR1	D9	RW
	1A		EP7_CR0	5A	#		9A		MUX_CR2	DA	RW
	1B		EP8_CR0	5B	#		9B		MUX_CR3	DB	RW
	1C			5C			9C		IO_CFG1	DC	RW
	1D			5D			9D		OUT_P1	DD	RW
	1E			5E			9E		IO_CFG2	DE	RW
	1F			5F			9F		MUX_CR4	DF	RW
	20			60			A0		OSC_CR0	E0	RW
	21			61			A1		ECO_CFG	E1	#
	22			62			A2		OSC_CR2	E2	RW
	23			63			A3		VLT_CR	E3	RW
	24			64			A4		VLT_CMP	E4	R
	25			65			A5			E5	
	26			66			A6			E6	
	27			67			A7			E7	
	28			68			A8		IMO_TR	E8	W
SPI_CFG	29	RW		69			A9		ILO_TR	E9	W
	2A			6A			AA			EA	
	2B			6B			AB		SLP_CFG	EB	RW
	2C		TMP_DR0	6C	RW		AC		SLP_CFG2	EC	RW
	2D		TMP_DR1	6D	RW		AD		SLP_CFG3	ED	RW
	2E		TMP DR2	6E	RW		AE		_	EE	
	2F		TMP DR3	6F	RW		AF			EF	
USB CR1	30	#		70			B0			F0	
555_51(1	31	iT		71			B1			F1	
	32			72			B2			F2	
	33			73			B3			F3	
DMAO MA		DVA									
PMA0_WA	34	RW		74			B4			F4	
PMA1_WA	35	RW		75			B5			F5	
PMA2_WA	36	RW		76			B6			F6	
PMA3_WA	37	RW		77			B7		CPU_F	F7	RL
PMA4_WA	38	RW		78			B8			F8	
PMA5_WA	39	RW		79			B9			F9	
PMA6_WA	3A	RW		7A			BA		IMO_TR1	FA	RW
PMA7_WA	3B	RW		7B			BB			FB	
PMA0 RA	3C	RW		7C			BC			FC	
PMA1 RA	3D	RW		7D		USB MISC CR	BD	RW		FD	
PMA2 RA	3E	RW		7E			BE			FE	
PMA3_RA	3F	RW		7F			BF			FF	
I MINO_RA	JI	1744		71			DI				

Electrical Specifications

This section presents the DC and AC electrical specifications of the enCoRe V USB devices. For the most up-to-date electrical specifications, verify that you have the most recent data sheet available by visiting the company web site at http://www.cypress.com

Figure 9. Voltage versus CPU Frequency

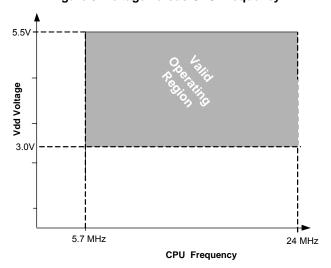
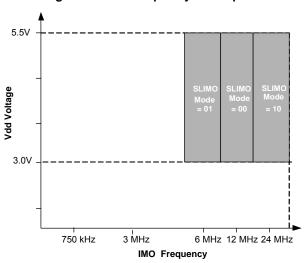



Figure 10. IMO Frequency Trim Options

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Table 4. Absolute Maximum Ratings

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{STG}	Storage temperature ^[10]	Higher storage temperatures reduces data retention time. Recommended Storage Temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 85°C degrades reliability.	- 55	+25	+125	°C
V_{DD}	Supply voltage relative to V _{SS}		-0.5	-	+6.0	V
V _{IO}	DC input voltage		V _{SS} - 0.5	_	$V_{DD} + 0.5$	V
V _{IOZ}	DC voltage applied to tristate		V _{SS} - 0.5	_	$V_{DD} + 0.5$	V
I _{MIO}	Maximum current into any port pin		-25	_	+50	mA
ESD	Electrostatic discharge voltage	Human body model ESD	2000	-	-	V
LU ^[8]	Latch up current	In accordance with JESD78 standard	_	-	200	mA

Operating Temperature

Table 5. Operating Temperature

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{AI}	Ambient industrial temperature		-40	_	+85	°C
T _{AC}	Ambient commercial temperature		0	_	+70	°C
T _{JI}	Operational industrial die temperature [11]	The temperature rise from ambient to junction is package specific. Refer the table Thermal Impedances per Package on page 31. The user must limit the power consumption to comply with this requirement.	-40	_	+100	°C
T _{JC}	Operational commercial die temperature	The temperature rise from ambient to junction is package specific. Refer the table Thermal Impedances per Package on page 31. The user must limit the power consumption to comply with this requirement.	0	-	+85	°C

