
Infineon Technologies - CY7C60223-QXC Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor M8C

Core Size 8-Bit

Speed 12MHz

Connectivity SPI

Peripherals LVD, POR, WDT

Number of I/O 20

Program Memory Size 8KB (8K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 256 x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 3.6V

Data Converters -

Oscillator Type Internal

Operating Temperature 0°C ~ 70°C (TA)

Mounting Type Surface Mount

Package / Case 24-SSOP (0.154", 3.90mm Width)

Supplier Device Package 24-QSOP

Purchase URL https://www.e-xfl.com/product-detail/infineon-technologies/cy7c60223-qxc

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/cy7c60223-qxc-4455920
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

CY7C601xx/CY7C602xx

Document Number: 38-16016 Rev. *K Page 7 of 69

8. Register Summary

Table 8-1. enCoRe II LV Register Summary

The XIO bit in the CPU flags register must be set to access the extended register space for all registers above 0xFF.

Addr Name 7 6 5 4 3 2 1 0 R/W Default

00 P0DATA P0.7 P0.6/TIO1 P0.5/TIO0 P0.4/INT2 P0.3/INT1 P0.2/INT0 P0.1/
CLKOUT

P0.0/CLKIN bbbbbbbb 00000000

01 P1DATA P1.7 P1.6/SMISO P1.5/SMOSI P1.4/SCLK P1.3/SSEL P1.2 P1.1 P1.0 bbbbbbbb 00000000

02 P2DATA P2.7–P2.2 P2.1–P2.0 bbbbbbbb 00000000

03 P3DATA P3.7–P3.2 P3.1–P3.0 bbbbbbbb 00000000

04 P4DATA Reserved P4.3–P4.0 ----bbbb 00000000

05 P00CR Reserved Int enable Int act low TTL thresh High sink Open drain Pull-up
enable

Output
enable

-bbbbbbb 00000000

06 P01CR CLK output Int enable Int act low TTL thresh High sink Open drain Pull-up
enable

Output
enable

bbbbbbbb 00000000

07–09 P02CR–
P04CR

Reserved Int act low TTL thresh Reserved Open drain Pull-up
enable

Output
enable

--bb-bbb 00000000

0A–0B P05CR– P06CR TIO output Int enable Int act low TTL thresh Reserved Open drain Pull-up
enable

Output
enable

bbbb-bbb 00000000

0C P07CR Reserved Int enable Int act low TTL thresh Reserved Open drain Pull-up
enable

Output
enable

-bbb-bbb 00000000

0D P10CR Reserved Int enable Int act low Reserved Output
enable

-bb----b 00000000

0E P11CR Reserved Int enable Int act low Reserved Open drain Reserved Output
enable

-bb--b-b 00000000

0F P12CR CLK output Int enable Int act low TTL threshold Reserved Open drain Pull-up
enable

Output
enable

bbbb-bbb 00000000

10 P13CR Reserved Int enable Int act low Reserved High sink Open drain Pull-up
enable

Output
enable

-bb-bbbb 00000000

11–13 P14CR– P16CR SPI use Int enable Int act low Reserved High sink Open drain Pull-up
enable

Output
enable

bbb-bbbb 00000000

14 P17CR Reserved Int enable Int act low Reserved High sink Open drain Pull-up
enable

Output
enable

-bb-bbbb 00000000

15 P2CR Reserved Int enable Int act low TTL thresh High sink Open drain Pull-up
enable

Output
enable

-bbbbbbb 00000000

16 P3CR Reserved Int enable Int act low TTL thresh High sink Open drain Pull-up
enable

Output
enable

-bbbbbbb 00000000

17 P4CR Reserved Int enable Int act low TTL thresh Reserved Open drain Pull-up
enable

Output
enable

-bbb-bbb 00000000

20 FRTMRL Free-running timer [7:0] bbbbbbbb 00000000

21 FRTMRH Free-running timer [15:8] bbbbbbbb 00000000

22 TCAP0R Capture 0 rising [7:0] rrrrrrrr 00000000

23 TCAP1R Capture 1 rising [7:0] rrrrrrrr 00000000

24 TCAP0F Capture 0 falling [7:0] rrrrrrrr 00000000

25 TCAP1F Capture 1 falling [7:0] rrrrrrrr 00000000

26 PITMRL Prog interval timer [7:0] rrrrrrrr 00000000

27 PITMRH Reserved Prog interval timer [11:8] ----rrrr 00000000

28 PIRL Prog interval [7:0] bbbbbbbb 00000000

29 PIRH Reserved Prog interval [11:8] ----bbbb 00000000

2A TMRCR First edge
hold

8-bit capture prescale Cap0 16-bit
enable

Reserved bbbbb--- 00000000

2B TCAPINTE Reserved Cap1 fall
active

Cap1 rise
active

Cap0 fall
active

Cap0 rise
active

----bbbb 00000000

2C TCAPINTS Reserved Cap1 fall
active

Cap1 rise
active

Cap0 fall
active

Cap0 rise
active

----bbbb 00000000

30 CPUCLKCR Reserved CPU
CLK select

-------b 00000000

31 TMRCLKCR TCAPCLK divider TCAPCLK select ITMRCLK divider ITMRCLK select bbbbbbbb 10001111

32 CLKIOCR Reserved XOSC
Select

XOSC
Enable

EFTB
Disabled

CLKOUT select ---bbbbb 00000000

CY7C601xx/CY7C602xx

Document Number: 38-16016 Rev. *K Page 10 of 69

10.1.1 Accumulator Register

10.1.2 Index Register

10.1.3 Stack Pointer Register

10.1.4 CPU Program Counter High Register

10.1.5 CPU Program Counter Low Register

Table 10-2. CPU Accumulator Register (CPU_A)

Bit # 7 6 5 4 3 2 1 0

Field CPU accumulator [7:0]

Read/Write – – – – – – – –

Default 0 0 0 0 0 0 0 0

Bit [7:0]: CPU accumulator [7:0]
8-bit data value holds the result of any logical or arithmetic instruction that uses a source addressing mode.

