E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	17
Program Memory Size	1KB (1K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0131hh020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No
Interrupt Contro	oller (cont'd)			
FCE	Shared interrupt select	IRQSS	00	66
FCF	Interrupt control	IRQCTL	00	67
GPIO Port A				
FD0	Port A address	PAADDR	00	39
FD1	Port A control	PACTL	00	41
FD2	Port A input data	PAIN	XX	41
FD3	Port A output data	PAOUT	00	41
GPIO Port B				
FD4	Port B address	PBADDR	00	39
FD5	Port B control	PBCTL	00	41
FD6	Port B input data	PBIN	XX	41
FD7	Port B output data	PBOUT	00	41
GPIO Port C				
FD8	Port C address	PCADDR	00	39
FD9	Port C control	PCCTL	00	41
FDA	Port C input data	PCIN	XX	41
FDB	Port C output data	PCOUT	00	41
GPIO Port D				
FDC	Port D address	PDADDR	00	39
FDD	Port D control	PDCTL	00	41
FDE	Reserved		XX	
FDF	Port D output data	PDOUT	00	41
FE0–FEF	Reserved	_	XX	
Watchdog Time	r (WDT)			
FF0	Reset status	RSTSTAT	XX	95
	Watchdog Timer control	WDTCTL	XX	95
FF1	Watchdog Timer reload upper byte	WDTU	FF	96
FF2	Watchdog Timer reload high byte	WDTH	FF	96
FF3	Watchdog Timer reload low byte	WDTL	FF	97
FF4–FF5	Reserved		XX	

Table 8. Register File Address Map (Continued)

Note: XX = Undefined.

57

```
LDX r0, IRQ0
AND r0, MASK
LDX IRQ0, r0
```

To avoid missing interrupts, use the coding style in Example 2 to clear bits in the Interrupt Request 0 Register:

Example 2. A good coding style that avoids lost interrupt requests:

ANDX IRQ0, MASK

Software Interrupt Assertion

Program code can generate interrupts directly. Writing 1 to the correct bit in the interrupt request register triggers an interrupt (assuming that interrupt is enabled). When the interrupt request is acknowledged by the eZ8 CPU, the bit in the interrupt request register is automatically cleared to 0.

Caution: Zilog recommends not using a coding style to generate software interrupts by setting bits in the Interrupt Request registers. All incoming interrupts received between execution of the first LDX command and the final LDX command are lost. See Example 3, which follows.

Example 3. A poor coding style that can result in lost interrupt requests:

```
LDX r0, IRQ0
OR r0, MASK
LDX IRQ0, r0
```

To avoid missing interrupts, use the coding style in Example 4 to set bits in the Interrupt Request registers:

Example 4. A good coding style that avoids lost interrupt requests:

ORX IRQ0, MASK

Interrupt Control Register Definitions

The Interrupt Control registers enable individual interrupts, set interrupt priorities and indicate interrupt requests for all of the interrupts other than the Watchdog Timer interrupt, the primary oscillator fail trap and the Watchdog Oscillator fail trap interrupts.

73

Caution: The frequency of the comparator output signal must not exceed one-fourth the system clock frequency.

After reaching the reload value stored in the Timer Reload High and Low Byte registers, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. Additionally, if the timer output alternate function is enabled, the timer output pin changes state (from Low to High or from High to Low) at timer reload.

Observe the following steps for configuring a timer for COMPARATOR COUNTER Mode and for initiating the count:

- 1. Write to the Timer Control Register to:
 - Disable the timer
 - Configure the timer for COMPARATOR COUNTER Mode.
 - Select either the rising edge or falling edge of the comparator output signal for the count. This also sets the initial logic level (High or Low) for the timer output alternate function. However, the timer output function is not required to be enabled.
- 2. Write to the Timer High and Low Byte registers to set the starting count value. This action only affects the first pass in COMPARATOR COUNTER Mode. After the first timer reload in COMPARATOR COUNTER Mode, counting always begins at the reset value 0001H. Generally, in COMPARATOR COUNTER Mode, the Timer High and Low Byte registers must be written with the value 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the reload value.
- 4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. If using the timer output function, configure the associated GPIO port pin for the timer output alternate function.
- 6. Write to the Timer Control Register to enable the timer.