Notes

- 7. When V_{DD} remains in the range from 1.71 V to 1.9 V for more than 50 µsec, the slew rate when moving from the 1.71 V to 1.9 V range to greater than 2 V must be slower than 1 V/500 µsec to avoid triggering POR. The only other restriction on slew rates for any other voltage range or transition is the SRPOWER_UP parameter.
- 8. Errata: For Port 1 pins P1[1], P1[4], and P1[5] 300 Ohm external resistor is needed to meet this spec. Refer to "Errata" on page 35 for more details.
- 9. If powering down in standby sleep mode, to properly detect and recover from a V_{DD} brown out condition any of the following actions must be taken:

 - Bring the device out of sleep before powering down.
 Assure that V_{DD} falls below 100 mV before powering back up.
 Set the No Buzz bit in the OSC_CR0 register to keep the voltage monitoring circuit powered during sleep.
 - Increase the buzz rate to assure that the falling edge of V_{DD} is captured. The rate is configured through the PSSDC bits in the SLP_CFG register. For the referenced registers, refer to the enCoRe V Technical Reference Manual. In deep sleep mode, additional low power voltage monitoring circuitry allows V_{DD} brown out conditions to be detected for edge rates slower than 1 V/ms.

DC Electrical Characteristics

DC Chip Level Specifications

Table 6 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 6. DC Chip Level Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V_{DD}	Operating voltage [7, 9]	No USB activity.	3.0	_	5.5	V
I _{DD24,3}	Supply current, CPU = 24 MHz	Conditions are V_{DD} = 3.0 V, T_A = 25 °C, CPU = 24 MHz, No USB/I ² C/SPI.	-	2.9	4.0	mA
I _{DD12,3}	Supply current, CPU = 12 MHz	Conditions are V_{DD} = 3.0 V, T_A = 25 °C, CPU = 12 MHz, No USB/I ² C/SPI.	-	1.7	2.6	mA
I _{DD6,3}	Supply current, CPU = 6 MHz	Conditions are V_{DD} = 3.0 V, T_A = 25 °C, CPU = 6 MHz, No USB/I ² C/SPI.	-	1.2	1.8	mA
I _{SB1,3}	Standby current with POR, LVD, and sleep timer	V_{DD} = 3.0 V, T_{A} = 25 °C, I/O regulator turned off.	_	1.1	1.5	μΑ
I _{SB0,3}	Deep sleep current	V_{DD} = 3.0 V, T_{A} = 25 °C, I/O regulator turned off.	_	0.1	-	μА
V_{DDUSB}	Operating voltage	USB activity, USB regulator enabled	4.35	-	5.25	V
I _{DD24,5}	Supply current, CPU = 24 MHz	Conditions are V_{DD} = 5.0 V, T_A = 25 °C, CPU = 24 MHz, IMO = 24 MHz USB Active, No I ² C/SPI.	-	7.1	_	mA
I _{DD12,5}	Supply current, CPU = 12 MHz	Conditions are V_{DD} = 5.0 V, T_A = 25 °C, CPU = 12 MHz, IMO = 24 MHz USB Active, No I ² C/SPI.	-	6.2	_	mA
I _{DD6,5}	Supply current, CPU = 6 MHz	Conditions are V_{DD} = 5.0 V, T_A = 25 °C, CPU = 6 MHz, IMO = 24 MHz USB Active, No I ² C/SPI	-	5.8	-	mA
I _{SB1,5}	Standby current with POR, LVD, and sleep timer	$V_{\rm DD}$ = 5.0 V, $T_{\rm A}$ = 25 °C, I/O regulator turned off.	_	1.1	_	μА
I _{SB0,5}	Deep sleep current	V_{DD} = 5.0 V, T_{A} = 25 °C, I/O regulator turned off.	_	0.1	-	μА
V _{DDUSB}	Operating voltage	USB activity, USB regulator bypassed	3.15	3.3	3.60	V

Notes

Higher storage temperatures reduce data retention time. Recommended storage temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 85 °C degrade reliability.

^{11.} The temperature rise from ambient to junction is package specific. See Package Handling on page 31. The user must limit the power consumption to comply with this requirement.