Table 10-3. CPU X Register (CPU_X)

Bit # 7 6 5 4 3 2 1 0

Field X [7:0]

Read/Write – – – – – – – –

Default 0 0 0 0 0 0 0 0

Bit [7:0]: X [7:0]
8-bit data value holds an index for any instruction that uses an indexed addressing mode.

Table 10-4. CPU Stack Pointer Register (CPU_SP)

Bit # 7 6 5 4 3 2 1 0

Field Stack pointer [7:0]

Read/Write – – – – – – – –

Default 0 0 0 0 0 0 0 0

Bit [7:0]: Stack pointer [7:0]
8-bit data value holds a pointer to the current top-of-stack.

Table 10-5. CPU Program Counter High Register (CPU_PCH)

Bit # 7 6 5 4 3 2 1 0

Field Program counter [15:8]

Read/Write – – – – – – – –

Default 0 0 0 0 0 0 0 0

Bit [7:0]: Program counter [15:8]
8-bit data value holds the higher byte of the program counter.

Table 10-6. CPU Program Counter Low Register (CPU_PCL)

Bit # 7 6 5 4 3 2 1 0

Field Program counter [7:0]

Read/Write – – – – – – – –

Default 0 0 0 0 0 0 0 0

Bit [7:0]: Program counter [7:0]
8-bit data value holds the lower byte of the program counter.

CY7C601xx/CY7C602xx

Document Number: 38-16016 Rev. *K Page 12 of 69

10.2.5 Destination Indexed

The result of an instruction using this addressing mode is placed
within either the RAM memory space or the register space.
Operand 1 is added to the X register forming the address that
points to the location of the result. The source for the instruction
is the A register. Arithmetic instructions require two sources; the
second source is the location specified by Operand 1 added with
the X register. Instructions using this addressing mode are two
bytes in length.

Example

10.2.6 Destination Direct Source Immediate

The result of an instruction using this addressing mode is placed
within either the RAM memory space or the register space.
Operand 1 is the address of the result. The source for the
instruction is Operand 2, which is an immediate value. Arithmetic
instructions require two sources; the second source is the
location specified by Operand 1. Instructions using this
addressing mode are three bytes in length.

Examples

10.2.7 Destination Indexed Source Immediate

The result of an instruction using this addressing mode is placed
within either the RAM memory space or the register space.
Operand 1 is added to the X register to form the address of the
result. The source for the instruction is Operand 2, which is an
immediate value. Arithmetic instructions require two sources; the
second source is the location specified by Operand 1 added with
the X register. Instructions using this addressing mode are three
bytes in length.

Examples

10.2.8 Destination Direct Source Direct

The result of an instruction using this addressing mode is placed
within the RAM memory. Operand 1 is the address of the result.
Operand 2 is an address that points to a location in the RAM
memory that is the source for the instruction. This addressing
mode is only valid on the MOV instruction. The instruction using
this addressing mode is three bytes in length.

Example

Table 10-11. Destination Indexed

Opcode Operand 1

Instruction Destination index

ADD [X+7], A ;In this case, the value in the memory
location at address X+7 is added with the
accumulator and the result is placed in the
memory location at address X+7. The
accumulator is unchanged.

Table 10-12. Destination Direct Source Immediate

Opcode Operand 1 Operand 2

Instruction Destination address Immediate value

ADD [7], 5 ;In this case, value in the memory location
at address 7 is added to the immediate
value of 5, and the result is placed in the
memory location at address 7.

MOV REG[8], 6 ;In this case, the immediate value of 6 is
moved into the register space location at
address 8.

Table 10-13. Destination Indexed Source Immediate

Opcode Operand 1 Operand 2

Instruction Destination index Immediate value

ADD [X+7], 5 ;In this case, the value in the memory
location at address X+7 is added
with the immediate value of 5, and
the result is placed in the memory
location at address X+7.

MOV REG[X+8], 6 ;In this case, the immediate value of
6 is moved into the location in the
register space at address X+8.

Table 10-14. Destination Direct Source Direct

Opcode Operand 1 Operand 2

Instruction Destination address Source address

MOV [7], [8] ;In this case, the value in the memory location
at address 8 is moved to the memory location
at address 7.

CY7C601xx/CY7C602xx

Document Number: 38-16016 Rev. *K Page 13 of 69

10.2.9 Source Indirect Post Increment

The result of an instruction using this addressing mode is placed
in the accumulator. Operand 1 is an address pointing to a
location within the memory space, which contains an address
(the indirect address) for the source of the instruction. The
indirect address is incremented as part of the instruction
execution. This addressing mode is only valid on the MVI
instruction. The instruction using this addressing mode is two
bytes in length. Refer to the PSoC Designer: Assembly
Language User Guide for further details on MVI instruction.

Example

10.2.10 Destination Indirect Post Increment

The result of an instruction using this addressing mode is placed
within the memory space. Operand 1 is an address pointing to a
location within the memory space, which contains an address
(the indirect address) for the destination of the instruction. The
indirect address is incremented as part of the instruction
execution. The source for the instruction is the accumulator. This
addressing mode is only valid on the MVI instruction. The
instruction using this addressing mode is two bytes in length.

