

Welcome to **E-XFL.COM**

<u>Embedded - Microcontrollers - Application</u>
<u>Specific</u>: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers - Application Specific</u>?

Application enacific microcontrollars are anaineared to

Details	
Product Status	Active
Applications	USB Microcontroller
Core Processor	M8C
Program Memory Type	FLASH (32kB)
Controller Series	CY7C643xx
RAM Size	2K x 8
Interface	I ² C, SPI, USB
Number of I/O	36
Voltage - Supply	3V ~ 5.5V
Operating Temperature	0°C ~ 70°C
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy7c64356-48ltxct

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

Functional Overview	3
The enCoRe V Core	3
Full-Speed USB	3
10-bit ADC	4
SPI	
I2C Slave	
Additional System Resources	6
Getting Started	6
Application Notes	6
Development Kits	6
Training	6
CYPros Consultants	6
Solutions Library	6
Technical Support	6
Development Tools	7
PSoC Designer Software Subsystems	7
Designing with PSoC Designer	
Select User Modules	8
Configure User Modules	8
Organize and Connect	8
Generate, Verify, and Debug	8
Pin Information	
16-pin part pinout	9
Pin Definitions	
32-pin part pinout	10
Pin Definitions	10
48-pin Part Pinout	11
Pin Definitions	
Register Reference	13

Register Conventions	1
Register Mapping Tables	13
Electrical Specifications	
Absolute Maximum Ratings	17
Operating Temperature	17
DC Electrical Characteristics	18
AC Electrical Characteristics	22
Package Diagram	29
Packaging Dimensions	29
Package Handling	3 [^]
Thermal Impedances	3 [^]
Capacitance on Crystal Pins	3 [^]
Solder Reflow Peak Temperature	3′
Ordering Information	32
Ordering Code Definitions	33
Acronyms	
Document Conventions	34
Units of Measure	
Numeric Naming	34
Errata	3
CY7C643xx Errata Summary	3
Document History Page	37
Sales, Solutions, and Legal Information	4′
Worldwide Sales and Design Support	4
Products	4
PSoC® Solutions	4
Cypress Developer Community	4
Technical Support	4

Functional Overview

The enCoRe V family of devices are designed to replace multiple traditional full-speed USB microcontroller system components with one, low cost single-chip programmable component. Communication peripherals (I²C/SPI), a fast CPU, Flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts.

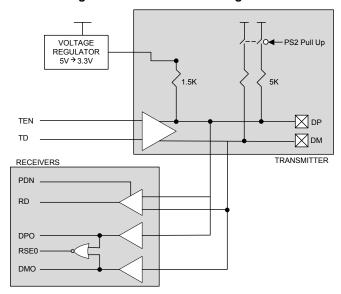
The architecture for this device family, as illustrated in the enCoRe V Block Diagram on page 1, consists of two main areas: the CPU core and the system resources. Depending on the enCoRe V package, up to 36 GPIO are also included.

This product is an enhanced version of Cypress's successful full speed-USB peripheral controllers. Enhancements include faster CPU at lower voltage operation, lower current consumption, twice the RAM and Flash, hot-swappable I/Os, I²C hardware address recognition, new very low current sleep mode, and new package options.

The enCoRe V Core

The enCoRe V Core is a powerful engine that supports a rich instruction set. It encompasses SRAM for data storage, an interrupt controller, sleep and watchdog timers, and IMO and ILO. The CPU core, called the M8C, is a powerful processor with speeds up to 24 MHz. The M8C is a four-MIPS, 8-bit Harvard architecture microprocessor.

During USB operation, the CPU speed can be set to any setting. Be aware that USB throughput decreases with a decrease in CPU speed. For maximum throughput, the CPU clock should be made equal to the system clock. The system clock must be 24 MHz for USB operation.


System resources provide additional capability, such as a configurable I²C slave and SPI master-slave communication interface and various system resets supported by the M8C.

Full-Speed USB

The enCoRe V USB system resource adheres to the USB 2.0 Specification for full speed devices operating at 12 Mb/second with one upstream port and one USB address. enCoRe V USB consists of these components:

- Serial interface engine (SIE) block.
- PSoC memory arbiter (PMA) block.
- 512 bytes of dedicated SRAM.
- A full-speed USB Transceiver with internal regulator and two dedicated USB pins.

Figure 1. USB Transceiver Regulator

At the enCoRe V system level, the full-speed USB system resource interfaces to the rest of the enCoRe V by way of the M8C's register access instructions and to the outside world by way of the two USB pins. The SIE supports nine endpoints including a bidirectional control endpoint (endpoint 0) and eight unidirectional data endpoints (endpoints 1 to 8). The unidirectional data endpoints are individually configurable as either IN or OUT.

Low value series resistors R_{EXT} (22 Ω) must be added externally to the D+ and D- lines to meet the driving impedance requirement for full-speed USB.

The USB Serial Interface Engine (SIE) allows the enCoRe V device to communicate with the USB host at full speed data rates (12 Mb/s). The SIE simplifies the interface to USB traffic by automatically handling the following USB processing tasks without firmware intervention:

- Translates the encoded received data and formats the data to be transmitted on the bus.
- Generates and checks cyclical redundancy checks (CRCs). Incoming packets failing checksum verification are ignored.
- Checks addresses. Ignores all transactions not addressed to the device.
- Sends appropriate ACK/NAK/Stall handshakes.
- Identifies token type (SETUP, IN, OUT) and sets the appropriate token bit once a valid token in received.
- Identifies Start-of-Frame (SOF) and saves the frame count.
- Sends data to or retrieves data from the USB SRAM, by way of the PSoC Memory Arbiter (PMA).

