

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I ² C, SIO, SPI, UART/USART, USB
Peripherals	DMA, LVD, POR, WDT
Number of I/O	48
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/toshiba-semiconductor-and-storage/tmpm066fwug

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

12.5 Each Operation Mode Description	
12.5.1 16-bit Programmable Rectangular Pulse Output (PPG)	
12.5.1.1 PPG mode	
12.5.1.2 Interlock PPG Mode	
12.5.1.3 Setting Range of Compare Register	
12.5.2 Each Operation Mode and Interrupts	241

13. Serial Channel with 4bytes FIFO (SIO/UART)

13.1 Overview	
13.2 Configuration	244
13.3 Registers Description	
13.3.1 Registers List	
13.3.2 SCxEN (Enable Register)	
13.3.3 SCxBUF (Buffer Register)	
13.3.4 SCxCR (Control Register)	
13.3.5 SCxMOD0 (Mode Control Register 0)	250
13.3.6 SCxMOD1 (Mode Control Register 1)	
13.3.7 SCxMOD2 (Mode Control Register 2)	
13.3.8 SCxBRCR (Baud Rate Generator Control Register)	
13.3.9 SCxBRADD (Baud Rate Generator Control Register 2)	
13.3.10 SCxFCNF (FIFO Configuration Register)	
13.3.11 SCxRFC (Receive FIFO Configuration Register)	
13.3.12 SCxTFC (Transmit FIFO Configuration Register)	
13.3.13 SCxRST (Receive FIFO Status Register)	
13.3.14 SCxTST (Transmit FIFO Status Register)	
13.3.15 SCxDMA (DMA request enable register)	
13.4 Operation in Each Mode	
13.5 Data Format	
13.5.1 Data Format List	
13.5.2 Parity Control 13.5.2.1 Transmission	
13.5.2.2 Reception	
13.5.3 STOP Bit Length	265
13.6 Clock Control	
13.6.1 Prescaler 13.6.2 Serial Clock Generation Circuit	
13.6.2.1 Baud Rate Generator	
13.6.2.2 Clock Selection Circuit	
13.6.3 Transmit/Receive Buffer and FIFO	
13.6.3.1 Configuration	
13.6.3.2 Transmit/Receive Buffer	
13.6.3.3 Initialize Transmit Buffer	
13.6.3.4 FIFO	
13.7 Status Flag	
13.8 Error Flag	
13.8.1 OERR Flag	
13.8.2 PERR Flag	
13.8.3 FERR Flag	
13.9 Receive	274
13.9.1 Receive Counter	
13.9.2 Receive Control Unit	
13.9.2.1 I/O interface mode	
13.9.2.2 UART Mode	
13.9.3 Receive Operation	
13.9.3.1 Receive Buffer	
13.9.3.2 Receive FIFO Operation	
13.9.3.3 I/O interface mode with clock output mode	
13.9.3.4Read Received Data13.9.3.5Wake-up Function	
13.9.3.5 Wake-up Function 13.9.3.6 Overrun Error	
13.10 Transmit	770
13.10.1 Transmit Counter	2/8