In COMPARATOR COUNTER Mode, the number of comparator output transitions is calculated with the following equation:

Comparator Output Transitions = Current Count Value – Start Value

- 3. Write to the Timer Reload High and Low Byte registers to set the reload value.
- 4. Clear the timer PWM High and Low Byte registers to 0000H. This allows user software to determine if interrupts are generated by either a capture event or a reload. If the PWM High and Low Byte registers still contain 0000H after the interrupt, the interrupt were generated by a reload.
- 5. Enable the timer interrupt, if appropriate and set the timer interrupt priority by writing to the relevant interrupt registers. By default, the timer interrupt is generated for both input capture and Reload events. The user can configure the timer interrupt to be generated only at the input capture event or the reload event by setting the TICONFIG field of the TxCTL1 Register.
- 6. Configure the associated GPIO port pin for the timer input alternate function.
- 7. Write to the Timer Control Register to enable the timer and initiate counting.

In CAPTURE Mode, the elapsed time between the timer start and the capture event can be calculated using the following equation:

Capture Elapsed Time (s) = $\frac{(Capture Value - Start Value) \times Prescale}{System Clock Frequency (Hz)}$

COMPARE Mode

In COMPARE Mode, the timer counts up to 16-bit maximum compare value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon reaching the compare value, the timer generates an interrupt and counting continues (the timer value is not reset to 0001H). Additionally, if the timer output alternate function is enabled, the timer output pin changes state (from Low to High or from High to Low) upon compare.

If the timer reaches FFFFH, the timer resets to 0000H and continues counting.

Observe the following steps for configuring a timer for COMPARE Mode and for initiating the count:

- 1. Write to the Timer Control Register to:
 - Disable the timer
 - Configure the timer for COMPARE Mode
 - Set the prescale value
 - Set the initial logic level (High or Low) for the timer output alternate function
- 2. Write to the Timer High and Low Byte registers to set the starting count value.
- 3. Write to the Timer Reload High and Low Byte registers to set the compare value.

Watchdog Timer

The Watchdog Timer (WDT) protects from corrupted or unreliable software, power faults and other system-level problems which can place the Z8 Encore! F0830 Series devices into unsuitable operating states. The features of the Watchdog Timer include:

- On-chip RC oscillator
- A selectable time-out response: reset or interrupt
- 24-bit programmable time-out value

Operation

The Watchdog Timer is a retriggerable one-shot timer that resets or interrupts the Z8 Encore! F0830 Series devices when the WDT reaches its terminal count. The WDT uses a dedicated on-chip RC oscillator as its clock source. The WDT operates only in two modes: ON and OFF. Once enabled, it always counts and must be refreshed to prevent a time-out. Perform an enable by executing the WDT instruction or by setting the WDT_AO Flash option bit. The WDT_AO bit forces the WDT to operate immediately on reset, even if a WDT instruction has not been executed.

The Watchdog Timer is a 24-bit reloadable downcounter that uses three 8-bit registers in the eZ8 CPU register space to set the reload value. The nominal WDT time-out period is calculated using the following equation:

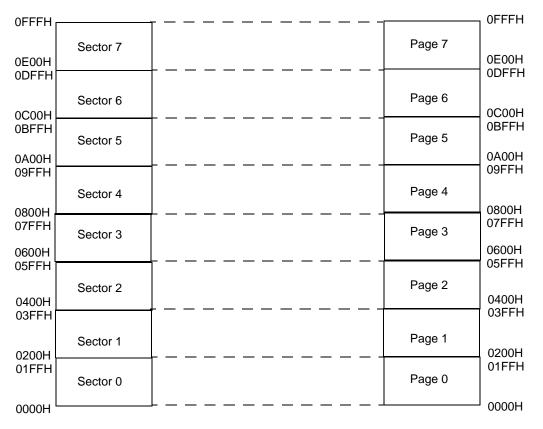
WDT Time-out Period (ms) = $\frac{\text{WDT Reload Value}}{10}$

where the WDT reload value is the 24-bit decimal value provided by {WDTU[7:0], WDTH[7:0], WDTL[7:0]} and the typical Watchdog Timer RC oscillator frequency is 10KHz. The Watchdog Timer cannot be refreshed after it reaches 000002H. The WDT reload value must not be set to values below 000004H. Table 58 provides information about approximate time-out delays for the minimum and maximum WDT reload values.