Example

11. Instruction Set Summary

The instruction set is summarized in Table 11-1 numerically and serves as a quick reference. The instruction set summary tables are
described in detail in the PSoC Designer: Assembly Language User Guide.

Table 10-15. Source Indirect Post Increment

Opcode Operand 1

Instruction Source address

MVI A, [8] ;In this case, the value in the memory location
at address 8 is an indirect address. The
memory location pointed to by the Indirect
address is moved into the accumulator. The
indirect address is then incremented.

Table 10-16. Destination Indirect Post Increment

Opcode Operand 1

Instruction Destination address

MVI [8], A ;In this case, the value in the memory
location at address 8 is an indirect
address. The accumulator is moved into
the memory location pointed to by the
indirect address. The indirect address is
then incremented.

Table 11-1. Instruction Set Summary Sorted Numerically by Opcode Order

O
p

co
d

e
H

ex

C
yc

le
s

B
yt

es Instruction Format[1, 2] Flags

O
p

co
d

e
H

ex

C
yc

le
s

B
yt

es Instruction Format Flags

O
p

co
d

e
H

ex

C
yc

le
s

B
yt

es Instruction Format Flags

00 15 1 SSC 2D 8 2 OR [X+expr], A Z 5A 5 2 MOV [expr], X

01 4 2 ADD A, expr C, Z 2E 9 3 OR [expr], expr Z 5B 4 1 MOV A, X Z

02 6 2 ADD A, [expr] C, Z 2F 10 3 OR [X+expr], expr Z 5C 4 1 MOV X, A

03 7 2 ADD A, [X+expr] C, Z 30 9 1 HALT 5D 6 2 MOV A, reg[expr] Z

04 7 2 ADD [expr], A C, Z 31 4 2 XOR A, expr Z 5E 7 2 MOV A, reg[X+expr] Z

05 8 2 ADD [X+expr], A C, Z 32 6 2 XOR A, [expr] Z 5F 10 3 MOV [expr], [expr]

06 9 3 ADD [expr], expr C, Z 33 7 2 XOR A, [X+expr] Z 60 5 2 MOV reg[expr], A

07 10 3 ADD [X+expr], expr C, Z 34 7 2 XOR [expr], A Z 61 6 2 MOV reg[X+expr], A

08 4 1 PUSH A 35 8 2 XOR [X+expr], A Z 62 8 3 MOV reg[expr], expr

09 4 2 ADC A, expr C, Z 36 9 3 XOR [expr], expr Z 63 9 3 MOV reg[X+expr],
expr

0A 6 2 ADC A, [expr] C, Z 37 10 3 XOR [X+expr], expr Z 64 4 1 ASL A C, Z

0B 7 2 ADC A, [X+expr] C, Z 38 5 2 ADD SP, expr 65 7 2 ASL [expr] C, Z

0C 7 2 ADC [expr], A C, Z 39 5 2 CMP A, expr if (A=B)
Z=1
if (A<B)
C=1

66 8 2 ASL [X+expr] C, Z

0D 8 2 ADC [X+expr], A C, Z 3A 7 2 CMP A, [expr] 67 4 1 ASR A C, Z

0E 9 3 ADC [expr], expr C, Z 3B 8 2 CMP A, [X+expr] 68 7 2 ASR [expr] C, Z

0F 10 3 ADC [X+expr], expr C, Z 3C 8 3 CMP [expr], expr 69 8 2 ASR [X+expr] C, Z

10 4 1 PUSH X 3D 9 3 CMP [X+expr], expr 6A 4 1 RLC A C, Z

11 4 2 SUB A, expr C, Z 3E 10 2 MVI A, [[expr]++] Z 6B 7 2 RLC [expr] C, Z

Notes
1. Interrupt routines take 13 cycles before execution resumes at interrupt vector table.
2. The number of cycles required by an instruction is increased by one for instructions that span 256 byte boundaries in the flash memory space.

http://www.cypress.com/?rID=35428
http://www.cypress.com/?rID=35428
http://www.cypress.com/?rID=35428

CY7C601xx/CY7C602xx

Document Number: 38-16016 Rev. *K Page 20 of 69

12.6 SROM Table Read Description
The silicon IDs for enCoRe II LV devices are stored in the SROM tables in the part, as shown in Figure 12-3 on page 21.
The silicon ID can be read out from the part using SROM table reads. This is demonstrated in the following pseudo code. As mentioned
in the section SROM on page 16, the SROM variables occupy address F8h through FFh in the SRAM. Each of the variables and their
definitions are given in the section SROM on page 16.

AREA SSCParmBlkA(RAM,ABS)

 org F8h // Variables are defined starting at address F8h

SSC_KEY1: ; F8h supervisory key
SSC_RETURNCODE: blk 1 ; F8h result code
SSC_KEY2 : blk 1 ;F9h supervisory stack ptr key
SSC_BLOCKID: blk 1 ; FAh block ID
SSC_POINTER: blk 1 ; FBh pointer to data buffer
SSC_CLOCK: blk 1 ; FCh Clock
SSC_MODE: blk 1 ; FDh ClockW ClockE multiplier
SSC_DELAY: blk 1 ; FEh flash macro sequence delay count
SSC_WRITE_ResultCode: blk 1 ; FFh temporary result code

_main:
mov A, 2
mov [SSC_BLOCKID], A// To read from Table 2 - trim values for the IMO are stored in table 2
mov X, SP ; copy SP into X

 mov A, X ; A temp stored in X
 add A, 3 ; create 3 byte stack frame (2 + pushed A)
 mov [SSC_KEY2], A ; save stack frame for supervisory code