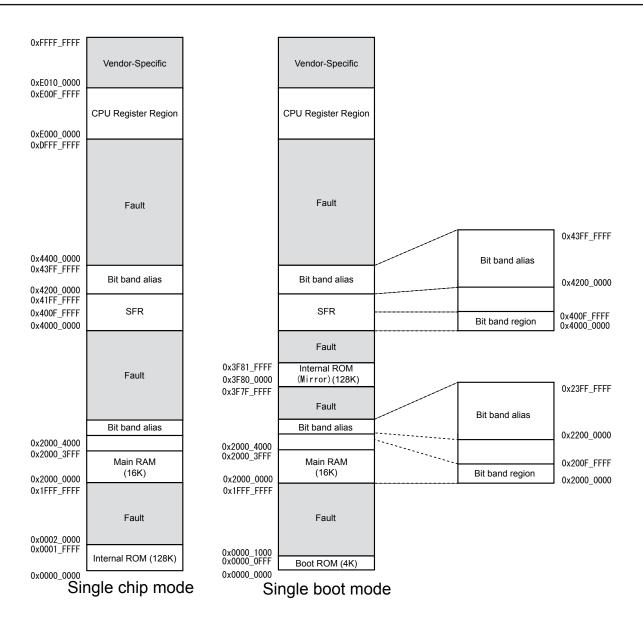


Figure 4-1 TMPM066/067/068 Memory Map

	31	30	29	28	27	26	25	24
bit symbol	SETENA (Interrupt 31)	SETENA (Interrupt 30)	SETENA (Interrupt 29)	SETENA (Interrupt 28)	SETENA (Interrupt 27)	SETENA (Interrupt 26)	SETENA (Interrupt 25)	SETENA (Interrupt 24)
After reset	0	0	0	0	0	0	0	0
	23	22	21	20	19	18	17	16
bit symbol	SETENA (Interrupt 23)	SETENA (Interrupt 22)	SETENA (Interrupt 21)	SETENA (Interrupt 20)	SETENA (Interrupt 19)	SETENA (Interrupt 18)	SETENA (Interrupt 17)	SETENA (Interrupt 16)
After reset	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8
bit symbol	SETENA (Interrupt 15)	SETENA (Interrupt 14)	SETENA (Interrupt 13)	SETENA (Interrupt 12)	SETENA (Interrupt 11)	SETENA (Interrupt 10)	SETENA (Interrupt 9)	SETENA (Interrupt 8)
bit symbol After reset								
	(Interrupt 15)	(Interrupt 14)	(Interrupt 13)	(Interrupt 12)	(Interrupt 11)	(Interrupt 10)	(Interrupt 9)	(Interrupt 8)
	(Interrupt 15) 0	(Interrupt 14) 0	(Interrupt 13) 0	(Interrupt 12) 0	(Interrupt 11) 0	(Interrupt 10) 0	(Interrupt 9)	(Interrupt 8) 0

7.6.2.5 Interrupt Set-Enable Register 1

Bit	Bit Symbol	Туре	Function
31-0	SETENA	R/W	Interrupt number [31:0]
			[Write]
			1: Enable
			[Read]
			0: Disabled
			1: Enabled
			Each bit corresponds to the specified number of interrupts.
			Writing "1" to a bit in this register enables the corresponding interrupt. Writing "0" has no effect.
			Reading the bits can see the enable/disable condition of the corresponding interrupts.

Note:<SETENA> and <CLRENA> cannot be set simultaneously. The latter setting is valid.

	31	30	29	28	27	26	25	24
bit symbol	CLRPEND							
bit symbol	(Interrupt 31)	(Interrupt 30)	(Interrupt 29)	(Interrupt 28)	(Interrupt 27)	(Interrupt 26)	(Interrupt 25)	(Interrupt 24)
After reset	Undefined							
	23	22	21	20	19	18	17	16
bit symbol	CLRPEND							
bit symbol	(Interrupt 23)	(Interrupt 22)	(Interrupt 21)	(Interrupt 20)	(Interrupt 19)	(Interrupt 18)	(Interrupt 17)	(Interrupt 16)
After reset	Undefined							
	15	14	13	12	11	10	9	8
hit ovmbol	CLRPEND							
bit symbol	(Interrupt 15)	(Interrupt 14)	(Interrupt 13)	(Interrupt 12)	(Interrupt 11)	(Interrupt 10)	(Interrupt 9)	(Interrupt 8)
After reset	Undefined							
	7	6	5	4	3	2	1	0
hit ovmbol	CLRPEND							
bit symbol	(Interrupt 7)	(Interrupt 6)	(Interrupt 5)	(Interrupt 4)	(Interrupt 3)	(Interrupt 2)	(Interrupt 1)	(Interrupt 0)
After reset	Undefined							

7.6.2.8 Interrupt Clear-Pending Register 1

Bit	Bit Symbol	Туре	Function
31-0	CLRPEND	R/W	Interrupt number [31:0]
			[Write]
			1: Clear pending interrupt
			[Read]
			0: Not pending
			1: Pending

Note 1: <SETPEND> and <CLRPEND> cannot be set simultaneously. The latter setting is valid.