WDT Reload Value	WDT Reload Value	Approximate WDT Reload Value(with 10KHz Typical WI						
(Hex)	(Decimal)	Typical	Description					
000004	4	400µs	Minimum time-out delay					
000400	1024	102ms	Default time-out delay					
FFFFF	16,777,215	28 minutes	Maximum time-out delay					

Table 58. Watchdog Timer Approximate Time-Out Delays

Comparator Control Register Definitions


The Comparator Control Register (CMP0) configures the comparator inputs and sets the value of the internal voltage reference. The GPIO pin is always used as positive comparator input.

Bit	7	6	5	4	3	2	1	0			
Field	Reserved	INNSEL		REF	LVL		Rese	erved			
RESET	0	0	0	1	0	1	0	0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Address				F9	0H						
Bit	Descriptio	n									
[7]	Reserved This bit is re	eserved and	must be pro	ogrammed to	o 0.						
[6] INNSEL	Signal Select for Negative Input 0 = internal reference disabled, GPIO pin used as negative comparator input. 1 = internal reference enabled as negative comparator input.										
[5:2] REFLVL	This referent $0000 = 0.0^{\circ}$ $0001 = 0.2^{\circ}$ $0010 = 0.4^{\circ}$ $0110 = 0.8^{\circ}$ $0100 = 0.8^{\circ}$ $0101 = 1.0^{\circ}$ $0110 = 1.2^{\circ}$ $0111 = 1.4^{\circ}$ $1000 = 1.6^{\circ}$ $1001 = 1.8^{\circ}$ 1010-1111	V. V. V. V. V. V (Default). V. V.	endent of th	e ADC volta	ge reference	9.					
[1:0]	Reserved These bits a	are reserved	l and must b	e programm	ned to 00.						

Table 68. Comparator Control Register (CMP0)

113

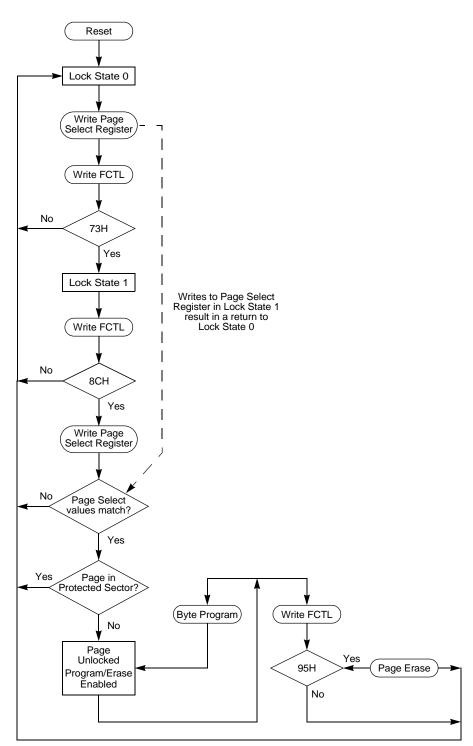


Figure 19. Flash Controller Operation Flow Chart

bits can only be set to 1. Thus, sectors can be protected, but not unprotected, via register write operations. Writing a value other than 5EH to the Flash Control Register deselects the Flash Sector Protect Register and reenables access to the Page Select Register. Observe the following procedure to setup the Flash Sector Protect Register from user code:

- 1. Write 00H to the Flash Control Register to reset the Flash Controller.
- 2. Write 5EH to the Flash Control Register to select the Flash Sector Protect Register.
- 3. Read and/or write the Flash Sector Protect Register which is now at Register File address FF9H.
- 4. Write 00H to the Flash Control Register to return the Flash Controller to its reset state.

The Sector Protect Register is initialized to 0 on reset, putting each sector into an unprotected state. When a bit in the Sector Protect Register is written to 1, the corresponding sector can no longer be written or erased. After setting a bit in the Sector Protect Register, the bit cannot be cleared by the user.