 ; load the supervisory code for flash operations
 mov [SSC_KEY1], 3Ah ;FLASH_OPER_KEY - 3Ah

 mov A,6 ; load A with specific operation. 06h is the code for Table (read Table
12-1 on page 16)
 SSC ; SSC call the supervisory ROM

// At the end of the SSC command the silicon ID is stored in F8 (MSB) and F9(LSB) of the SRAM

.terminate:

 jmp .terminate

CY7C601xx/CY7C602xx

Document Number: 38-16016 Rev. *K Page 21 of 69

Figure 12-3. SROM Table

12.6.1 Checksum Function

The Checksum function calculates a 16-bit checksum over a
user-specifiable number of blocks, within a single flash macro
(Bank) starting from block zero. The BLOCKID parameter is
used to pass in the number of blocks to calculate the checksum
over. A BLOCKID value of ‘1’ calculates the checksum of only
block 0, while a BLOCKID value of ‘0’ calculates the checksum
of all 256 user blocks. The 16-bit checksum is returned in KEY1
and KEY2. The parameter KEY1 holds the lower eight bits of the
checksum and the parameter KEY2 holds the upper eight bits of
the checksum.

The checksum algorithm executes the following sequence of
three instructions over the number of blocks times 64 to be
checksummed.
romx
add [KEY1], A
adc [KEY2], 0

Valid
Operating

Region

F8h F9h FAh FBh FCh FDh FEh FFh

Table 0

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Silicon ID
[15-8]

Silicon ID
[7-0]

24 MHz
IOSCTR
at 3.30V

24 MHz
IOSCTR
at 3.00V

24 MHz
IOSCTR
at 2.85V

24 MHz
IOSCTR
at 2.70V

32 kHz
LPOSCTR
at 3.30V

32 kHz
LPOSCTR
at 3.00V

32 kHz
LPOSCTR
at 2.85V

32 kHz
LPOSCTR
at 2.70V

Family /
Die ID

Revision
ID

Table 12-1. Checksum Parameters

Name Address Description

KEY1 0,F8h 3Ah

KEY2 0,F9h Stack pointer value when SSC is
executed

BLOCKID 0,FAh Number of flash blocks to calculate
checksum on

CY7C601xx/CY7C602xx

Document Number: 38-16016 Rev. *K Page 27 of 69

Figure 13-2. Programmable Interval Timer Block Diagram

13.2.3 Timer Capture Clock (TCAPCLK)

The TCAPCLK is sourced from the external crystal oscillator, the internal 24-MHz oscillator or the internal 32-kHz low-power
oscillator. A programmable prescaler of 2, 4, 6, or 8 then divides the selected source.

Figure 13-3. Timer Capture Block Diagram

12-bit reload
value

12-bit down
counter

12-bit reload
controlClock Timer

Configuration
Status and

Control
System Clock

Interrupt
Controller

16-bit counter

Configuration Status
and Control

Prescale Mux

Capture Registers

Interrupt Controller

1ms
timer

Overflow
Interrupt

Captimer Clock

System Clock

Capture0 Int Capture1 Int

CY7C601xx/CY7C602xx

Document Number: 38-16016 Rev. *K Page 34 of 69

15.2 Wakeup Sequence

When asleep, the only event that wakes the system up is an
interrupt. The global interrupt enable of the CPU flag register
need not be set. Any unmasked interrupt wakes the system up.
It is optional for the CPU to actually take the interrupt after the
wakeup sequence. The wakeup sequence is synchronized to the
32-kHz clock. This is done to sequence a startup delay and allow
the flash memory module enough time to power up before the
CPU asserts the first read access. Another reason for the delay
is to enable the oscillator, bandgap, and LVD and POR circuits
time to settle before actually being used in the system. As shown
in Figure 15-2, the wakeup sequence is as follows:

1. The wakeup interrupt occurs and is synchronized by the
negative edge of the 32-kHz clock.

2. At the following positive edge of the 32-kHz clock, the system
wide PD signal is negated. The flash memory module, internal

oscillator, EFTB, and bandgap circuit are all powered up to a
normal operating state.

3. At the following positive edge of the 32-kHz clock, the current
values for the precision POR and LVD have settled and are
sampled.

4. At the following negative edge of the 32-kHz clock (after about
15 µs nominal), the BRQ signal is negated by the sleep logic
circuit. On the following CPUCLK, BRA is negated by the CPU
and instruction execution resumes. Note that in Figure 15-2
fixed function blocks, such as flash, internal oscillator, EFTB,
and bandgap, have about 15 µs start-up. The wakeup times
(interrupt to CPU operational) range from 75 µs to 105 µs.

Figure 15-2. Wakeup Timing

INT

SLEEP

PD

BANDGAP

CLK32K

SAMPLE

SAMPLE LVD/
POR

CPUCLK/
24MHz

BRA

BRQ

ENABLE

CPU

(Not to Scale)

Sleep Timer or GPIO
interrupt occurs

Interrupt is double sampled by
32K clock and PD is negated to

system

CPU is restarted after
90ms (nominal)

CY7C601xx/CY7C602xx

Document Number: 38-16016 Rev. *K Page 38 of 69

17.1.3 P2 Data

17.1.4 P3 Data

17.1.5 P4 Data

17.2 GPIO Port Configuration

All GPIO configuration registers have common configuration
controls. By default all GPIOs are configured as inputs. To
prevent the inputs from floating, pull-up resistors are enabled.
Firmware configures each of the GPIOs before use. The
following are bit definitions of the GPIO configuration registers.