- Note 2: When the external interrupt is used, the user needs special consideration. When INTxxEN="0" (release for low-power consumption mode is unused), if IEx="0" is set, the CPU receives a "High" signal; therefore, an interrupt signal is considered to be exist. When the external interrupts are used, set IEx="1"(input is enable) to clear a suspended interrupt signal.
- Note 3: Each bit corresponds to the specified number can force interrupts into the pending state and determines which interrupts are currently pending. Writing "1" to a bit in this register clears the corresponding pending interrupt. However, writing "1" has no effect on an interrupt that is already being serviced. Writing "0" has no effect. Reading the bit returns the current state of the corresponding interrupts

	31	30	29	28	27	26	25	24
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	23	22	21	20	19	18	17	16
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	7	6	5	4	3	2	1	0
bit symbol	-	-	-	-	-	INTTBOF	INTTB1	INTTB0
After reset	0	0	0	0	0	0	0	0

10.3.7 TBxST (Status Register)

Bit	Bit Symbol	Туре	Function
31-3	-	R	Read as "0".
2	INTTBOF	R	Overflow interrupt request flag 0: No overflow occurs 1: Overflow occurs When an up-counter is overflow, "1" is set.
1	INTTB1	R	Match (TBxRG1) interrupt request flag 0: No match is detected. 1: Detects a match with TBxRG1 When a match with the timer register 1 (TBxRG1) is detected, "1" is set.
0	INTTB0	R	Match(TBxRG0) interrupt request flag 0: No match is detected 1: Detects a match with TBxRG0 When a match with the timer register 0 (TBxRG0) is detected, "1" is set.

Note 1: Even if mask configuration by TBxIM register is valid, the status is set to TBxST register.

Note 2: When the interrupt mask configuration is disabled by the corresponding bit of TBxIM register, the interrupt is issued to the CPU.

Note 3: To clear the flag, read TBxST register.

[Main process] Allocates a corresponding port to TBxEN<TBEN> = "1" TBxRUN<TBPRUN><TBRUN> = "00" TBxRG0 = 0x**** TBxRG1 = 0x**** TBxFFCR<TBC1T1><TBC0T1><TBE1T1><TBE0T1> = "0011" TBxFFCR<TBF0C[1:0]> = "10"

Stops prescaler and counter. Sets a counter value. (3 ms/φT1 Sets a cycle. ((3+2)ms/φT1) Sets TBxFF0 to invert the signal by detection of a match between TBxRG0 or TBxRG1 and the up-counter; sets TBxFF0 not to reverse by capturing TBxCP0 or TBxCP1. Sets an initial value of TBxFF0 to "0".

Sets a source clock to ϕ T1. Disables the capture function.

TBxMOD<TBCPM[2:0]> = "000" TBxMOD<TBCP> = "1" TBxMOD<TBCLE> = "1" TBxMOD<TBCLK[2:0]> = "001" Allocates a corresponding port to TBxOUT. TBxIM<TBIMOF><TBIM1><TBIM0> = "101"

Capture enable set register = 0x*******

TBxRUN<TBPRUN><TBRUN> = "11" [Process in INTTBx interrupt service routine] TBxFFCR<TBE1T1><TBE0T1> = "00" TBxRUN<TBPRUN><TBRUN> = "00" Masks interrupts except one caused by a match with TBxRG1. Permits INTTBx interrupt by setting the corresponding bit to "1".

Starts prescaler and counter.

Enables TMRBx operation.

Disables TBxFF0 reverse trigger setting. Stops prescaler and counter.

Note:*; Optional value

15.3.2 TSPIxCR0 (TSPI Control Register 0)

	31	30	29	28	27	26	25	24
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	23	22	21	20	19	18	17	16
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	7	6	5	4	3	2	1	0
bit symbol	SW	RST	-	-	-	-	_	TSPIE
After reset	0 0		0	0	0	0	0	0

Bit	Bit Symbol	Туре	Function
31-8	-	R	Read as "0".
7-6	SWRST[1:0]	W	TSPI software reset (Note) Software reset occurs by writing "10" \rightarrow "01".
			If "10" \rightarrow "01" is consecutively written to <swrst[1:0]> bit, software reset occurs. Software reset initial- izes control registers, transmit/receive FIFO, transmit/receive shift registers and all internal circuits. Howev- er, <tspie> bit is not initialized.</tspie></swrst[1:0]>
5-1	-	R	Read as "0".
0	TSPIE	R/W	TSPI operation control 0: Stop 1: Operation <tspie> controls a whole operation of TSPI to start/stop (clock shutdown). When <tspie>=0(stop) is set,</tspie></tspie>
			a clock is not fed into TSPI internally. Set <tspie>=1(operation) to start operation first. Then perform initial- ization and communications. <tspie> is not initialized by software reset.</tspie></tspie>

Note: Completion of software reset takes two clocks after an instruction is executed.