Byte Programming

Flash memory is enabled for byte programming after unlocking the Flash Controller and successfully enabling either mass erase or page erase. When the Flash Controller is unlocked and mass erase is successfully enabled, all of the program memory locations are available for byte programming. In contrast, when the Flash Controller is unlocked and page erase is successfully enabled, only the locations of the selected page are available for byte programming. An erased Flash byte contains all 1's (FFH). The programming operation can only be used to change bits from 1 to 0. To change a Flash bit (or multiple bits) from 0 to 1 requires execution of either the page erase or mass erase commands.

Byte programming can be accomplished using the On-Chip Debugger's write memory command or eZ8 CPU execution of the LDC or LDCI instructions. Refer to the <u>eZ8 CPU</u> <u>Core User Manual (UM0128)</u>, which is available for download on <u>www.zilog.com</u>, for the description of the LDC and LDCI instructions. While the Flash Controller programs the Flash memory, the eZ8 CPU idles, but the system clock and on-chip peripherals continue to operate. To exit programming mode and lock the Flash, write any value to the Flash Control Register, except the mass erase or page erase commands.

Caution: The byte at each address within Flash memory cannot be programmed (any bits written to 0) more than twice before an erase cycle occurs.

Bit	7	6	5	4	3	2	1	0			
Field				TRMDR: Tr	im Bit Data						
RESET	0	0	0	0	0	0	0	0			
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W									
Address				FF	7H						

Table 80. Trim Bit Data Register (TRMDR)

Flash Option Bit Address Space

The first two bytes of Flash program memory at addresses 0000H and 0001H are reserved for the user-programmable Flash option bits. See Tables 81 and 82.

Bit	7	6	5	4	3	2	1	0				
Field	WDT_RES	WDT_AO	OSC_S	EL[1:0]	VBO_AO	FRP	Reserved	FWP				
RESET	U	U	U	U	U	U	U	U				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Address		Program Memory 0000H										
Note: U =	Unchanged by	Reset. R/W :	= Read/Write									
Bit	Descriptio	<u></u>										
[7] WDT_RES												
[6] WDT_AO	0 = On ap Timer 1 = Watch Watch	cannot be d dog Timer is dog Timer c	system pow isabled. s enabled oi an only be o	n execution	of the WDT	instruction.	y enabled. V Once enabl ault setting fo	ed, the				
[5:4] OSC_SEL	 Watchdog Timer can only be disabled by a reset. This is the default setting for unprogrammed (erased) Flash. OSCILLATOR Mode Selection 00 = On-chip oscillator configured for use with external RC networks (<4MHz). 01 = Minimum power for use with very low frequency crystals (32 kHz to 1.0MHz). 10 = Medium power for use with medium frequency crystals or ceramic resonators (0.5MHz to 5.0MHz). 11 = Maximum power for use with high frequency crystals (5.0MHz to 20.0MHz). This is the default setting for unprogrammed (erased) Flash. 											

Table 81. Flash Option Bits at Program Memory Address 0000H

ister, the user code must wait at least 5000 IPO cycles for the crystal to stabilize. After this period, the crystal oscillator may be selected as the system clock.

Figure 25 displays a recommended configuration for connection with an external fundamental-mode, parallel-resonant crystal operating at 20MHz. Recommended 20MHz crystal specifications are provided in Table 100. Resistor R₁ is optional and limits total power dissipation by the crystal. Printed circuit board layout must add no more than 4pF of stray capacitance to either the X_{IN} or X_{OUT} pins. If oscillation does not occur, reduce the values of capacitors C₁ and C₂ to decrease loading.

