

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16-Bit
Speed	20MHz
Connectivity	EBI/EMI, SPI, UART/USART
Peripherals	PWM, WDT
Number of I/O	79
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 2.7V
Data Converters	<u>.</u>
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	PG-TQFP-100-5
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xc164n-32f20f-bb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XC164N Revision History:

Previous Version(s):

Page	Subjects (major changes since last revision)				
raye	Subjects (major changes since last revision)				

We Listen to Your Comments

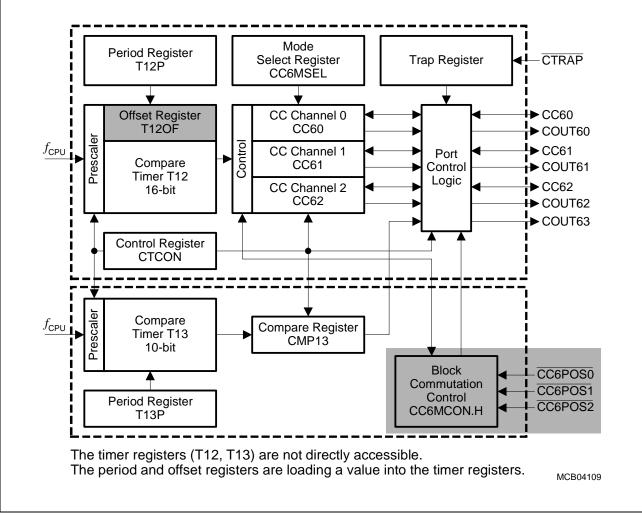
Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com

16-Bit Single-Chip Microcontroller with C166SV2 Core XC166 Family

1 Summary of Features

- High Performance 16-bit CPU with 5-Stage Pipeline
 - 25 ns Instruction Cycle Time at 40 MHz CPU Clock (Single-Cycle Execution)
 - 1-Cycle Multiplication (16 \times 16 bit), Background Division (32 / 16 bit) in 21 Cycles
 - 1-Cycle Multiply-and-Accumulate (MAC) Instructions
 - Enhanced Boolean Bit Manipulation Facilities
 - Zero-Cycle Jump Execution
 - Additional Instructions to Support HLL and Operating Systems
 - Register-Based Design with Multiple Variable Register Banks
 - Fast Context Switching Support with Two Additional Local Register Banks
 - 16 Mbytes Total Linear Address Space for Code and Data
 - 1024 Bytes On-Chip Special Function Register Area (C166 Family Compatible)
- 16-Priority-Level Interrupt System with up to 75 Sources, Sample-Rate down to 50 ns
- 8-Channel Interrupt-Driven Single-Cycle Data Transfer Facilities via Peripheral Event Controller (PEC), 24-Bit Pointers Cover Total Address Space
- Clock Generation via on-chip PLL (factors 1:0.15 ... 1:10), or via Prescaler (factors 1:1 ... 60:1)
- On-Chip Memory Modules
 - 2 Kbytes On-Chip Dual-Port RAM (DPRAM)
 - 4 Kbytes On-Chip Data SRAM (DSRAM)¹⁾
 - 6 Kbytes On-Chip Program/Data SRAM (PSRAM)
 - 256 Kbytes On-Chip Program Memory (Flash Memory or Mask ROM)¹⁾
- On-Chip Peripheral Modules
 - Two 16-Channel General Purpose Capture/Compare Units (12 Input/Output Pins)
 - Capture/Compare Unit for flexible PWM Signal Generation (CAPCOM6) (3/6 Capture/Compare Channels and 1 Compare Channel)
 - Multi-Functional General Purpose Timer Unit with 5 Timers
 - Two Synchronous/Asynchronous Serial Channels (USARTs)
 - Two High-Speed-Synchronous Serial Channels
 - On-Chip Real Time Clock
- Idle, Sleep, and Power Down Modes with Flexible Power Management
- Programmable Watchdog Timer and Oscillator Watchdog
- Up to 12 Mbytes External Address Space for Code and Data
 - Programmable External Bus Characteristics for Different Address Ranges
 - Multiplexed or Demultiplexed External Address/Data Buses

¹⁾ Depends on the respective derivative. The derivatives are listed in Table 1.