(3) LSB First Transfer (32-bit data without a parity bit, 32-bit frame length)

Figure 15-5 shows a 32-bit data length transmit/receive operation when parity function is disabled.

In the transmission, data in the transmit FIFO is sorted bit by bit when the data is copied to the shift register. Transmit data copied to shift register is transferred from D0 until reaching 32-bit shifted data on serial clock.

In the reception, receive data is stored in the D0 of the shift register. Shift operation repeats on serial clock. If the shift register stores 32-bit reception data, data is sorted bit by bit and copied to receive FIFO.

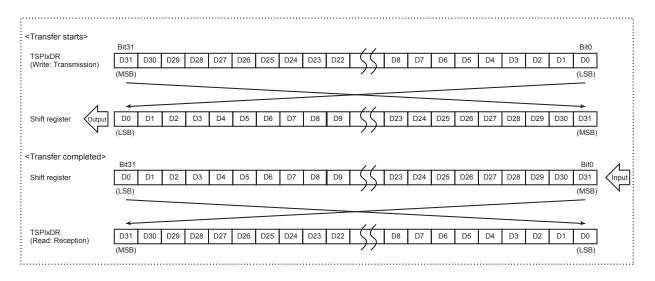


Figure 15-5 LSB first (32-bit data without a parity bit)

15.4.2 Transfer Format

TSPI has one chip select signal outputs (TSPIxCSO) that enable communication with one type of external slave devices.

It also has one chip select signal (TSPIxCSIN) that enables communication with one type of master device.

A polarity of serial clock can be selected.

In the SPI mode, a polarity of TSPIxCSO and the generation timing can also be selected.

TSPIxTXD is selected in the idle mode, in which no communication is made.

15.4.2.1 Polarity of TSPIxCS Signal and Generation Timing

TSPIxCSO can select its polarity.

A logic of TSPIxCSO is set by TSPIxFMTR0<CS0POL>.

If TSPIxFMTR0<CS0POL> is set to "0", negative logic is selected.; if TSPIxFMTR0<CS0POL> is set to "1", positive logic is selected.

A generation timing of TSPIxCSO can be set. The following four timings are settable.

1. Serial clock delay

 t_A is a delay time from the time when TSPIxCSO is asserted until the transmit clock (TSPIxSCK) changes. To set a serial clock delay time, set TSPIxFMTR0<CSSCKDL>.

2. TSPIxCSO negate delay

 t_B is a delay time from the time when TSPIxCSO is negated after serial transfer completion. To set a TSPIxCSO negate delay time, set TSPIxFMTR0<SCKCSDL>.

3. Interval time between frames in the burst transfer

 t_{C} is an interval time between frames in the burst transfer. To set an interval time between frames, set TSPIxFMTR0<FINT>.

4. Minimum idle time

t_D is a minimum wait time from the time when TSPIxCSO is negated and then until TSPIxC-SO is asserted again. To set minimum idle time, set TSPIxFMTR0<CSINT>.

	31	30	29	28	27	26	25	24
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	23	22	21	20	19	18	17	16
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	7	6	5	4	3	2	1	0
bit symbol	wakeup_en	phy_re- mote_wkup	phy_resetb	suspend_x	phy_suspend	pw_detect	pw_resetb	usb_reset
After reset	0	0	1	1	0	0	1	0

16.4.1.20 UDFSPWCTL(Power Detect Control Register)

	31	30	29	28	27	26	25	24
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	23	22	21	20	19	18	17	16
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	7	6	5	4	3	2	1	0
bit symbol	m_ep7	m_ep6	m_ep5	m_ep4	m_ep3	m_ep2	m_ep1	m_ep0
After reset	0	0	0	0	0	0	0	0