17.2.1 Int Enable

When set, the Int Enable bit allows the GPIO to generate
interrupts. Interrupt generate occurs regardless of whether the
pin is configured for input or output. All interrupts are
edge-sensitive. However, for interrupts that are shared by
multiple sources (ports 2, 3, and 4), all inputs are deasserted
before a new interrupt occurs.

When clear, the corresponding interrupt is disabled on the pin.

It is possible to configure GPIOs as outputs, enable the interrupt
on the pin, and then generate the interrupt by driving the
appropriate pin state. This is useful in test and may find value in
applications too.

17.2.2 Int Act Low

When clear, the corresponding interrupt is active HIGH. When
set, the interrupt is active LOW. For P0.2–P0.4 Int Act Low
makes interrupts active on the rising edge. Int Act Low set makes
interrupts active on the falling edge.

17.2.3 TTL Thresh

When set, the input has TTL threshold. When clear, the input has
standard CMOS threshold.

Note The GPIOs default to CMOS threshold. The user’s
firmware must configure the threshold to TTL mode if necessary.

Table 17-3. P2 Data Register (P2DATA) [0x02] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field P2.7–P2.2 P2.1–P2.0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Default 0 0 0 0 0 0 0 0

This register contains the data for Port 2. Writing to this register sets the bit values to be output on output enabled pins. Reading
from this register returns the current state of the Port 2 pins.
Bit [7:2]: P2 Data [7:2]
Bit [1:0]: P2 Data [1:0]

Table 17-4. P3 Data Register (P3DATA) [0x03] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field P3.7–P3.2 P3.1–P3.0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Default 0 0 0 0 0 0 0 0

This register contains the data for Port 3. Writing to this register sets the bit values to be output on output enabled pins. Reading
from this register returns the current state of the Port 3 pins.
Bit [7:2]: P3 Data [7:2]
Bit [1:0]: P3 Data [1:0]

Table 17-5. P4 Data Register (P4DATA) [0x04] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field Reserved P4.3–P4.0

Read/Write – – – – R/W R/W R/W R/W

Default 0 0 0 0 0 0 0 0

This register contains the data for Port 4. Writing to this register sets the bit values to be output on output enabled pins. Reading
from this register returns the current state of the Port 2 pins.
Bit [7:4]: Reserved
Bit [3:0]: P4 data [3:0]
P4.3–P4.0 only exist in the CY7C601xx.

CY7C601xx/CY7C602xx

Document Number: 38-16016 Rev. *K Page 39 of 69

17.2.4 High Sink

When set, the output sinks up to 50 mA.

When clear, the output sinks up to 8 mA.

On the CY7C601xx, only the P3.7, P2.7, P0.1, and P0.0 have a
50 mA sink drive capability. Other pins have a 8-mA sink drive
capability.

On the CY7C602xx, only the P1.7–P1.3 have a 50-mA sink drive
capability. Other pins have an 8-mA sink drive capability.

17.2.5 Open Drain

When set, the output on the pin is determined by the port data
register. If the corresponding bit in the port data register is set,
the pin is in high-impedance state; if it is clear, the pin is driven
low.

When clear, the output is driven low or high.

17.2.6 Pull-up Enable

When set the pin has a 7 K pull-up to VDD.

When clear, the pull-up is disabled.

17.2.7 Output Enable

When set, the output driver of the pin is enabled.

When clear, the output driver of the pin is disabled.

For pins with shared functions there are some special cases.

P0.0(CLKIN) and P0.1(CLKOUT) are not output-enabled when
the crystal oscillator is enabled. Output enables for these pins
are overridden by XOSC Enable.

17.2.8 SPI Use

The P1.3(SSEL), P1.4(SCLK), P1.5(SMOSI), and P1.6(SMISO)
pins are used for their dedicated functions or for GPIO. To enable
the pin for GPIO, clear the corresponding SPI Use bit. The SPI
function controls the output enable for its dedicated function pins
when their GPIO enable bit is clear.

Figure 17-1. GPIO Block Diagram

17.2.9 P0.0/CLKIN Configuration

VCCVREG

VCCVREG

GPIO
PIN

RUP Data Out

VCC GNDVREG GND

3.3V Drive

Pull-Up Enable

Output Enable

Open Drain

Port Data

High Sink

Data In
TTL Threshold

Table 17-1. P0.0/CLKIN Configuration (P00CR) [0x05] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field Reserved Int Enable Int Act Low TTL Thresh High Sink Open Drain Pull-up Enable Output Enable

Read/Write – R/W R/W R/W R/W R/W R/W R/W

Default 0 0 0 0 0 0 0 0

This pin is shared between the P0.0 GPIO use and the CLKIN pin for the external crystal oscillator. When the external oscillator
is enabled the settings of this register are ignored.
The alternate function of the pin as the CLKIN is only available in the CY7C601xx. When the external oscillator is enabled (the
XOSC Enable bit of the CLKIOCR Register is set—Table 13-3 on page 26), the GPIO function of the pin is disabled.
The 50-mA sink drive capability is only available in the CY7C601xx. In the CY7C602xx, only an 8-mA sink drive capability is
available on this pin regardless of the setting of the high sink bit.