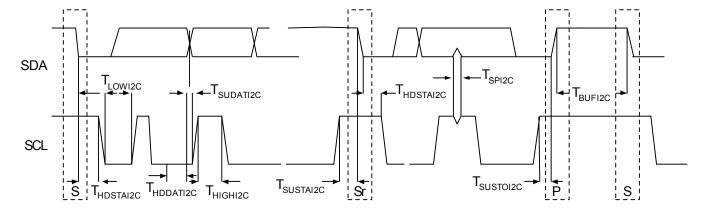
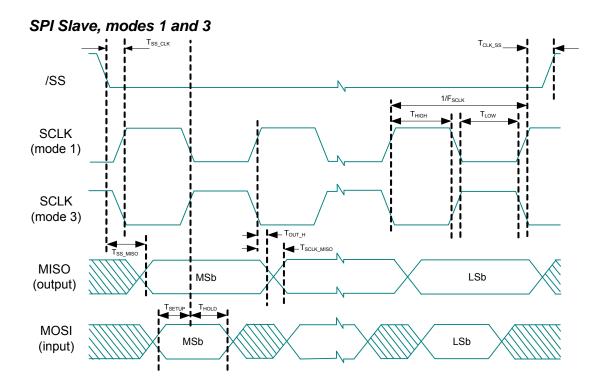

AC I²C Specifications

Table 18 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 18. AC Characteristics of the I²C SDA and SCL Pins

Cumbal	Description	Standar	d Mode	Fast	Units			
Symbol	Description	Min	Max	Min	Max	Oillis		
F _{SCLI2C}	SCL clock frequency	0	100	0	400	kHz		
T _{HDSTAI2C}	Hold time (repeated) START condition. After this period, the first clock pulse is generated	4.0	_	0.6	_	μS		
T _{LOWI2C}	LOW period of the SCL clock	4.7	-	1.3	_	μS		
T _{HIGHI2C}	HIGH period of the SCL clock		-	0.6	_	μS		
T _{SUSTAI2C}	Setup time for a repeated START condition	4.7	-	0.6	_	μS		
T _{HDDATI2C}	Data hold time	0	-	0	_	μS		
T _{SUDATI2C}	Data setup time	250	-	100 ^[20]	_	ns		
T _{SUSTOI2C}			-	0.6	_	μS		
T _{BUFI2C}	Bus free time between a STOP and START condition	4.7	_	1.3	_	μS		
T _{SPI2C}	Pulse width of spikes are suppressed by the input filter	_	_	0	50	ns		

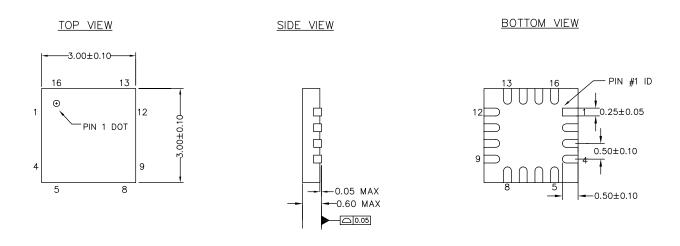
Figure 13. Definition of Timing for Fast/Standard Mode on the I²C Bus



Note

^{20.} A Fast mode I²C bus device can be used in a standard mode I²C bus system, but the requirement t_{SUDAT} ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + t_{SUDAT} = 1000 + 250 = 1250 ns (according to the standard mode I²C bus specification) before the SCL line is released.

Figure 17. SPI Slave Mode 1 and 3


Package Diagrams

This section illustrates the packaging specifications for the enCoRe V USB device, along with the thermal impedances for each package.

Important Note Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the enCoRe V emulation tools and their dimensions, refer to the development kit.

Packaging Dimensions

Figure 18. 16-pin Chip On Lead (3 x 3 x 0.6 mm) LG16A/LD16A (Sawn) Package Outline, 001-09116

NOTES

- 1. REFERENCE JEDEC # MO-220
- 2. ALL DIMENSIONS ARE IN MILLIMETERS

001-09116 *J

Figure 19. 32-pin QFN (5 \times 5 \times 0.55 mm) LQ32 3.5 \times 3.5 E-Pad (Sawn) Package Outline, 001-42168