SPI configuration register (SPI_CFG) sets master/slave functionality, clock speed, and interrupt select. SPI control register (SPI_CR) provides four control bits and four status bits for device interfacing and synchronization.

The SPIM hardware has no support for driving the Slave Select (SS_) signal. The behavior and use of this signal is dependent on the application and enCoRe V device and, if required, must be implemented in firmware.

There is an additional data input in the SPIS, Slave Select (SS_), which is an active low signal. SS_ must be asserted to enable the SPIS to receive and transmit. SS_ has two high level functions:

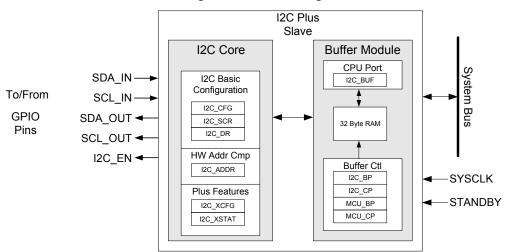
- To allow for the selection of a given slave in a multi-slave environment.
- To provide additional clocking for TX data queuing in SPI modes 0 and 1.

I²C Slave

The I^2C slave enhanced communications block is a serial-to-parallel processor, designed to interface the enCoRe V device to a two-wire I^2C serial communications bus. To eliminate the need for excessive CPU intervention and overhead, the block provides I^2C -specific support for status detection and generation of framing bits. By default, the I^2C slave enhanced module is firmware compatible with the previous generation of I^2C slave functionality. However, this module provides new features that are configurable to implement significant flexibility for both internal and external interfacing. The basic I^2C features include:

- Slave, transmitter, and receiver operation.
- Byte processing for low CPU overhead.

- Interrupt or polling CPU interface.
- Support for clock rates of up to 400 kHz.
- 7- or 10-bit addressing (through firmware support).
- SMBus operation (through firmware support).


Enhanced features of the I²C Slave Enhanced Module include:

- Support for 7-bit hardware address compare.
- Flexible data buffering schemes.
- A "no bus stalling" operating mode.
- A low power bus monitoring mode.

The I^2C block controls the data (SDA) and the clock (SCL) to the external I^2C interface through direct connections to two dedicated GPIO pins. When I^2C is enabled, these GPIO pins are not available for general purpose use. The enCoRe V CPU firmware interacts with the block through I/O register reads and writes, and firmware synchronization is implemented through polling and/or interrupts.

In the default operating mode, which is firmware compatible with previous versions of $\rm I^2C$ slave modules, the $\rm I^2C$ bus is stalled upon every received address or byte, and the CPU is required to read the data or supply data as required before the $\rm I^2C$ bus continues. However, this $\rm I^2C$ Slave Enhanced module provides new data buffering capability as an enhanced feature. In the EZI^2C buffering mode, the $\rm I^2C$ slave interface appears as a 32-byte RAM buffer to the external $\rm I^2C$ master. Using a simple predefined protocol, the master controls the read and write pointers into the RAM. When this method is enabled, the slave never stalls the bus. In this protocol, the data available in the RAM (this is managed by the CPU) is valid.

Figure 5. I²C Block Diagram

Additional System Resources

System resources, some of which have been previously listed, provide additional capability useful to complete systems. Additional resources include low voltage detection and power on reset. The following statements describe the merits of each system resource.

- Low voltage detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced POR (power on reset) circuit eliminates the need for a system supervisor.
- The 5 V maximum input, 1.8, 2.5, or 3 V selectable output, LDO regulator provides regulation for I/Os. A register controlled bypass mode enables the user to disable the LDO.
- Standard Cypress PSoC IDE tools are available for debugging the enCoRe V family of parts.

Getting Started

The quickest path to understanding the enCoRe V silicon is by reading this data sheet and using the PSoC Designer Integrated Development Environment (IDE). This datasheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications. For in-depth information, along with detailed programming information, see the enCoReTM V CY7C643xx, enCoReTM V LV CY7C604xx Technical Reference Manual (TRM) for this PSoC device.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device data sheets on the web at http://www.cypress.com.

Application Notes

Application notes are an excellent introduction to the wide variety of possible PSoC designs and are available at http://www.cypress.com.

Development Kits

PSoC development kits are available online from Cypress at http://www.cypress.com and through a growing number of regional and global distributors, including Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

Training

Free PSoC technical training (on demand, webinars, and workshops) is available online at http://www.cypress.com. The training covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

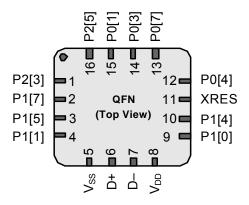
Certified PSoC Consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC Consultant, go to http://www.cypress.com and look for CYPros Consultants.

Solutions Library

Visit our growing library of solution-focused designs at http://www.cypress.com. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

For assistance with technical issues, search KnowledgeBase articles and forums at http://www.cypress.com. If you cannot find an answer to your question, call technical support at 1-800-541-4736.



Pin Information

The enCoRe V USB device is available in a variety of packages which are listed and illustrated in the subsequent tables.