16.4.2.12 UDFS2INTEPMSK(INT_EP_MASK register)

Bit	Bit Symbol	Туре	Function
31-16	-	R	Read as undefined.
15-8	Reserved	R/W	Write as "0".
7-0	m_ep7 to m_ep0	R/W	Mask control of flag output. 0 : output 1: no output Sets whether or not to output flags of UDFS2INTEP and UDFS2INTRX0 to the int_ep pin and the int_rx_zero pin respectively. When an EP is masked, each bit of UDFS2INTEP will be set when the trans- fer of the relevant EP has successfully finished, but the int_ep pin will not be asserted. Similarly, when an EP is masked, each bit of UDFS2INTRX0 will be set when Zero-Length data is received at the relevant EP, but the int_rx_zero pin will not be asserted. However, bit 0 is only valid for UDFS2INTRX0.

(1) How to use UDFS2INT / UDFS2INTEP / UDFS2INTEPMSK

An example of using UDFS2INT / UDFS2INTEP / UDFS2INTEPMSK is provided for EP1 to 3.

1. When using EP 1 and EP 2 with DMA (EP I/F) and using only EP3 via PVCI-I/F

	<i_ep></i_ep>	Used as the interrupt source of EP3. This bit is also used when clearing.
UDFS2INT	<m_ep></m_ep>	Used as the mask of the interrupt source of EP3.
	<i_ep1></i_ep1>	Don't care
UDFS2INTEP	<i_ep2></i_ep2>	Don't care
	<i_ep3></i_ep3>	Don't care
	<m_ep1></m_ep1>	Set 1 to mask the bit.
UDFS2IN- TEPMSK	<m_ep2></m_ep2>	Set 1 to mask the bit.
	<m_ep3></m_ep3>	Write 0.

2. When using EP2 and EP3 via PVCI-I/F and using EP1 with DMA

After initialization, set 1 to UDFS2INTEPMSK of the EP to be used with DMA to mask it. When making interrupt responses for more than one EPs, be sure to use UDFS2INTEP. Ignore UDFS2INT<i_ep> and always enable $<m_ep>$ as 0.

16.5.7.2 Resuming from suspended state (resuming from the USB host)

The procedures to resume from the suspended state is performed based o the condition of the CLK_H. When resuming is recognized, make settings again for restarting master transfers.

1. Stopping the CLK_H

The procedures to stop the CLH_H and the signal variation are as shown below.

	á	a b	c c	d e	f	g	h	,i	j k	ζ.
suspend_x					/					
<suspend_resume_en>, <power_detect_en> suspend_resume interrupt re</power_detect_en></suspend_resume_en>	auest									
<pre></pre>										
WAKEUP										
INTUSBWKUP interrupt reg	uest				*					
VBUSPOWER	"H"									
<pw_detect></pw_detect>	"H"									
power_detect interrupt req	uest									
<phy_suspend> .</phy_suspend>			4			۱				
PHYSUSPEND						_				
CGEXTENDO0 <usbena></usbena>						j				
CLK_U	mmmm	hnnh	ЛЛ	η_						
	nnnnnn	hnnh	أرار	ЛЛ	: 	j	M			

Figure 16-17 Signal operations when suspended and resumed (when CLK_H is stopped)

- a. The suspend_x of the UDC2 is asserted to zero by detecting the suspend state on the USB bus, and the INTUSB(suspend_resume) interrupt occurs.
- b. The service routine of the INTUSB(suspend_resume) interrupt clears the interrupt factor.
- c. Set the UDFSPWCTL<phy_suspend> to "1". Setting the <phy_suspend> to "1" asserts the PHYSUSPEND output signal to "0".

Zero clear the CGEXTENDO0<USBENA> of the clock/mode control circuit to stop the CLK_U.

- d. Set the UDFSPWCTL<wakeup_en> to "1". Zero clear the UDFSINTENB<power_detect_en><suspend_resume_en> not to generate the INTUSB(power_detect, suspend_resumu) interrupt.
- e. With the INTUSBWKUP interrupt, the operation mode moves into the low-power consumption mode and stops the CLK_H.