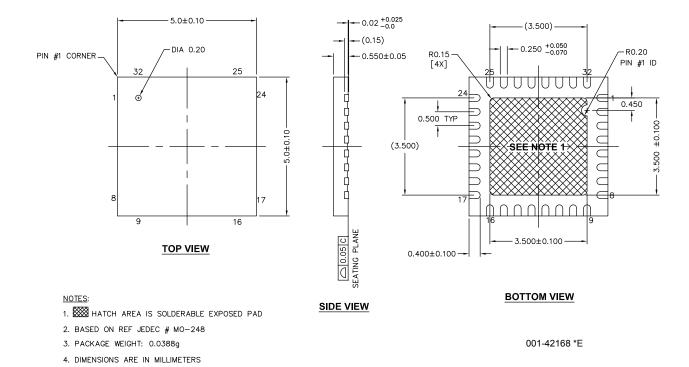
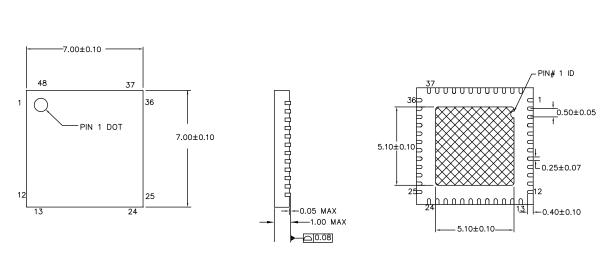



Figure 20. 48-pin QFN (7 × 7 × 1.00 mm) LT48A 5.1 × 5.1 E-Pad (Sawn) Package Outline, 001-13191

SIDE VIEW

NOTES:

- 1. MATCH AREA IS SOLDERABLE EXPOSED METAL.
- 2. REFERENCE JEDEC#: MO-220
- 3. PACKAGE WEIGHT: $13 \pm 1 \text{ mg}$
- 4. ALL DIMENSIONS ARE IN MILLIMETERS

TOP VIEW

001-13191 *H

BOTTOM VIEW

Ordering Information

Table 25. Ordering Code - Commercial Parts

Ordering Code	Package Information	Flash (KB)	SRAM (KB)	No. of GPIOs	Target Applications
CY7C64315-16LKXC	16-pin QFN (3 × 3 mm)	16	1	11	Mid-tier Full-Speed USB dongle, Remote Control Host Module, Various
CY7C64315-16LKXCT	16-pin QFN (Tape and Reel), (3 × 3 mm)	16	1	11	Mid-tier Full-Speed USB dongle, Remote Control Host Module, Various
CY7C64316-16LKXC	16-pin QFN (3 × 3 mm)	32	2	11	Feature-rich Full-Speed USB dongle, Remote Control Host Module, Various
CY7C64316-16LKXCT	16-pin QFN (Tape and Reel), (3 × 3 mm)	32	2	11	Feature-rich Full-Speed USB dongle, Remote Control Host Module, Various
CY7C64343-32LQXC	32-pin QFN (5 × 5 mm)	8	1	25	Full-Speed USB mouse, Various
CY7C64343-32LQXCT	32-pin QFN (Tape and Reel), (5 × 5 mm)	8	1	25	Full-Speed USB mouse, Various
CY7C64345-32LQXC	32-pin QFN (5 × 5 mm)	16	1	25	Full-Speed USB mouse, Various
CY7C64345-32LQXCT	32-pin QFN (Tape and Reel), (5 × 5 mm)	16	1	25	Full-Speed USB mouse, Various
CY7C64346-32LQXCT	32-pin QFN (Tape and Reel), (5 × 5 mm)	32	1	25	Full-Speed USB keyboard, Various
CY7C64355-48LTXC	48-pin QFN (7 × 7 mm)	16	1	36	Full-Speed USB keyboard, Various
CY7C64355-48LTXCT	48-pin QFN (Tape and Reel), (7 × 7 mm)	16	1	36	Full-Speed USB keyboard, Various
CY7C64356-48LTXC	48-pin QFN (7 × 7 mm)	32	2	36	Feature-rich Full-Speed USB keyboard, Various
CY7C64356-48LTXCT	48-pin QFN (Tape and Reel), (7 × 7 mm)	32	2	36	Feature-rich Full-Speed USB keyboard, Various

Table 26. Ordering Code - Industrial Parts

Ordering Code	Package Information	Flash (KB)	SRAM (KB)	No. of GPIOs	Target Applications
CY7C64315-16LKXI	16-pin QFN, Industrial (3 × 3 mm)	16	1	11	Mid-tier Full-Speed USB dongle, Remote Control Host Module, Various
CY7C64315-16LKXIT	16-pin QFN, Industrial (Tape and Reel), (3 × 3 mm)	16	1	11	Mid-tier Full-Speed USB dongle, Remote Control Host Module, Various