16-pin part pinout

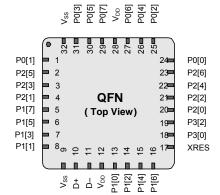
Figure 6. CY7C64315/CY7C64316 16-pin enCoRe V USB Device

Pin Definitions

16-pin part pinout (QFN)

Pin No.	Туре	Name	Description
1	I/O	P2[3]	Digital I/O, crystal input (Xin)
2	I/OHR	P1[7]	Digital I/O, SPI SS, I ² C SCL
3	I/OHR	P1[5]	Digital I/O, SPI MISO, I ² C SDA
4	I/OHR	P1[1] ^[1, 2]	Digital I/O, ISSP CLK, I ² C SCL, SPI MOSI
5	Power	V_{SS}	Ground connection
6	USB line	D+	USB PHY
7	USB line	D-	USB PHY
8	Power	V_{DD}	Supply
9	I/OHR	P1[0] ^[1, 2]	Digital I/O, ISSP DATA, I ² C SDA, SPI CLK
10	I/OHR	P1[4]	Digital I/O, optional external clock input (EXTCLK)
11	Input	XRES	Active high external reset with internal pull-down
12	I/OH	P0[4]	Digital I/O
13	I/OH	P0[7]	Digital I/O
14	I/OH	P0[3]	Digital I/O
15	I/OH	P0[1]	Digital I/O
16	I/O	P2[5]	Digital I/O, crystal output (Xout)

LEGEND I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output


Notes

- During power up or reset event, device P1[0] and P1[1] may disturb the I²C bus. Use alternate pins if issues are encountered.
 These are the in-system serial programming (ISSP) pins that are not High Z at power on reset (POR).

32-pin part pinout

Figure 7. CY7C64343/CY7C64345/CY7C64346 32-pin enCoRe V USB Device

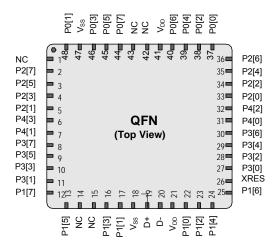
Pin Definitions

32-pin part pinout (QFN)

Pin No.	Туре	Name	Description
1	I/OH	P0[1]	Digital I/O
2	I/O	P2[5]	Digital I/O, crystal output (Xout)
3	I/O	P2[3]	Digital I/O, crystal Input (Xin)
4	I/O	P2[1]	Digital I/O
5	I/OHR	P1[7]	Digital I/O, I ² C SCL, SPI SS
6	I/OHR	P1[5]	Digital I/O, I ² C SDA, SPI MISO
7	I/OHR	P1[3]	Digital I/O, SPI CLK
8	I/OHR	P1[1] ^[3, 4]	Digital I/O, ISSP CLK, I ² C SCL, SPI MOSI
9	Power	V_{SS}	Ground
10	I/O	D+	USB PHY
11	I/O	D-	USB PHY
12	Power	V_{DD}	Supply voltage
13	I/OHR	P1[0] ^[3, 4]	Digital I/O, ISSP DATA, I ² C SDA, SPI CLK
14	I/OHR	P1[2]	Digital I/O
15	I/OHR	P1[4]	Digital I/O, optional external clock input (EXTCLK)
16	I/OHR	P1[6]	Digital I/O
17	Reset	XRES	Active high external reset with internal pull down
18	I/O	P3[0]	Digital I/O
19	I/O	P3[2]	Digital I/O
20	I/O	P2[0]	Digital I/O
21	I/O	P2[2]	Digital I/O
22	I/O	P2[4]	Digital I/O
23	I/O	P2[6]	Digital I/O
24	I/OH	P0[0]	Digital I/O
25	I/OH	P0[2]	Digital I/O
26	I/OH	P0[4]	Digital I/O
27	I/OH	P0[6]	Digital I/O
28	Power	V_{DD}	Supply voltage
29	I/OH	P0[7]	Digital I/O
30	I/OH	P0[5]	Digital I/O
31	I/OH	P0[3]	Digital I/O
32	Power	V_{SS}	Ground
CP	Power	V_{SS}	Ensure the center pad is connected to ground

LEGEND I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output

- Notes


 3. During power up or reset event, device P1[0] and P1[1] may disturb the I²C bus. Use alternate pins if issues are encountered.

 4. These are the in-system serial programming (ISSP) pins that are not High Z at power on reset (POR).

48-pin Part Pinout

Figure 8. CY7C64355/CY7C64356 48-pin enCoRe V USB Device

Pin Definitions

48-pin Part Pinout (QFN)

Pin No.	Туре	Pin Name	Description
1	NC	NC	No connection
2	I/O	P2[7]	Digital I/O
3	I/O	P2[5]	Digital I/O, crystal out (Xout)
4	I/O	P2[3]	Digital I/O, crystal in (Xin)
5	I/O	P2[1]	Digital I/O
6	I/O	P4[3]	Digital I/O
7	I/O	P4[1]	Digital I/O
8	I/O	P3[7]	Digital I/O
9	I/O	P3[5]	Digital I/O
10	I/O	P3[3]	Digital I/O
11	I/O	P3[1]	Digital I/O
12	I/OHR	P1[7]	Digital I/O, I ² C SCL, SPI SS
13	I/OHR	P1[5]	Digital I/O, I ² C SDA, SPI MISO
14	NC	NC	No connection
15	NC	NC	No connection
16	I/OHR	P1[3]	Digital I/O, SPI CLK
17	I/OHR	P1[1] ^[5, 6]	Digital I/O, ISSP CLK, I ² C SCL, SPI MOSI
18	Power	V _{SS}	Supply ground
19	I/O	D+	USB
20	I/O	D-	USB
21	Power	V_{DD}	Supply voltage
22	I/OHR	P1[0] ^[5, 6]	Digital I/O, ISSP DATA, I ² C SDA, SPI CLK
23	I/OHR	P1[2]	Digital I/O

- During power up or reset event, device P1[0] and P1[1] may disturb the I²C bus. Use alternate pins if issues are encountered.
 These are the in-system serial programming (ISSP) pins that are not High Z at power on reset (POR).