CY7C601xx/CY7C602xx

Document Number: 38-16016 Rev. *K Page 41 of 69

17.2.12 P0.5/TIO0–P0.6/TIO1 Configuration

17.2.13 P0.7 Configuration

17.2.14 P1.0 Configuration

Table 17-4. P0.5/TIO0–P0.6/TIO1 Configuration (P05CR–P06CR) [0x0A–0x0B] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field TIO Output Int Enable Int Act Low TTL Thresh Reserved Open Drain Pull-up Enable Output Enable

Read/Write R/W R/W R/W R/W – R/W R/W R/W

Default 0 0 0 0 0 0 0 0

These registers control the operation of pins P0.5 through P0.6 respectively.
P0.5 and P0.6 are shared with TIO0 and TIO1 respectively. To use these pins as capture timer inputs, configure them as inputs
by clearing the corresponding Output Enable. To use TIO0 and TIO1 as timer outputs, set the TIOx Output and Output Enable
bits. If these pins are configured as outputs and the TIO output bit is clear, the firmware controls the TIO0 and TIO1 inputs by
writing the value to the P0.5 and P0.6 data bits in the P0 data register.
Regardless of whether either pin is used as a TIO or GPIO pin the Int Enable, Int Act Low, TTL threshold, open drain, and pull-up
enable control the behavior of the pin.

TIO0(P0.5) when enabled outputs a positive pulse from the 1024 s interval timer. This is the same signal that is used internally
to generate the 1024 s timer interrupt. This signal is not gated by the interrupt enable state. The pulse is active for one cycle
of the capture timer clock.

TIO1(P0.6) when enabled outputs a positive pulse from the programmable interval timer. This is the same signal that is used
internally to generate the programmable timer interval interrupt. This signal is not gated by the interrupt enable state.The pulse
is active for one cycle of the interval timer clock.
The P0.5/TIO0 and P0.6/TIO1 pins are individually configured with the P05CR (0x0A) and P06CR (0x0B), respectively.

Table 17-5. P0.7 Configuration (P07CR) [0x0C] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field Reserved Int Enable Int Act Low TTL Thresh Reserved Open Drain Pull-up Enable Output Enable

Read/Write – R/W R/W R/W – R/W R/W R/W

Default 0 0 0 0 0 0 0 0

This register controls the operation of pin P0.7.

Table 17-6. P1.0 Configuration (P10CR) [0x0D] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field Reserved Int Enable Int Act Low Reserved P1.0 and P1.1
Pull-up Enable

Output Enable

Read/Write R/W R/W R/W – – – – R/W

Default 0 0 0 0 0 0 0 0

This register controls the operation of the P1.0 pin.
Bit1: P1.0 and P1.1 Pull-up enable
0 = Disable the P1.0 and P1.1 pull-up resistors.
1 = Enable the internal pull-up resistors for both the P1.0 and P1.1. Each of the P1.0 and P1.1 pins is pulled up with RUP1 (see
DC Characteristics on page 60).
Note There is no 2 mA sourcing capability on this pin. The pin can only sink 5 mA at VOL3 (see DC Characteristics on page 60)
The P1.0 is an open drain only output. It actively drives a signal low, but cannot actively drive a signal high.
If this pin is used as a general purpose output, it draws current. It is therefore configured as an input to reduce current draw.

CY7C601xx/CY7C602xx

Document Number: 38-16016 Rev. *K Page 44 of 69

17.2.21 P3 Configuration

17.2.22 P4 Configuration

Table 17-13. P3 Configuration (P3CR) [0x16] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field Reserved Int Enable Int Act Low TTL Thresh High Sink Open Drain Pull-up Enable Output Enable

Read/Write – R/W R/W R/W R/W R/W R/W R/W

Default 0 0 0 0 0 0 0 0

In CY7C602xx, this register controls the operation of pins P3.0–P3.1. In CY7C601xx, this register controls the operation of pins
P3.0–P3.7.
The 50-mA sink drive capability is only available on pin P3.7 and only on CY7C601xx. In CY7C602xx, only an 8-mA sink drive
capability is available on this pin regardless of the setting of the high sink bit.

Table 17-14. P4 Configuration (P4CR) [0x17] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field Reserved Int Enable Int Act Low TTL Thresh High Sink Open Drain Pull-up Enable Output Enable

Read/Write – R/W R/W R/W R/W R/W R/W R/W

Default 0 0 0 0 0 0 0 0

This register exists only in CY7C601xx. This register controls the operation of pins P4.0–P4.3.

CY7C601xx/CY7C602xx

Document Number: 38-16016 Rev. *K Page 46 of 69

18.1 SPI Data Register

When an interrupt occurs to indicate to firmware that a byte of receive data is available or the transmitter holding register is empty,
firmware has seven SPI clocks to manage the buffers—to empty the receiver buffer or to refill the transmit holding register. Failure to
meet this timing requirement results in incorrect data transfer.

18.2 SPI Configure Register

Table 18-1. SPI Data Register (SPIDATA) [0x3C] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field SPIData[7:0]

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Default 0 0 0 0 0 0 0 0

When read, this register returns the contents of the receive buffer. When written, it loads the transmit holding register.

Bit [7:0]: SPI Data [7:0]

Table 18-2. SPI Configure Register (SPICR) [0x3D] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field Swap LSB First Comm Mode CPOL CPHA SCLK Select

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Default 0 0 0 0 0 0 0 0

Bit 7: Swap

0 = Swap function disabled

1 = The SPI block swaps its use of SMOSI and SMISO. Among other things, this is useful to implement single wire communi-
cations similar to SPI.

Bit 6: LSB first

0 = The SPI transmits and receives the MSB (Most Significant Bit) first.

1 = The SPI transmits and receives the LSB (Least Significant Bit) first.

Bit [5:4]: Comm mode [1:0]

0 0: All SPI communication disabled

0 1: SPI master mode

1 0: SPI slave mode

1 1: Reserved

Bit 3: CPOL

This bit controls the SPI clock (SCLK) idle polarity.