3.7 The Capture/Compare Unit CAPCOM6

The CAPCOM6 unit supports generation and trool of timing sequences on up to three 16-bit capture/compareachels plus one independentO-bit compare channel. In compare mode the CAPCOM6 unit provide two output signate channel which have inverted polarity and moverlapping pulse transitions (deadtime control). The compare channel can generate single PWM output signate and is further used to modulate the capture/opare output signals.

In capture mode the contentscompare timer T12 is storied the capture registers upon a signal trasition at pins CCx.

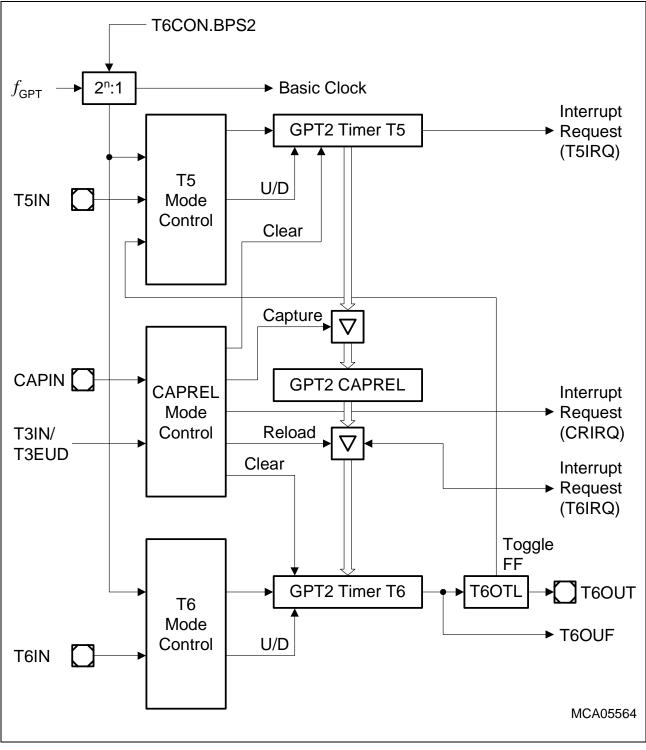

Compare timers T12 (16-bit) and T13 (10 abit) free running timers which are clocked by the prescaled system clock.

Figure 6 CAPCOM6 Block Diagram

For motor control applications the subunity nyagenerate versatile nultichannel PWM signals which are basically eightcontrolled by compareneir T12 or by a typical hall sensor pattern at the interrimptute (block commutation).

Functional Description

Table 7	Summary of the XC164N s Parallel Ports				
Port	Control	Alternate Functions			
PORTO	Pad drivers	Address/Dationes or data lines			
PORT1	Pad drivers	Address lines			
		Capture inputs or compare outputs, Serial interface lines, Fast external interrupt inputs			
Port 3	Pad drivers, Open drain, Input threshold	Timer control signalsserial interface lines, Optional bus combl signal BHE/WRH, System clock output CLKOUT (or FOUT), Debug interface lines			
Port 4	Pad drivers, Open drain, Input threshold	Segment address lines			
		Optional chip select signals			
Port 5		Timer control signals			
Port 9	Pad drivers, Open drain, Input threshold	Capture inputs or compare outputs			
Port 20	Pad drivers, Open drain	Bus control signals RDWR/WRL, ALE, External access enabl <u>e pin EA</u> Reset indication output RSTOUT			

1) For multiplexed bus cycles.

2) For demultiplexed bus cycles.

3) For more than 64 Kbytes of external resources.

3.15 Power Management

The XC164N provides several eans to control the over it consumes either at a given time or averaged over a certain timespeare mechanisms can be used (partly in parallel):

Power Saving Modes switch the XC164N into a siple operating mode (control via instructions).

Idle Mode stops the CPWhile the peripherals pacontinue to operate.

Sleep Mode and Power Down Molestop all clock signals all operation (RTC may optionally continue running) leep Mode can be termined by external interrupt signals.

Clock Generation Management controls the distribution and the frequency of internal and externation of signals. While the clock signals for currently inactive parts of logic are disabled automially, the user can reduce the XC164N s CPU clock frequency which drastically duces the consumed power.

External circuitry can be controllized the programmable requency output FOUT. Peripheral Management permits temporary disabling peripheral modules (control via register SYSCON3). Each peripheral can separally be disabled/enabled.

The on-chip RTC supports intredittent operation of MC2164N by generating cyclic wake-up signals. This offerfull performance to quicklyace on action requests while the intermittent sleep phases beauty reduce the average over consumption of the system.