Register Reference

The section discusses the registers of the enCoRe V device. It lists all the registers in mapping tables, in address order.

Register Conventions

The register conventions specific to this section are listed in the following table.

Table 1. Register Conventions

Convention	Description
R	Read register or bits
W	Write register or bits
L	Logical register or bits
С	Clearable register or bits
#	Access is bit specific

Register Mapping Tables

The enCoRe V device has a total register address space of 512 bytes. The register space is also referred to as I/O space and is broken into two parts: Bank 0 (user space) and Bank 1 (configuration space). The XIO bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XIO bit is set, the user is said to be in the "extended" address space or the "configuration" registers.

Table 3. Register Map Bank 1 Table: Configuration Space

Table 3. Re	egister Map	Bank 1	Table: Conf	iguration S	pace						
Name	Addr (1, Hex)		Name	Addr (1, Hex)	Access	Name	Addr (1, Hex)	Access	Name	Addr (1, Hex)	Access
PRT0DM0	00	RW	PMA4_RA	40	RW		80			C0	
PRT0DM1	01	RW	PMA5_RA	41	RW		81			C1	
	02		PMA6_RA	42	RW		82			C2	
	03		PMA7_RA	43	RW		83			C3	
PRT1DM0	04	RW	PMA8_WA	44	RW		84			C4	
PRT1DM1	05	RW	PMA9 WA	45	RW		85			C5	
TICTIDIVIT	06	IXVV	PMA10_WA	46	RW		86			C6	
	07			47	RW		87			C6	
DDTODAM		D)A/	PMA11_WA								
PRT2DM0	08	RW	PMA12_WA	48	RW		88			C8	
PRT2DM1	09	RW	PMA13_WA	49	RW		89			C9	
	0A		PMA14_WA	4A	RW		8A			CA	
	0B		PMA15_WA	4B	RW		8B			СВ	
PRT3DM0	0C	RW	PMA8_RA	4C	RW		8C			CC	
PRT3DM1	0D	RW	PMA9_RA	4D	RW		8D			CD	
	0E		PMA10_RA	4E	RW		8E			CE	
	0F		PMA11_RA	4F	RW		8F			CF	
PRT4DM0	10	RW	PMA12_RA	50	RW		90			D0	
PRT4DM1	11	RW	PMA13 RA	51	RW		91			D1	
	12		PMA14_RA	52	RW		92		ECO_ENBUS	D2	RW
	13		PMA15_RA	53	RW		93		ECO_TRIM	D3	RW
	14		EP1 CR0	54	#		94		LCC_IT(IIVI	D4	1744
	15										
			EP2_CR0	55	#		95			D5	
	16		EP3_CR0	56	#		96			D6	
	17		EP4_CR0	57	#		97			D7	
	18		EP5_CR0	58	#		98		MUX_CR0	D8	RW
	19		EP6_CRO	59	#		99		MUX_CR1	D9	RW
	1A		EP7_CR0	5A	#		9A		MUX_CR2	DA	RW
	1B		EP8_CR0	5B	#		9B		MUX_CR3	DB	RW
	1C			5C			9C		IO_CFG1	DC	RW
	1D			5D			9D		OUT_P1	DD	RW
	1E			5E			9E		IO_CFG2	DE	RW
	1F			5F			9F		MUX_CR4	DF	RW
	20			60			A0		OSC_CR0	E0	RW
	21			61			A1		ECO_CFG	E1	#
	22			62			A2		OSC_CR2	E2	RW
	23			63			A3		VLT_CR	E3	RW
	24			64			A4		VLT_CMP	E4	R
	25			65			A5			E5	
	26			66			A6			E6	
	27			67			A7			E7	
	28			68			A8		IMO_TR	E8	W
SPI_CFG	29	RW		69			A9		ILO_TR	E9	W
	2A			6A			AA			EA	
	2B			6B			AB		SLP_CFG	EB	RW
	2C		TMP_DR0	6C	RW		AC		SLP_CFG2	EC	RW
	2D		TMP_DR1	6D	RW		AD		SLP_CFG3	ED	RW
	2E		TMP DR2	6E	RW		AE		_	EE	
	2F		TMP DR3	6F	RW		AF			EF	
USB CR1	30	#		70			B0			F0	
555_51(1	31	iT		71			B1			F1	
	32			72			B2			F2	
	33			73			B3			F3	
DMAO MA		DVA									
PMA0_WA	34	RW		74			B4			F4	
PMA1_WA	35	RW		75			B5			F5	
PMA2_WA	36	RW		76			B6			F6	
PMA3_WA	37	RW		77			B7		CPU_F	F7	RL
PMA4_WA	38	RW		78			B8			F8	
PMA5_WA	39	RW		79			B9			F9	
PMA6_WA	3A	RW		7A			BA		IMO_TR1	FA	RW
PMA7_WA	3B	RW		7B			BB			FB	
PMA0 RA	3C	RW		7C			BC			FC	
PMA1 RA	3D	RW		7D		USB MISC CR	BD	RW		FD	
PMA2 RA	3E	RW		7E			BE			FE	
PMA3_RA	3F	RW		7F			BF			FF	
I MINO_RA	JI	1744		71			DI				

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Table 4. Absolute Maximum Ratings