Document Number: 001-12394 Rev. *T

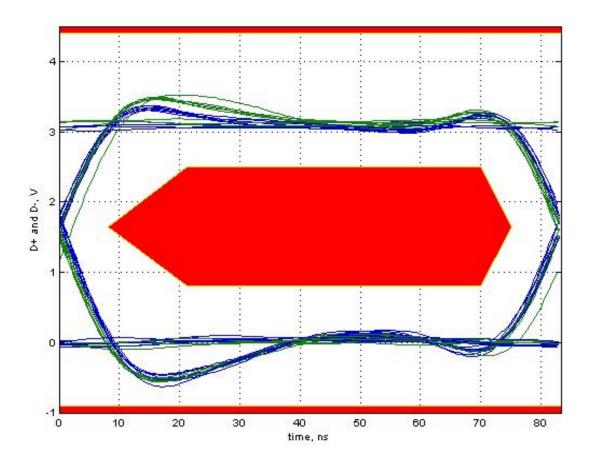


Figure 21. Eye Diagram

■WORKAROUND

Avoid the trigger condition by using lower tolerance voltage regulators.

■FIX STATUS

This issue will not be corrected in the next new silicon revision.

Document History Page (continued)

	Title: CY7C Number: 00		C6434x/CY7C6	435x, enCoRe™ V Full Speed USB Controller
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
*F	2583853	TYJ/ PYRS/ HMT	10/10/08	Converted from Preliminary to Final Added operating voltage ranges with USB ADC resolution changed from 10-bit to 8-bit Rephrased battery monitoring clause in page 1 to include "with external components" Included ADC specifications table Included Voh7, Voh8, Voh9, Voh10 specs Flash data retention – condition added to Note [11] Input leakage spec changed to 25 nA max Under AC Char, Frequency accuracy of ILO corrected GPIO rise time for ports 0,1 and ports 2,3 made common AC Programming specifications updated Included AC Programming cycle timing diagram AC SPI specification updated Spec change for 32-QFN package Input Leakage Current maximum value changed to 1 µA Updated V _{OHV} parameter in Table 13 Updated thermal impedances for the packages Update Development Tools, add Designing with PSoC Designer. Edit, fix links and table format. Update TMs.
*G	2653717	DVJA / PYRS	02/04/09	Updated Features, Functional Overview, Development Tools, and Designing with PSoC Designer sections with edits. Removed 'GUI - graphical user interface' from Document Conventions acronym table. Removed 'O - Only a read/write register or bits' in Table 4 Edited Table 8: removed 10-bit resolution information and corrected units column. Added package handling section Added 8K part 'CY7C64343-32LQXC' to Ordering Information.
*H	2714694	DVJA / AESA	06/04/2009	Updated Block Diagram. Added Full Speed USB, 10-bit ADC, SPI, and I2C Slave sections. ADC Resolution changed from 8-bit to 10-bit Updated Table 9 DC Chip Level Specs Updated Table10 DC Char - USB Interface Updated Table 12 DC POR and LDV Specs Changed operating temperature from Commercial to Industrial Changed Temperature Range to Industrial: –40 to 85°C Figure 9: Changed minimum CPU Frequency from 750 kHz to 5.7 MHz Table 14: Removed "Maximum" from the F _{CPU} description Ordering Information: Replaced 'C' with 'I' in all part numbers to denote Industrial Temp Range
*	2764460	DVJA / AESA	09/16/2009	Changed Table 12: ADC Specs Added F _{32K2} (Untrimmed) spec to Table 16: AC Chip level Specs Changed T _{RAMP} spec to SR _{POWER UP} in Table 16: AC Chip Level Specs Added Table 27: Typical Package Capacitance on Crystal Pins
*J	2811903	DVJA	11/20/2009	Added USB-IF TID number in Features on page 1. Added Note 5 on page 18 Changed V_{IHP} in Table 12 on page 22.

Document History Page (continued)

Document Title: CY7C6431x/CY7C6434x/CY7C6435x, enCoRe™ V Full Speed USB Controller Document Number: 001-12394				
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
*S	4578605	GINS	12/11/2014	Updated Pin Information: Updated 32-pin part pinout: Updated Figure 7 (No change in figure, included CY7C64346 in figure caption). Updated Package Diagrams: spec 001-09116 – Changed revision from *I to *J. Updated Ordering Information: Updated Table 25: Updated part numbers.
*T	5548557	ANKC	12/12/2016	Updated Cypress Logo, Sales Page and Disclaimer. Updated Figure 20 (spec 001-13191 *G to *H) in Package Diagrams. Removed the following obsolete part numbers (Table 26) in Ordering Information: CY7C64343-32LQXI, CY7C64343-32LQXIT, CY7C64345-32LQXI, CY7C64345-48LTXI, CY7C64356-48LTXIT.