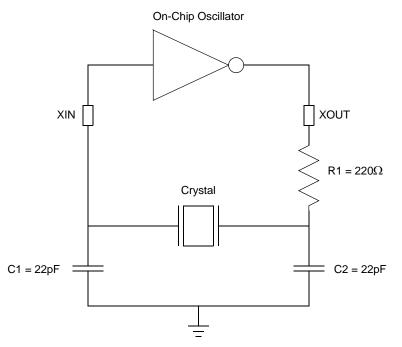


Figure 25. Recommended 20MHz Crystal Oscillator Configuration

Parameter	Value	Units	Comments
Frequency	20	MHz	
Resonance	Parallel		
Mode	Fundamental		
Series Resistance (R _S)	60	Ω	Maximum
Load Capacitance (CL)	30	pF	Maximum
Shunt Capacitance (C ₀)	7	pF	Maximum
Drive Level	1	mW	Maximum

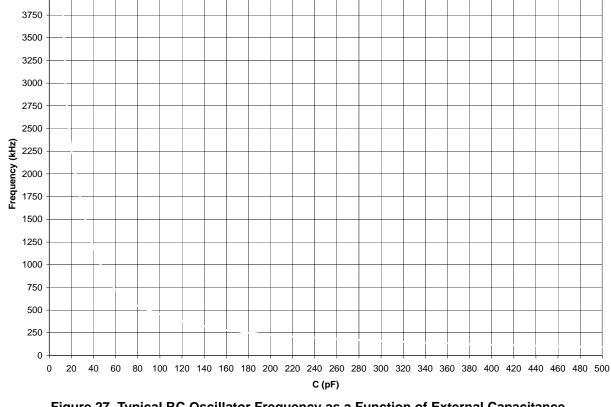


Figure 27. Typical RC Oscillator Frequency as a Function of External Capacitance with a 45 k Ω Resistor

Caution: When using the external RC OSCILLATOR Mode, the oscillator can stop oscillating if the power supply drops below 2.7V but before it drops to the Voltage Brown-Out threshold. The oscillator resumes oscillation when the supply voltage exceeds 2.7V.

160

4000

eZ8 CPU Instruction Set

This chapter describes the following features of the eZ8 CPU instruction set: <u>Assembly Language Programming Introduction</u>: see page 162 <u>Assembly Language Syntax</u>: see page 163 <u>eZ8 CPU Instruction Notation</u>: see page 164 <u>eZ8 CPU Instruction Classes</u>: see page 166 <u>eZ8 CPU Instruction Summary</u>: see page 171

Assembly Language Programming Introduction

The eZ8 CPU assembly language provides a means for writing an application program without concern for actual memory addresses or machine instruction formats. A program written in assembly language is called a source program. Assembly language allows the use of symbolic addresses to identify memory locations. It also allows mnemonic codes (op codes and operands) to represent the instructions themselves. The op codes identify the instruction while the operands represent memory locations, registers or immediate data values.

Each assembly language program consists of a series of symbolic commands called statements. Each statement contains labels, operations, operands and comments.

Labels can be assigned to a particular instruction step in a source program. The label identifies that step in the program as an entry point for use by other instructions.

The assembly language also includes assembler directives that supplement the machine instruction. The assembler directives, or pseudo-ops, are not translated into a machine instruction. Rather, these pseudo-ops are interpreted as directives that control or assist the assembly process.

The source program is processed (assembled) by the assembler to obtain a machine language program called the object code. The object code is executed by the eZ8 CPU. An example segment of an assembly language program is provided in the following example.

Assembly			ress ode	Op Code(s)			Fla	ags			Fetch	Instr.
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	۷	D	Н		
AND dst, src	$dst \gets dst \; AND \; src$	r	r	52	_	*	*	0	_	_	2	3
		r	lr	53	_						2	4
		R	R	54							3	3
		R	IR	55	_						3	4
		R	IM	56	_						3	3
		IR	IM	57	_						3	4
ANDX dst, src	$dst \gets dst \; AND \; src$	ER	ER	58	_	*	*	0	_	_	4	3
		ER	IM	59	_						4	3
ATM	Block all interrupt and DMA requests during execution of the next 3 instructions			2F	-	_	_	_	_	_	1	2
BCLR bit, dst	dst[bit] ← 0	r		E2	_	*	*	0	_	_	2	2
BIT p, bit, dst	dst[bit] ← p	r		E2	_	*	*	0	_	_	2	2
BRK	Debugger Break			00	-	_	-	-	_	_	1	1
BSET bit, dst	dst[bit] ← 1	r		E2	-	*	*	0	-	-	2	2
BSWAP dst	dst[7:0] ← dst[0:7]	R		D5	Х	*	*	0	-	-	2	2
BTJ p, bit, src,	if src[bit] = p		r	F6	-	_	-	-	_	_	3	3
dst	$PC \leftarrow PC + X$		lr	F7	_						3	4
BTJNZ bit, src,			r	F6	-	_	-	-	-	-	3	3
dst	$PC \leftarrow PC + X$		lr	F7	_						3	4
BTJZ bit, src,	if src[bit] = 0		r	F6	_	-	_	_	-	-	3	3
dst	$PC \gets PC + X$		Ir	F7							3	4
CALL dst	$SP \leftarrow SP -\!\!\!\!\!-\!\!\!\!\!2$	IRR		D4	_	_	-	-	_	-	2	6
	@SP ← PC PC ← dst	DA		D6							3	3
CCF	$C \leftarrow \sim C$			EF	*	_	_	_	_		1	2