· Configured state:

<recipient> = Device :</recipient>	Write the information on the device (Table 16-3) to UDFS2EP0FIFO.
<recipient> = Interface:</recipient>	If the interface specified by lwIndex, write the information on the interface (Table 16-4) to UDFS2EP0FIFO.
<recipient> = EP :</recipient>	If the EP specified by wIndex, <u>write the information on the relevant EP(Table 16-5) to UDFS2EP0FIFO.</u>

Table 16-3 Information on the device to be returned by Get Status request

D15	D14	D13	D12	D11	D10	D9	D8
0	0	0	0	0	0	0	0
D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	Remote Wakeup	Self Powered

RemoteWakeup 0 indicates the bus power while 1 indicates the selfpower.

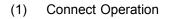
(D1)

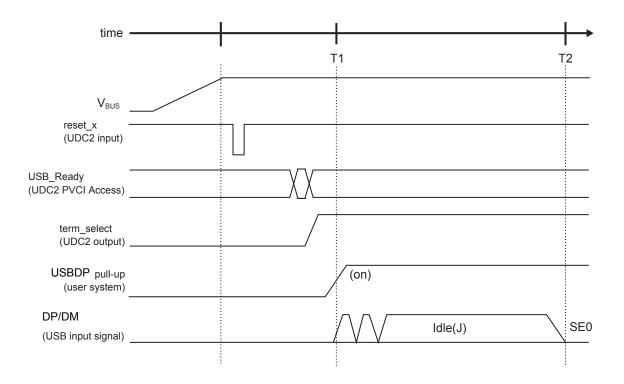
SelfPowered (D0)

0 indicates the remote wakeup function is disabled while 1 indicates it is enabled.

Table 16-4 Information on the interface to be returned by Get Status

D15	D14	D13	D12	D11	D10	D9	D8
0	0	0	0	0	0	0	0
D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0


Please note that all bits are 0.


Table 16-5 Information on the EP to be returned by Get Status request

D15	D14	D13	D12	D11	D10	D9	D8
0	0	0	0	0	0	0	0
D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	Halt

Halt If this bit is 1, it indicates that the relevant EP is in the "Halt" state. (D1)

16.9.1.1 Connect / Disconnect Operations

• T0: VBUS detection

When VBUS is detected, a system reset (reset_x input) should be applied to UDC2.

xcvr_select is "High" and term_select is "Low".

• T1: Device connect (no later than 100ms after T0)

The device must enable DP no later than 100 ms after VBUS detection (T0) to notify the host of the connected state. Therefore, when VBUS is detected and the device is ready to communicate with the host, the system should access the UDFS2CMD in UDC2 to set the USB_Ready command. After that, the user system sets the port using software to enable the DP pull-up.

T2:USB Reset Start (more than 100ms after 100ms)

(2) Disconnect Operation

When a disconnected state is detected, it is recommended to apply a system reset to UDC2.

HPADCH[3:0]	0000	0001	0010	0011	0100	0101	0110	0111
Conversion channel	AIN0	AIN1	AIN2	AIN3	AIN4	AIN5	AIN6	AIN7

Selection of analog input	channel
---------------------------	---------

HPADCH[3:0]	1000	1001	1010	1011	1100	1101	1110	1111
Conversion channel	AIN8	AIN9	AIN10	AIN11	AIN12	AIN13	AIN14	AIN15

18.3 Operation

18.3.1 Selecting detection voltage and enabling voltage detection operation

Voltage detection is enabled when voltage to be detected is selected by setting the register LVDCRn<LVL [2:0]> and "1" is set to the LVDCRn<EN>.

18.3.2 Reset by Detecting a supply voltage

Reset occurs when "1" is set to the LVDCRx<RSTEN> and the supply voltage falls under the set detection voltage.

It needs approximately 100 µs to detect voltage reduction and generate reset. If the period that the supply voltage falls under the detected voltage is short, reset may not occur.

18.3.3 Interrupt by Detecting a supply voltage

A interrupt (INTLVD) occurs When "0" is set to LVDCEn<RSTEN> and "1" is set to LVDCRn<INTEN> if the supply voltage falls under or over the set detection voltage level.

The Interrupt condition can be set by LVDCRn<INTSEL>.

An interrupt occurs when "0" is set to the LVDCRx<INTSEL> and the supply voltage falls under the set detection voltage.