0 = SCLK idles low

1 = SCLK idles high

Bit 2: CPHA

The Clock Phase bit controls the phase of the clock on which data is sampled. Table 18-3 on page 47 shows the timing for various
combinations of LSB First, CPOL, and CPHA.

Bit [1:0]: SCLK Select

This field selects the speed of the master SCLK. When in master mode, SCLK is generated by dividing the base CPUCLK

Important Note for Comm Modes 01b or 10b (SPI Master or SPI Slave)
When configured for SPI, (SPI Use = 1 – Table 17-10 on page 43), the input and output direction of pins P1.3, P1.5, and P1.6
is set automatically by the SPI logic. However, pin P1.4's input and output direction is NOT automatically set; it must be explic-
itly set by firmware. For SPI Master mode, pin P1.4 is configured as an output; for SPI Slave mode, pin P1.4 is configured as
an input.

CY7C601xx/CY7C602xx

Document Number: 38-16016 Rev. *K Page 47 of 69

Table 18-3. SPI Mode Timing vs. LSB First, CPOL, and CPHA

LSB
First CPHA CPOL Diagram

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

SCL K

SSEL

D AT A X XMSB B it 2B it 3B it 4B it 5B it 6B it 7 LSB

S C L K

S S E L

X XD A T A M S B B it 2B it 3B it 4B it 5B it 6B it 7 L S B

SC LK

SSEL

X XD AT A MS B B it 2B it 3B it 4B it 5B it 6B it 7 LS B

SCLK

SSEL

DAT A X XMSB Bit 2B it 3B it 4Bit 5Bit 6Bit 7 LSB

SCLK

SSEL

DAT A X XMS BBit 2 B it 3 B it 4 B it 5 B it 6 B it 7LSB

SCLK

SSEL

X XDATA MSBBit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7LSB

SCLK

SSEL

X XDATA MSBBit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7LSB

SCLK

SSEL

DATA X MSB XBit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7LSB

CY7C601xx/CY7C602xx

Document Number: 38-16016 Rev. *K Page 51 of 69

‘

19.1.3 Programmable Interval Timer

Table 19-6. Timer Capture 1 Falling (TCAP1F) [0x25] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field Capture 1 Falling [7:0]

Read/Write R R R R R R R R

Default 0 0 0 0 0 0 0 0

Bit [7:0]: Capture 1 Falling [7:0]
This register holds the value of the free-running timer when the last falling edge occurred on the TIO1 input. The bits stored here
are selected by the Prescale [2:0] bits in the Timer Configuration register. When capture 0 is in 16-bit mode this register holds
the high-order eight bits of the 16-bit timer from the last TIO0 falling edge.

Table 19-7. Capture Interrupt Status (TCAPINTS) [0x2C] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field Reserved Cap1 Fall
Active

Cap1 Rise
Active

Cap0 Fall
Active

Cap0 Rise
Active

Read/Write – – – – R/W R/W R/W R/W

Default 0 0 0 0 0 0 0 0

These four bits contains the status bits for the four timer captures for the four timer block capture interrupt sources. Writing any
of these bits with 1 clears that interrupt.
Bit [7:4]: Reserved
Bit 3: Cap1 fall active
0 = No event
1 = A falling edge has occurred on TIO1
Bit 2: Cap1 rise active
0 = No event
1 = A rising edge has occurred on TIO1
Bit 1: Cap0 Fall Active
0 = No event
1 = A falling edge has occurred on TIO0
Bit 0: Cap0 Rise Active
0 = No event
1 = A rising edge has occurred on TIO0
Note The interrupt status bits are cleared by firmware to enable subsequent interrupts. This is achieved by writing a ‘1’ to the
corresponding Interrupt status bit.

Table 19-8. Programmable Interval Timer Low (PITMRL) [0x26] [R]

Bit # 7 6 5 4 3 2 1 0

Field Prog Interval Timer [7:0]

Read/Write R R R R R R R R

Default 0 0 0 0 0 0 0 0

Bit [7:0]: Prog Interval Timer [7:0]
This register holds the low-order byte of the 12-bit programmable interval timer. Reading this register moves the high-order byte
into a holding register allowing an automatic read of all 12 bits simultaneously.

CY7C601xx/CY7C602xx

Document Number: 38-16016 Rev. *K Page 53 of 69

Figure 19-3. Timer Functional Sequence Diagram

CY7C601xx/CY7C602xx

Document Number: 38-16016 Rev. *K Page 55 of 69

20. Interrupt Controller

The interrupt controller and its associated registers allow the user’s code to respond to an interrupt from almost every functional block
in the enCoRe II LV devices. The registers associated with the interrupt controller are disabled either globally or individually. The
registers also provide a mechanism for users to clear all pending and posted interrupts or clear individual posted or pending interrupts.

Table 20-1 lists all interrupts and the priorities that are available in the enCoRe II LV devices.

Table 20-1. Interrupt Priorities, Address, and Name

Interrupt
Priority

Interrupt
Address Name

0 0000h Reset

1 0004h POR/LVD

2 0008h INT0

3 000Ch SPI transmitter empty

4 0010h SPI receiver full

5 0014h GPIO Port 0

6 0018h GPIO Port 1

7 001Ch INT1

8 0020h Reserved

9 0024h Reserved

10 0028h Reserved

11 002Ch Reserved

12 0030h Reserved

13 0034h 1 mS interval timer

14 0038h Programmable interval timer

15 003Ch Timer Capture 0

16 0040h Timer Capture 1

17 0044h 16-bit free-running timer wrap

18 0048h INT2

19 004Ch Reserved

20 0050h GPIO Port 2

21 0054h GPIO Port 3

22 0058h GPIO Port 4

23 005Ch Reserved

24 0060h Reserved

25 0064h Sleep timer

CY7C601xx/CY7C602xx

Document Number: 38-16016 Rev. *K Page 57 of 69

20.4 Interrupt Registers

20.4.1 Interrupt Clear Register

The interrupt clear registers (INT_CLRx) are used to enable the individual interrupt sources’ ability to clear posted interrupts.