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{STG}	Storage temperature ^[10]	Higher storage temperatures reduces data retention time. Recommended Storage Temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 85°C degrades reliability.	- 55	+25	+125	°C
V_{DD}	Supply voltage relative to V _{SS}		-0.5	-	+6.0	V
V _{IO}	DC input voltage		V _{SS} - 0.5	_	$V_{DD} + 0.5$	V
V _{IOZ}	DC voltage applied to tristate		V _{SS} - 0.5	_	$V_{DD} + 0.5$	V
I _{MIO}	Maximum current into any port pin		-25	_	+50	mA
ESD	Electrostatic discharge voltage	Human body model ESD	2000	-	-	V
LU ^[8]	Latch up current	In accordance with JESD78 standard	_	-	200	mA

Operating Temperature

Table 5. Operating Temperature

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{AI}	Ambient industrial temperature		-40	_	+85	°C
T _{AC}	Ambient commercial temperature		0	_	+70	°C
T _{JI}	Operational industrial die temperature [11]	The temperature rise from ambient to junction is package specific. Refer the table Thermal Impedances per Package on page 31. The user must limit the power consumption to comply with this requirement.	-40	_	+100	°C
T _{JC}	Operational commercial die temperature	The temperature rise from ambient to junction is package specific. Refer the table Thermal Impedances per Package on page 31. The user must limit the power consumption to comply with this requirement.	0	-	+85	°C

Notes

- 7. When V_{DD} remains in the range from 1.71 V to 1.9 V for more than 50 µsec, the slew rate when moving from the 1.71 V to 1.9 V range to greater than 2 V must be slower than 1 V/500 µsec to avoid triggering POR. The only other restriction on slew rates for any other voltage range or transition is the SRPOWER_UP parameter.
- 8. Errata: For Port 1 pins P1[1], P1[4], and P1[5] 300 Ohm external resistor is needed to meet this spec. Refer to "Errata" on page 35 for more details.
- 9. If powering down in standby sleep mode, to properly detect and recover from a V_{DD} brown out condition any of the following actions must be taken:

 - Bring the device out of sleep before powering down.
 Assure that V_{DD} falls below 100 mV before powering back up.
 Set the No Buzz bit in the OSC_CR0 register to keep the voltage monitoring circuit powered during sleep.
 - Increase the buzz rate to assure that the falling edge of V_{DD} is captured. The rate is configured through the PSSDC bits in the SLP_CFG register. For the referenced registers, refer to the enCoRe V Technical Reference Manual. In deep sleep mode, additional low power voltage monitoring circuitry allows V_{DD} brown out conditions to be detected for edge rates slower than 1 V/ms.

DC General Purpose I/O Specifications

Table 9 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and package specific temperature range. Typical parameters apply to 5 V and 3.3 V at $25 \,^{\circ}\text{C}$. These are for design guidance only.

Table 9. 3.0 V and 5.5 V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull-up resistor		4	5.6	8	kΩ
V _{OH1}	High output voltage Port 2 or 3 pins	I _{OH} ≤ 10 μA, maximum of 10 mA source current in all I/Os.	V _{DD} – 0.2	_	_	V
V _{OH2}	High output voltage Port 2 or 3 Pins	I _{OH} = 1 mA, maximum of 20 mA source current in all I/Os.	V _{DD} – 0.9	_	_	V
V _{OH3}	High output voltage Port 0 or 1 pins with LDO regulator disabled	I_{OH} < 10 μ A, maximum of 10 mA source current in all I/Os.	V _{DD} – 0.2	-	_	V
V _{OH4}	High output voltage Port 0 or 1 pins with LDO regulator disabled	I _{OH} = 5 mA, maximum of 20 mA source current in all I/Os.	V _{DD} – 0.9	-	_	V
V _{OH5}	High output voltage Port 1 pins with LDO regulator enabled for 3 V Out	I_{OH} < 10 μ A, V_{DD} > 3.1 V, maximum of 4 I/Os all sourcing 5 mA	2.85	3.00	3.3	V
V _{OH6}	High output voltage Port 1 pins with LDO regulator enabled for 3 V out	I _{OH} = 5 mA, V _{DD} > 3.1 V, maximum of 20 mA source current in all I/Os	2.20	ı	ı	V
V _{OH7}	High output voltage Port 1 pins with LDO enabled for 2.5 V out	I_{OH} < 10 μ A, V_{DD} > 3.0 V, maximum of 20 mA source current in all I/Os	2.35	2.50	2.75	V
V _{OH8}	High output voltage Port 1 pins with LDO enabled for 2.5 V out	I _{OH} = 2 mA, V _{DD} > 3.0 V, maximum of 20 mA source current in all I/Os	1.90	ı	_	V
V _{OH9}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I_{OH} < 10 μ A, V_{DD} > 3.0 V, maximum of 20 mA source current in all I/Os	1.60	1.80	2.1	V
V _{OH10}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I _{OH} = 1 mA, V _{DD} > 3.0 V, maximum of 20 mA source current in all I/Os	1.20	_	-	V
V _{OL}	Low output voltage	I _{OL} = 25 mA, V _{DD} > 3.3 V, maximum of 60 mA sink current on even port pins (for example, P0[2] and P1[4]) and 60 mA sink current on odd port pins (for example, P0[3] and P1[5]).	-	ı	0.75	V
V _{IL}	Input low voltage		_	_	8.0	V
V _{IH}	Input high voltage		2.0	_	-	V
V_{H}	Input hysteresis voltage		_	80	_	mV
I _{IL}	Input leakage (absolute value)		_	0.001	1	μΑ
C _{PIN}	Pin capacitance	Package and pin dependent. Temp = 25 °C.	0.5	1.7	5	pF