Table 113. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

- = Unaffected.

X = Undefined.

0 = Reset to 0.

1 = Set to 1.

Electrical Characteristics

The data in this chapter represents all known data prior to qualification and characterization of the F0830 Series of products, and is therefore subject to change. Additional electrical characteristics may be found in the individual chapters of this document.

Absolute Maximum Ratings

Stresses greater than those listed in Table 115 may cause permanent damage to the device. These ratings are stress ratings only. Operation of the device at any condition outside those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For improved reliability, tie unused inputs to one of the supply voltages (V_{DD} or V_{SS}).

Parameter	Minimum	Maximum	Units	Notes
Ambient temperature under bias	0	+105	°C	
Storage temperature	-65	+150	°C	
Voltage on any pin with respect to V _{SS}	-0.3	+5.5	V	
Voltage on V_{DD} pin with respect to V_{SS}	-0.3	+3.6	V	
Maximum current on input and/or inactive output pin	-5	+5	μA	
Maximum output current from active output pin	-25	+25	mA	
20-pin Packages Maximum Ratings at 0°C to 70°C				
Total power dissipation		430	mW	
Maximum current into V_{DD} or out of V_{SS}		120	mA	
28-pin Packages Maximum Ratings at 0°C to 70°C				
Total power dissipation		450	mW	
Maximum current into V _{DD} or out of V _{SS}		125	mA	

Table 115. Absolute Maximum Ratings

		V _{DD} = 2.7 to 3.6V T _A = 0°C to +70°C			= 2.7 to 40°C to -			
Parameter	Min	Тур	Max	Min	Тур	Max	Units	Notes
Flash Byte Read Time				50	-	_	ns	
Flash Byte Program Time				20	_	_	μs	
Flash Page Erase Time				50	-	_	ms	
Flash Mass Erase Time				50	-	_	ms	
Writes to Single Address Before Next Erase				_	-	2		
Flash Row Program Time				_	-	8	ms	Cumulative pro- gram time for single row cannot exceed limit before next erase. This parame- ter is only an issue when bypassing the Flash Controller.
Data Retention				10	_	_	years	25°C
Endurance				10,000	-	-	cycles	Program/erase cycles

Table 119. Flash Memory Electrical Characteristics and Timing

Table 120. Watchdog Timer Electrical Characteristics and Timing

		$V_{DD} = 2.7 \text{ to } 3.6 \text{ V}$ $V_{DD} = 2.7 \text{ to } 3.6 \text{ V}$ $T_A = 0^{\circ}\text{C to } +70^{\circ}\text{C}$ $V_{DD} = 2.7 - 3.6 \text{ V}$ $T_A = -40^{\circ}\text{C to}$ $+105^{\circ}\text{C}$							
Symbol	Parameter	Min	Тур	Max	Min	Min Typ Max		Units	Conditions
	Active power consumption					2	3	μA	
F _{WDT}	WDT oscillator frequency				2.5	5	7.5	kHz	

Hex Addresses: F87–F8F

This address range is reserved.

Comparator 0

For more information about the Comparator Register, see the <u>Comparator Control Register Definitions</u> section on page 107.

Hex Address: F90

Bit	7	6	5	4	3	2	1	0		
Field	Reserved	INNSEL	REFLVL Reserved							
RESET	0	0	0	1	0	1	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address		F90H								

Table 156. Comparator Control Register (CMP0)

Hex Addresses: F91–FBF

This address range is reserved.