An interrupt occurs when "1" is set to the LVDCRx<INTSEL> and the supply voltage falls under or over the set detection voltage.

It needs approximately 100 μ s to detect voltage reduction and generate a interrupt. If the period that the supply voltage falls under the detected voltage is short, an interrupt may not occur.

18.3.4 Detecting Status

Reading the LVDCRn<SR> can be confirmed the Detecting status of low voltage detection.

When the LVDCRn<ST> is "0", the voltage is the same as detection voltage or higher.

When the LVDCRn<ST> is "1", the voltage is the same as detection voltage or lower.

In the Interrupt service routine (ISR) of low voltage detection (LVD), to read the status of LVDCRn<ST> after detection is known stably the shift of the voltage

20.2.5.4 Automatic Protect Bit Program

(1) Operation Description

The automatic protect bit program writes "1" to a protect bit at a time. To set "0" to a protect bit, use the automatic protect bit erase command.

For detail of the protect function, refer to "20.1.5 Protect/Security Function".

(2) How to Set

The 1st to 6th bus write cycles indicate the automatic protect bit program command. In the 7th bus write cycle, the protect bit to be written is specified. After the command sequence is input, the automatic protect bit program starts. Check whether write operation is normally terminated with FCPSRA<BLK>.

20.2.5.5 Auto Protect Bit Erase

(1) Operation Description

The automatic protect bit erase command operation depends on the security status. For detail of security status, refer to "20.1.5 Protect/Security Function".

• Non-security status

Clear the specified protect bit to "0". Protect bit erase is performed in 4-bit unit.

Security status

Erase all protect bits after all addresses of Flash memory are erased.

(2) How to Set

The 1st to 6th bus write cycles indicate the automatic protect bit erase command. In the 7th bus write cycle, the protect bit to be erased is specified. After the command sequence is input, the automatic protect bit erase operation starts.

In the non-security status, specified protect bit is erased. Check whether erase operation is normally terminated with FCPSRA<BLK>.

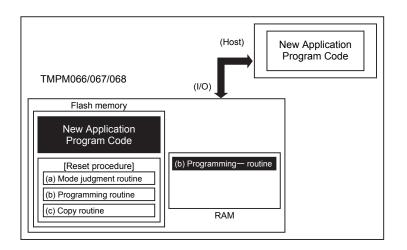
In the security status, all addresses and all protect of Flash memory bits are erased. Confirm if data and protect bits are erased normally. If necessary, execute the automatic protect bit erase, automatic chip erase or automatic block erase.

All cases are the same as other commands, FCSR<RDY_BSY> becomes "0" during the automatic protect bit erase command operation. After the operation is complete, FCSR<RDY_BSY> becomes "1" and Flash memory will return to the read mode. To abort the operation, a hardware reset is required.


20.2.5.6 ID-Read

(1) Operation Description

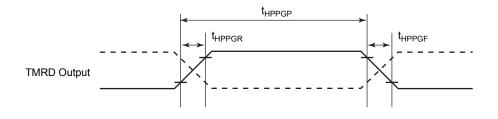
The ID-Read command can read information including Flash memory type and three types of codes such as a maker code, device code and macro code.


20.4.1.4 Step-4

Jump to the reprogramming routine in the built-in RAM to release the write/erase protection for the old application program, and to erase a flash in block unit.

20.4.1.5 Step-5

Continue to execute the flash programming routine to download new program data from the host controller and program it into the erased flash block. When the programming is complete, the write/erase protection of that flash block in the user program area must be set.


23.5.6 High Resolution 16-bit Timer (TMRD Ver.C) PPG output

23.5.6.1 AC Measurement Condition

The AC characteristics data of this chapter is measured under the following conditions.

- Output levels: High = $0.8 \times \text{DVDD3}$, Low = $0.2 \times \text{DVDD3}$
- Load capacity: CL = 30pF

			DVDD3 = 2.	7V to 3.6V	
Deremeter	Symbol	TMRDCLK	(= 96 MHz	Unit	
Parameter	Symbol	Min.	Max.		
Minimum pulse width of PPG output	t _{HPPGP}	104.2	-		
Rising time of PPG output	t _{HPPGR}	-	15	ns	
Falling time of PPG output	t _{HPPGF}	-	15		