DC POR and LVD Specifications

Table 10 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 10. DC POR and LVD Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{PPOR}	V _{DD} value for PPOR trip ^[12] PORLEV[1:0] = 10b		_	2.82	2.95	V
VLVD0 VLVD1 VLVD2 VLVD3 VLVD4 VLVD5 VLVD6 VLVD7	V _{DD} value for LVD trip VM[2:0] = 000b VM[2:0] = 001b VM[2:0] = 010b VM[2:0] = 011b VM[2:0] = 100b VM[2:0] = 101b VM[2:0] = 110b VM[2:0] = 111b		- 2.85 2.95 3.06 - 4.62	- 2.92 3.02 3.13 - 4.73	- 2.99 3.09 3.20 - 4.83	> > > > >

DC Programming Specifications

Table 11 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 11. DC Programming Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{DDIWRITE}	Supply voltage for flash write operations		1.71	_	5.25	V
I _{DDP}	Supply current during programming or verify		_	5	25	mA
V _{ILP}	Input low voltage during programming or verify	See appropriate DC General Purpose I/O Specifications table	_	-	V _{IL}	V
V _{IHP}	Input high voltage during programming or verify		1.71	_	V _{DDIWRITE} + 0.3	V
I _{ILP}	Input current when applying Vilp to P1[0] or P1[1] during programming or verify ^[13]		_	-	0.2	mA
I _{IHP}	Input current when applying Vihp to P1[0] or P1[1] during programming or verify ^[13]		_	-	1.5	mA
V _{OLP}	Output low voltage during programming or verify		_	_	V _{SS} + 0.75	V
V _{OHP}	Output high voltage during programming or verify		V _{DDIWRITE} – 0.9	_	V _{DDIWRITE}	V
Flash _{ENPB}	Flash write endurance ^[14]		50,000	_	_	Cycles
Flash _{DR}	Flash data retention ^[15]		10	20	-	Years

Note

^{12.} Always greater than 50 mV above V_{PPOR} (PORLEV = 10) for falling supply.

^{13.} Driving internal pull down resistor.

^{14.} Erase/write cycles per block.

^{15.} Following maximum Flash write cycles at Tamb = 55 $^{\circ}$ C and Tj = 70 $^{\circ}$ C.

AC Electrical Characteristics

AC Chip Level Specifications

The following tables list guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 12. AC Chip Level Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{CPU}	Processing frequency ^[16]		5.7	-	25.2	MHz
F _{32K1}	Internal low-speed oscillator (ILO) frequency	Trimmed ^[17]	19	32	50	kHz
F _{32K_U}	ILO untrimmed frequency)		13	32	82	kHz
F _{32K2}	ILO frequency	Untrimmed	13	32	82	kHz
F _{IMO24}	Internal main oscillator (IMO) stability for 24 MHz \pm $5\%^{(12)}$		22.8	24	25.2	MHz
F _{IMO12}	IMO stability for 12 MHz ^[17]		11.4	12	12.6	MHz
F _{IMO6}	IMO stability for 6 MHz ^[17]		5.7	6.0	6.3	MHz
DC _{IMO}	Duty cycle of IMO		40	50	60	%
DC _{ILO}	ILO duty cycle		40	50	60	%
SR _{POWER_UP}	Power supply slew rate		=	-	250	V/ms
T _{XRST}	External reset pulse width at power-up	After supply voltage is valid	1	_	_	ms
T _{XRST2}	External reset pulse width after power-up ^[18]	Applies after part has booted	10	_	_	μS

Table 13. AC Characteristics – USB Data Timings

Symbol	Description	Conditions	Min	Тур	Max	Units
Tdrate	Full speed data rate	Average bit rate	11.97	12	12.03	MHz
Tdjr1	Receiver data jitter tolerance	To next transition	-18.5	_	18.5	ns
Tdjr2	Receiver data jitter tolerance	To pair transition	-9	_	9	ns
Tudj1	Driver differential jitter	To next transition	-3.5	_	3.5	ns
Tudj2	Driver differential jitter	To pair transition	-4.0	_	4.0	ns
Tfdeop	Source jitter for differential transition	To SE0 transition	-2	_	5	ns
Tfeopt	Source SE0 interval of EOP		160	_	175	ns
Tfeopr	Receiver SE0 interval of EOP		82	_	_	ns
Tfst	Width of SE0 interval during differential transition		-	_	14	ns

Table 14. AC Characteristics - USB Driver

Symbol	Description	Conditions	Min	Тур	Max	Units
Tr	Transition rise time	50 pF	4	_	20	ns
Tf	Transition fall time	50 pF	4	_	20	ns
TR ^[19]	Rise/fall time matching		90.00	_	111.1	%
Vcrs	Output signal crossover voltage		1.3	-	2.0	V

 ^{16.} V_{DD} = 3.0 V and T_J = 85 °C, CPU speed.
 17. Trimmed for 3.3 V operation using factory trim values.
 18. The minimum required XRES pulse length is longer when programming the device (see Table 17 on page 24).
 19. Errata: Rising to falling rate matching of the USB D+ and D- lines has a corner case issue when operating voltage is below 3.3 V. Refer to "Errata" on page 35 for more details.