Interrupt Controller

For more information about the Interrupt Control registers, see the <u>Interrupt Control Reg-</u> <u>ister Definitions</u> section on page 57.

Hex Address: FC0

Bit	7	6	5	4	3	2	1	0		
Field	Reserved	T1I	TOI	Reserved	Reserved	Reserved	Reserved	ADCI		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address		FC0H								

Table 157. Interrupt Request 0 Register (IRQ0)

Hex Addresses: FC9–FCC

This address range is reserved.

Hex Address: FCD

Table 166. Interrupt Edge Select Register (IRQES)

Bit	7	6	5	4	3	2	1	0
Field	IES7	IES6	IES5	IES4	IES3	IES2	IES1	IES0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				FC	DH			

Hex Address: FCE

Table 167. Shared Interrupt Select Register (IRQSS)

Bit	7	6	5	4	3	2	1	0	
Field	Reserved	PA6CS	Reserved						
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address				FC	EH				

Hex Address: FCF

Table 168. Interrupt Control Register (IRQCTL)

Bit	7	6	5	4	3	2	1	0			
Field	IRQE		Reserved								
RESET	0	0	0	0	0	0	0	0			
R/W	R/W	R	R	R	R	R	R	R			
Address				FC	FH						

Trim Bit Control

For more information about the Trim Bit Control registers, see the <u>Flash Option Bit Con-</u> <u>trol Register Definitions</u> section on page 126.

Hex Address: FF6

Bit	7	6	5	4	3	2	1	0			
Field		TRMADR - Trim Bit Address (00H to 1FH)									
RESET	0	0	0	0	0	0	0	0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Address				FF	6H						

Table 189. Trim Bit Address Register (TRMADR)

Hex Address: FF7

Table 190. Trim Bit Data Register (TRMDR)

Bit	7	6	5	4	3	2	1	0			
Field		TRMDR - Trim Bit Data									
RESET	0	0	0	0	0	0	0	0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Address				FF	7H						

Flash Memory Controller

For more information about the Flash Control registers, see the <u>Flash Control Register</u> <u>Definitions</u> section on page 118.

Hex Address: FF8

Bit	7	6	5	4	3	2	1	0			
Field		FCMD									
RESET	0	0	0	0	0	0	0	0			
R/W	W	W	W	W	W	W	W	W			
Address				FF	8H						

Table 191. Flash Control Register (FCTL)

JP 169 LD 168 LDC 168 LDCI 167, 168 LDE 168 LDEI 167 LDX 168 LEA 168 load 168 logical 169 **MULT 167 NOP 168** OR 169 ORX 169 POP 168 **POPX 168** program control 169 **PUSH 168** PUSHX 168 RCF 167, 168 **RET 169** RL 169 **RLC 169** rotate and shift 169 RR 170 **RRC** 170 **SBC 167** SCF 167. 168 **SRA 170 SRL 170 SRP 168 STOP 168 SUB 167 SUBX 167 SWAP 170** TCM 167 **TCMX 167** TM 167 TMX 167 **TRAP 169** watch-dog timer refresh 168 XOR 169 **XORX 169** instructions, eZ8 classes of 166

interrupt control register 67 interrupt controller 53 architecture 53 interrupt assertion types 56 interrupt vectors and priority 56 operation 55 register definitions 57 software interrupt assertion 57 interrupt edge select register 65 interrupt request 0 register 58 interrupt request 1 register 59 interrupt request 2 register 60 interrupt return 169 interrupt vector listing 53 IR 164 Ir 164 **IRET 169** IRQ0 enable high and low bit registers 60 IRQ1 enable high and low bit registers 62 IRQ2 enable high and low bit registers 63 **IRR 164** Irr 164

J

JP 169 jump, conditional, relative, and relative conditional 169

L

LD 168 LDC 168 LDCI 167, 168 LDE 168 LDEI 167, 168 LDX 168 LEA 168 load constant 167 load constant to/from program memory 168 load constant with auto-increment addresses 168 load effective address 168 load external data 168