When an INT_CLRx register is read, any bits that are set indicates an interrupt has been posted for that hardware resource. Therefore,
reading these registers enables the user to determine all posted interrupts.

Table 20-1. Interrupt Clear 0 (INT_CLR0) [0xDA] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field GPIO Port 1 Sleep timer INT1 GPIO Port 0 SPI receive SPI Transmit INT0 POR/LVD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Default 0 0 0 0 0 0 0 0

When reading this register,
0 = There is no posted interrupt for the corresponding hardware.
1 = There is a posted interrupt for the corresponding hardware.
Writing a ‘0’ to the bits clears the posted interrupts for the corresponding hardware. Writing a ‘1’ to the bits and to the ENSWINT
(Bit 7 of the INT_MSK3 Register) posts the corresponding hardware interrupt.
The GPIO interrupts are edge-triggered.

Table 20-2. Interrupt Clear 1 (INT_CLR1) [0xDB] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field TCAP0 Prog Interval
Timer

1-ms Program-
mable Interrupt

Reserved

Read/Write R/W R/W R/W – – – – –

Default 0 0 0 0 0 0 0 0

When reading this register,
0 = There is no posted interrupt for the corresponding hardware.
1 = There is a posted interrupt for the corresponding hardware.
Writing a ‘0’ to the bits clears the posted interrupts for the corresponding hardware. Writing a ‘1’ to the bits AND to the ENSWINT
(Bit 7 of the INT_MSK3 Register) posts the corresponding hardware interrupt.

Table 20-3. Interrupt Clear 2 (INT_CLR2) [0xDC] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field Reserved GPIO Port 4 GPIO Port 3 GPIO Port 2 Reserved INT2 16-bit Counter
Wrap

TCAP1

Read/Write – R/W R/W R/W – R/W R/W R/W

Default 0 0 0 0 0 0 0 0

When reading this register,
0 = There is no posted interrupt for the corresponding hardware.
1 = There is a posted interrupt for the corresponding hardware.
Writing a ‘0’ to the bits clears the posted interrupts for the corresponding hardware. Writing a ‘1’ to the bits AND to the ENSWINT
(Bit 7 of the INT_MSK3 Register) posts the corresponding hardware interrupt.

CY7C601xx/CY7C602xx

Document Number: 38-16016 Rev. *K Page 68 of 69

*K 4499620 SELV 09/11/2014 Updated Package Diagrams:
spec 51-85025 – Changed revision from *E to *F.
spec 51-85055 – Changed revision from *C to *D.
spec 51-85019 – Changed revision from *B to *C.
spec 51-85061 – Changed revision from *D to *F.

Updated in new template.

Completing Sunset Review.

Document Title: CY7C601xx/CY7C602xx, enCoRe II Low-Voltage Microcontroller
Document Number: 38-16016

Rev. ECN Orig. of
Change

Submission
Date Description of Change

Document Number: 38-16016 Rev. *K Revised September 11, 2014 Page 69 of 69

PSoC is a registered trademark and enCoRe is a trademark of Cypress Semiconductor Corporation. All product and company names mentioned in this document may be the trademarks of their
respective holders.

CY7C601xx/CY7C602xx

© Cypress Semiconductor Corporation, 2006-2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without
the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer
assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office
closest to you, visit us at Cypress Locations.

Products

Automotive cypress.com/go/automotive

Clocks & Buffers cypress.com/go/clocks

Interface cypress.com/go/interface

Lighting & Power Control cypress.com/go/powerpsoc

cypress.com/go/plc

Memory cypress.com/go/memory

PSoC cypress.com/go/psoc

Touch Sensing cypress.com/go/touch

USB Controllers cypress.com/go/USB

Wireless/RF cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

http://www.cypress.com/go/locations
http://www.cypress.com/go/locations
http://www.cypress.com/go/products
http://www.cypress.com/go/products
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=24
http://www.cypress.com/?id=24
http://www.cypress.com/?id=24
http://www.cypress.com/?id=24
http://www.cypress.com/?id=1933
http://www.cypress.com/?id=1933
http://www.cypress.com/?id=1933
http://www.cypress.com/?id=1933
http://www.cypress.com/?id=1578
http://www.cypress.com/?id=1578
http://www.cypress.com/?id=2308
http://www.cypress.com/?id=2308
http://www.cypress.com/?id=2330
http://www.cypress.com/?id=2330
http://www.cypress.com/?id=64
http://www.cypress.com/?id=64
http://www.cypress.com/?id=64
http://www.cypress.com/?id=64
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1932
http://www.cypress.com/?id=1932
http://www.cypress.com/?id=1932
http://www.cypress.com/?id=1932
http://www.cypress.com/?id=167
http://www.cypress.com/?id=167
http://www.cypress.com/?id=167
http://www.cypress.com/?id=167
http://www.cypress.com/?id=10
http://www.cypress.com/?id=10
http://www.cypress.com/go/wireless
http://www.cypress.com/go/wireless
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1353&source=products
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1573
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=4749
http://www.cypress.com/?id=4562
http://www.cypress.com/?id=2203
http://www.cypress.com/?app=forum
http://www.cypress.com/?id=2200
http://www.cypress.com/?id=2660
http://www.cypress.com/?id=1162
http://www.cypress.com/go/support