AC Programming Specifications

Table 17 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 17. AC Programming Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{RSCLK}	Rise time of SCLK		1	_	20	ns
T _{FSCLK}	Fall time of SCLK		1	_	20	ns
T _{SSCLK}	Data setup time to falling edge of SCLK		40	_	-	ns
T _{HSCLK}	Data hold time from falling edge of SCLK		40	_	-	ns
F _{SCLK}	Frequency of SCLK		0	_	8	MHz
T _{ERASEB}	Flash erase time (Block)		-	_	18	ms
T _{WRITE}	Flash block write time		-	_	25	ms
T _{DSCLK1}	Data out delay from falling edge of SCLK,	V _{DD} > 3.6 V	-	_	60	ns
T _{DSCLK2}	Data out delay from falling edge of SCLK	3.0 V < V _{DD} < 3.6 V	-	_	85	ns
T _{XRST3}	External reset pulse width after power-up	Required to enter programming mode when coming out of sleep	263	-	-	μS

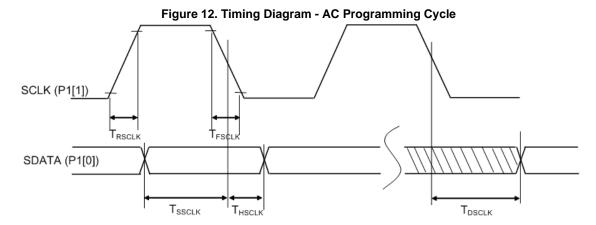


Table 19. SPI Master AC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{SCLK}	SCLK clock frequency		_	_	6	MHz
DC	SCLK duty cycle		_	50	_	%
T _{SETUP}	MISO to SCLK setup time		60	_	_	ns
T _{HOLD}	SCLK to MISO hold time		40	_	_	ns
T _{OUT_VAL}	SCLK to MOSI valid time		_	_	40	ns
T _{OUT_H}	SCLK to MOSI hold time		40	_	_	ns

Figure 14. SPI Master Mode 0 and 2

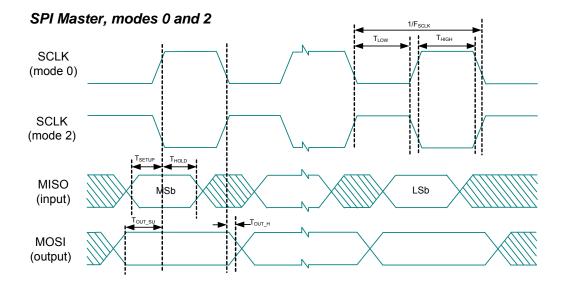


Figure 15. SPI Master Mode 1 and 3

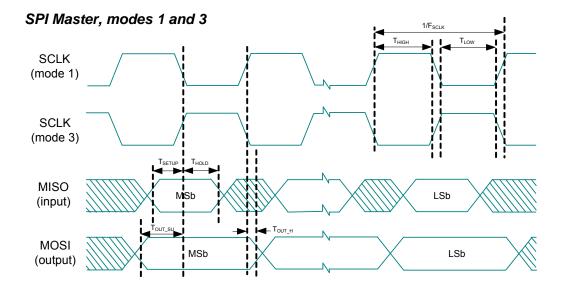


Figure 19. 32-pin QFN (5 \times 5 \times 0.55 mm) LQ32 3.5 \times 3.5 E-Pad (Sawn) Package Outline, 001-42168

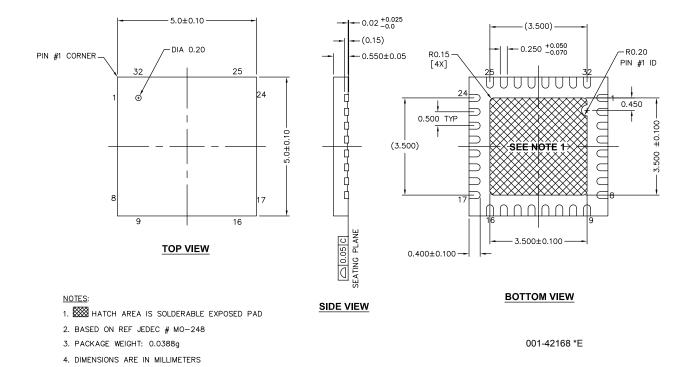
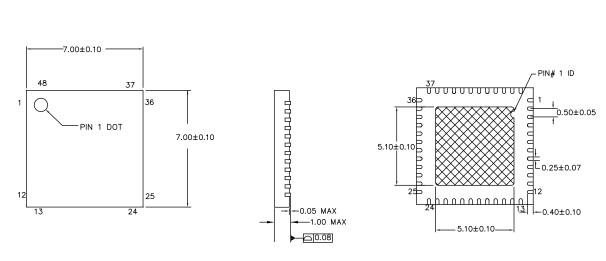



Figure 20. 48-pin QFN (7 × 7 × 1.00 mm) LT48A 5.1 × 5.1 E-Pad (Sawn) Package Outline, 001-13191

SIDE VIEW

NOTES:

- 1. MATCH AREA IS SOLDERABLE EXPOSED METAL.
- 2. REFERENCE JEDEC#: MO-220
- 3. PACKAGE WEIGHT: $13 \pm 1 \text{ mg}$
- 4. ALL DIMENSIONS ARE IN MILLIMETERS