3.16 Instruction Set Summary

Table 8 lists the instructions of X16164N in a condensed way.

The various addressing modes theatin be used with a specifine struction, the operation of the instructions, parameteous conditional exection of instructions and the opcodes for each instructionan be found in the instruction Set Manual.

This document also provides a dietal description of each instruction.

	uction set summary			
Mnemonic	Description			
ADD(B)	Add word (byet) operands			
ADDC(B)	Add word (byte)perands with Carry			
SUB(B)	SUB(B) Subtract word (byte) operands			
SUBC(B)	Subtract word (byte)perands with Carry	2 / 4		
MUL(U)	(Un)Signed multiply dect GPR by direct GPR (16- u16-bit)			
DIV(U)	/(U) (Un)Signed divide register/IDL by direct GPR (16-/16-			
DIVL(U)	(Un)Signed longdivide reg. MD by dicet GPR (32-/16-b	t) 2		
CPL(B)	Complement direct word (byte) GPR	2		
NEG(B)	Negate direct word (byte) GPR			
AND(B)	ND(B) Bitwise AND, (word/byte operands)			
OR(B)	Bitwise OR, (word/byte operands)			
XOR(B)	Bitwise exclusive OR(word/byte operands)	2 / 4		
BCLR/BSET	Clear/Set direct bit			
BMOV(N)	Move (negated) dice bit to direct bit			
BAND/BOR/BXOR	AND/OR/XOR direct bit with direct bit	4		
BCMP	BCMP Compare direct bit to direct bit			
BFLDH/BFLDL	Bitwise modify masked high/low byte of bit-addressab direct word memory ith immediate data	e4		
CMP(B) Compare word (byte) operands		2 / 4		
CMPD1/2	CMPD1/2 Compare word data to GARd decrement GPR by 1/2			
CMPI1/2	1/2Compare word data to GBRd increment GPR by 1/2			
PRIOR	Determine number of shtifcycles to normalize direct word GPR and store result direct word GPR	2		
SHL/SHR	Shift left/right direct word GPR	2		

Table 8 Instruction Set Summary

Electrical Parameters

Operating Conditions

The following operating condits must not be exceeded ensure correct operation of the XC164N. All parameters spiced in the following seculis refer to these operating conditions, unlespitherwise noticed.

Description Cumbel Limit Values Unit Nates						
Parameter	Symbol	Limit Values		Unit	Notes	
		Min.	Max.			
Digital supply voltage for the core	V _{DDI}	2.35	2.7	V	Active mode, $f_{CPU} = f_{CPUmax}^{1}$	
Digital supply voltage for IO pads	V _{DDP}	4.4	5.5	V	Active mode ³⁾	
Supply Voltage Differenc	e 'V _{DD}	-0.5		V	V _{DDP} - V _{DDI} ⁴⁾	
Digital ground voltage	V_{SS}	0		V	Reference voltage	
Overload current	I _{ov}	-5	5	mA	Per IO piħ ⁾⁶⁾	
		-2	5	mA	Per Port 5 input pin ⁵⁾⁶⁾	
Overload current couplin	gK _{ova}		1.0 u10 ⁴		I _{OV} > 0	
factor for Port 5 inputs			1.5 u10 ³		I _{OV} < 0	
Overload current couplin			5.0 u10 ³		I _{OV} > 0	
factor for digital I/O pins	6		1.0 u10 ²		I _{OV} < 0	
Absolute sum of overload currents	al ¢al _{ov} ∣		50	mA	6)	
External Load Capacitance	CL		50	pF	Pin drivers in default mode ⁸⁾	
Ambient temperature	T _A			Ģ	see Table 1	

Table 10Operating Condition Parameters

1) $f_{CPUmax} = 40 \text{ MHz}$ for devices marked $40f_{CPUmax} = 20 \text{ MHz}$ for devices marked 20F.

2) External circuitry mustageantee low-level at the RSTIpin at least until both power supply voltages have reached the operating range.

3) The specified voltage range is allowed for operation. The range limits may be reached under extreme operating conditions. However, specified parameters has leakage currents, refer to the standard operating voltage range $\forall f_{DP} = 4.75 \text{ V}$ to 5.25 V.

4) This limitation must be fulfilled under all operatingitions including power-ramp-up, power-ramp-down, and power-save modes.

www.infineon.com

Published by Infineon Technologies AG