TOP VIEW

001-13191 *H

BOTTOM VIEW

Document History Page

	Title: CY7C		6434x/CY7C6	435x, enCoRe™ V Full Speed USB Controller
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
**	626256	TYJ	See ECN	New data sheet.
*A	735718	TYJ / ARI	See ECN	Filled in TBDs, added new block diagram, and corrected some values. Part numbers updated as per new specifications.
*B	1120404	ARI	See ECN	Corrected the block diagram and Figure 3, which is the 16-pin enCoRe V device. Corrected the description to pin 29 on Table 2, the Typ/Max values for I _{SB0} on the DC chip-level specifications, the current value for the latch-up current in the Electrical Characteristics section, and corrected the 16 QFN package information in the Thermal Impedance table. Corrected some of the bulleted items on the first page. Added DC Characteristics—USB Interface table. Added AC Characteristics—USB Data Timings table. Added AC Characteristics—USB Driver table. Corrected Flash Write Endurance minimum value in the DC Programming Specifications table. Corrected the Flash Erase Time max value and the Flash Block Write Time max value in the AC Programming Specifications table. Implemented new latest template. Include parameters: Vcrs, Rpu (USB, active), Rpu (USB suspend), Tfdeop, Tfeopr2, Tfeopt, Tfst. Added register map tables. Corrected a value in the DC Chip-Level Specifications table.
*C	1241024	TYJ / ARI	See ECN	Corrected Idd values in Table 6 - DC Chip-Level Specifications.
*D	1639963	AESA	See ECN	Post to www.cypress.com
*E	2138889	TYJ/ PYRS	See ECN	Updated Ordering Code table: - Ordering code changed for 32-QFN package: From -32LKXC to -32LTXC - Added a new package type — "LTXC" for 48-QFN - Included Tape and Reel ordering code for 32-QFN and 48-QFN packages Changed active current values at 24, 12 and 6MHz in table "DC Chip-Level Specifications" - IDD24: 2.15 to 3.1mA - IDD12: 1.45 to 2.0mA - IDD6: 1.1 to 1.5mA Added information on using P1[0] and P1[1] as the I2C interface during POR or reset events

Document History Page (continued)

	Title: CY7C Number: 00		C6434x/CY7C6	435x, enCoRe™ V Full Speed USB Controller
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
*F	2583853	TYJ/ PYRS/ HMT	10/10/08	Converted from Preliminary to Final Added operating voltage ranges with USB ADC resolution changed from 10-bit to 8-bit Rephrased battery monitoring clause in page 1 to include "with external components" Included ADC specifications table Included Voh7, Voh8, Voh9, Voh10 specs Flash data retention – condition added to Note [11] Input leakage spec changed to 25 nA max Under AC Char, Frequency accuracy of ILO corrected GPIO rise time for ports 0,1 and ports 2,3 made common AC Programming specifications updated Included AC Programming cycle timing diagram AC SPI specification updated Spec change for 32-QFN package Input Leakage Current maximum value changed to 1 µA Updated V _{OHV} parameter in Table 13 Updated thermal impedances for the packages Update Development Tools, add Designing with PSoC Designer. Edit, fix links and table format. Update TMs.
*G	2653717	DVJA / PYRS	02/04/09	Updated Features, Functional Overview, Development Tools, and Designing with PSoC Designer sections with edits. Removed 'GUI - graphical user interface' from Document Conventions acronym table. Removed 'O - Only a read/write register or bits' in Table 4 Edited Table 8: removed 10-bit resolution information and corrected units column. Added package handling section Added 8K part 'CY7C64343-32LQXC' to Ordering Information.
*H	2714694	DVJA / AESA	06/04/2009	Updated Block Diagram. Added Full Speed USB, 10-bit ADC, SPI, and I2C Slave sections. ADC Resolution changed from 8-bit to 10-bit Updated Table 9 DC Chip Level Specs Updated Table10 DC Char - USB Interface Updated Table 12 DC POR and LDV Specs Changed operating temperature from Commercial to Industrial Changed Temperature Range to Industrial: –40 to 85°C Figure 9: Changed minimum CPU Frequency from 750 kHz to 5.7 MHz Table 14: Removed "Maximum" from the F _{CPU} description Ordering Information: Replaced 'C' with 'I' in all part numbers to denote Industrial Temp Range
*	2764460	DVJA / AESA	09/16/2009	Changed Table 12: ADC Specs Added F _{32K2} (Untrimmed) spec to Table 16: AC Chip level Specs Changed T _{RAMP} spec to SR _{POWER UP} in Table 16: AC Chip Level Specs Added Table 27: Typical Package Capacitance on Crystal Pins
*J	2811903	DVJA	11/20/2009	Added USB-IF TID number in Features on page 1. Added Note 5 on page 18 Changed V_{IHP} in Table 12 on page 22.

Document History Page (continued)

	Document Title: CY7C6431x/CY7C6434x/CY7C6435x, enCoRe™ V Full Speed USB Controller Document Number: 001-12394							
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change				
*\$	4578605	GINS	12/11/2014	Updated Pin Information: Updated 32-pin part pinout: Updated Figure 7 (No change in figure, included CY7C64346 in figure caption). Updated Package Diagrams: spec 001-09116 – Changed revision from *I to *J. Updated Ordering Information: Updated Table 25: Updated part numbers.				
*T	5548557	ANKC	12/12/2016	Updated Cypress Logo, Sales Page and Disclaimer. Updated Figure 20 (spec 001-13191 *G to *H) in Package Diagrams. Removed the following obsolete part numbers (Table 26) in Ordering Information: CY7C64343-32LQXI, CY7C64343-32LQXIT, CY7C64345-32LQXI, CY7C64345-48LTXI, CY7C64356-48LTXIT.				

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

cypress.com/touch

cypress.com/wireless

cypress.com/usb

Products

Touch Sensing

USB Controllers

Wireless Connectivity

ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Memory cypress.com/memory Microcontrollers cypress.com/mcu **PSoC** cypress.com/psoc Power Management ICs cypress.com/pmic

PSoC® Solutions

Cypress Developer Community

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2006-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners