

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	25
Program Memory Size	1KB (1K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0131qj020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Part Selection Guide

Table 1 lists the basic features available for each device within the Z8 Encore! F0830 Series product line. See the <u>Ordering Information</u> chapter on page 200 for details.

Part Number	Flash (KB)	RAM (B)	NVDS (64B)	ADC
Z8F1232	12	256	No	Yes
Z8F1233	12	256	No	No
Z8F0830	8	256	Yes	Yes
Z8F0831	8	256	Yes	No
Z8F0430	4	256	Yes	Yes
Z8F0431	4	256	Yes	No
Z8F0230	2	256	Yes	Yes
Z8F0231	2	256	Yes	No
Z8F0130	1	256	Yes	Yes
Z8F0131	1	256	Yes	No

Table 1. Z8 Encore! F0830 Series Family Part Selection Guide

Block Diagram

Figure 1 displays a block diagram of the Z8 Encore! F0830 Series architecture.

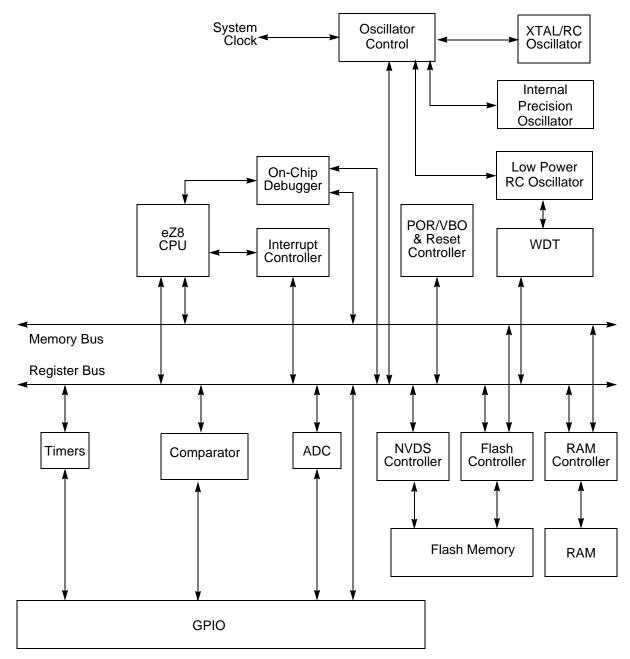


Figure 1. Z8 Encore! F0830 Series Block Diagram

29

Bit	7	6	5	4	3	2	1	0		
Field	POR	STOP	WDT	EXT		Reserved				
RESET	:	See Table 13	3	0	0	0	0	0		
R/W	R	R	R	R	R	R	R	R		
Address				FF	ОH					
Bit	Descriptio	Description								
[7] POR	This bit is s	Power-On Reset Indicator This bit is set to 1 if a Power-On Reset event occurs and is reset to 0, if a WDT time-out or Stop Mode Recovery occurs. Reading this register also reset this bit to 0.								
[6] STOP	Stop Mode Recovery Indicator This bit is set to 1 if a Stop Mode Recovery occurs. If the STOP and WDT bits are both set to 1, the Stop Mode Recovery occurs because of a WDT time-out. If the STOP bit is 1 and the WDT bit is 0, the Stop Mode Recovery is not caused by a WDT time-out. This bit is reset by a Power-On Reset or a WDT time-out that occurred while not in STOP Mode. Reading this register also resets this bit.									
[5] WDT	This bit is s Recovery fr	Watchdog Timer Time-Out Indicator This bit is set to 1 if a WDT time-out occurs. A Power-On Reset resets this pin. A Stop Mode Recovery from a change in an input pin also resets this bit. Reading this register resets this bit. This read must occur before clearing the WDT interrupt.								
[4] EXT	If this bit is a Stop Mod	External Reset Indicator If this bit is set to 1, a reset initiated by the external RESET pin occurred. A Power-On Reset or a Stop Mode Recovery from a change in an input pin resets this bit. Reading this register resets this bit.								
[3:0]	Reserved These regis	sters are res	erved and n	nust be prog	rammed to	0000.				

Table 13. POR Indicator Values

Reset or Stop Mode Recovery Event	POR	STOP	WDT	EXT
Power-On Reset	1	0	0	0
Reset using RESET pin assertion	0	0	0	1
Reset using Watchdog Timer time-out	0	0	1	0
Reset using the On-Chip Debugger (OCTCTL[1] set to 1)	1	0	0	0
Reset from STOP Mode using DBG pin driven Low	1	0	0	0
Stop Mode Recovery using GPIO pin transition	0	1	0	0
Stop Mode Recovery using WDT time-out	0	1	1	0

External Clock Setup

For systems using an external TTL drive, PB3 is the clock source for 20- and 28-pin devices. In this case, configure PB3 for Alternate function CLKIN. Write to the Oscillator Control Register (see the <u>Oscillator Control Register Definitions</u> section on page 154) to select the PB3 as the system clock.

Port	ort Pin Mnemonic		Alternate Function Description	Alternate Function Set Register AFS1
Port A ¹	PA0	T0IN/T0OUT	Timer 0 input/Timer 0 output complement	N/A
		Reserved		
	PA1	TOOUT	Timer 0 output	
		Reserved		
	PA2	Reserved	Reserved	
		Reserved		
	PA3	Reserved	Reserved	
		Reserved		
	PA4	Reserved	Reserved	
		Reserved		
	PA5	Reserved	Reserved	
		Reserved		
	PA6	T1IN/T1OUT	Timer 1 input/Timer 1 output complement	
		Reserved		
	PA7	T1OUT	Timer 1 output	
		Reserved		

Table 16. Port Alternate Function Mapping

Notes:

- Because there is only a single alternate function for each Port A and Port D (PD0) pin, the Alternate Function Set registers are not implemented for Port A and Port D (PD0). Enabling alternate function selections (as described in the <u>Port A–D Alternate Function Subregisters</u> section on page 42) automatically enables the associated alternate function.
- Because there are at most two choices of alternate functions for any Port B pin, the AFS2 Alternate Function Set Register is implemented but is not used to select the function. Additionally, alternate function selection (as described in the <u>Port A–D Alternate Function Subregisters</u> section on page 42) must also be enabled.
- Because there are at most two choices of alternate functions for any Port C pin, the AFS2 Alternate Function Set Register is implemented but is not used to select the function. Additionally, alternate function selection (as described in the <u>Port A–D Alternate Function Subregisters</u> section on page 42) must also be enabled.

Port A–D Pull-up Enable Subregisters

The Port A–D Pull-Up Enable Subregister is accessed through the Port A–D Control Register by writing 06H to the Port A–D Address Register. See Table 26. Setting the bits in the Port A–D Pull-Up Enable subregisters enables a weak internal resistive pull-up on the specified port pins.

Bit	1	6	5	4	3	2	1	0	
Field	PPUE7	PPUE6	PPUE5	PPUE4	PPUE3	PPUE2	PPUE1	PPUE0	
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	If 06H in Port A–D Address Register, accessible through the Port A–D Control Register								

Table 26. Port A–D Pull-Up Enable Subregisters (PxPUE)

Bit	Description				
[7:0]	Port Pull-Up Enable				
PxPUE	0 = The weak pull-up on the port pin is disabled.				
	1 = The weak pull-up on the port pin is enabled.				
Note: x indicates the specific GPIO port pin number (7–0).					

LED Drive Enable Register

The LED Drive Enable Register, shown in Table 31, activates the controlled current drive. The Alternate Function Register has no control over the LED function; therefore, setting the Alternate Function Register to select the LED function is not required. LEDEN bits [7:0] correspond to Port C bits [7:0], respectively.

Bit	7	6	5	4	3	2	1	0	
Field				LEDE	N[7:0]				
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address		F82H							

Bit	Description
[7:0]	LED Drive Enable
LEDEN	These bits determine which Port C pins are connected to an internal current sink. 0 = Tristate the Port C pin. 1= Connect controlled current sink to the Port C pin.

LED Drive Level High Register

The LED Drive Level High Register, shown in Table 32, contains two control bits for each Port C pin. These two bits select one of four programmable current drive levels for each Port C pin. Each pin is individually programmable.

Bit	7	6	5	4	3	2	1	0				
Field		LEDLVLH[7:0]										
RESET	0	0	0	0	0	0	0	0				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Address				F8	F83H							

Bit Description

[7:0] LED Level High Bits

LEDLVLH {LEDLVLH, LEDLVLL} select one of four programmable current drive levels for each Port C pin. 00 = 3mA.

01= 7 mA.

10= 13mA.

11= 20mA.

Priority	Program Memory Vector Address	Interrupt or Trap Source
Highest	0002H	Reset (not an interrupt)
	0004H	Watchdog Timer (see Watchdog Timer chapter)
	003AH	Primary oscillator fail trap (not an interrupt)
	003CH	Watchdog Oscillator fail trap (not an interrupt)
	0006H	Illegal instruction trap (not an interrupt)
	0008H	Reserved
	000AH	Timer 1
	000CH	Timer 0
	000EH	Reserved
	0010H	Reserved
	0012H	Reserved
	0014H	Reserved
	0016H	ADC
	0018H	Port A7, selectable rising or falling input edge
	001AH	Port A6, selectable rising or falling input edge or Comparator Output
	001CH	Port A5, selectable rising or falling input edge
	001EH	Port A4, selectable rising or falling input edge
	0020H	Port A3, selectable rising or falling input edge
	0022H	Port A2, selectable rising or falling input edge
	0024H	Port A1, selectable rising or falling input edge
	0026H	Port A0, selectable rising or falling input edge
	0028H	Reserved
	002AH	Reserved
	002CH	Reserved
	002EH	Reserved
	0030H	Port C3, both input edges
	0032H	Port C2, both input edges
	0034H	Port C1, both input edges
	0036H	Port C0, both input edges
Lowest	0038H	Reserved

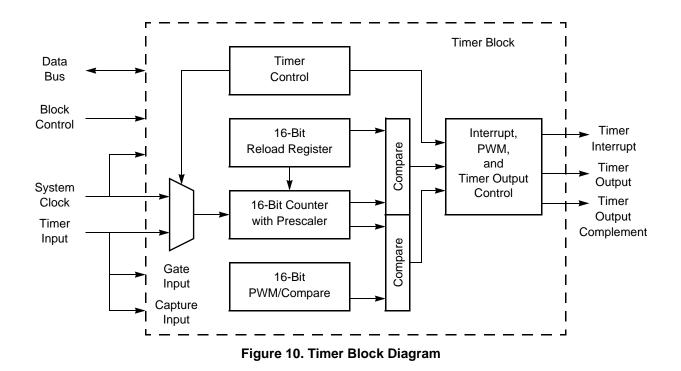
Table 34. Trap and Interrupt Vectors in Order of Priority

• Writing 1 to the IRQE bit in the Interrupt Control Register

Interrupts are globally disabled by any of the following actions:

- Execution of a DI (disable interrupt) instruction
- eZ8 CPU acknowledgement of an interrupt service request from the Interrupt Controller
- Writing a 0 to the IRQE bit in the Interrupt Control Register
- Reset
- Execution of a trap instruction
- Illegal instruction Trap
- Primary oscillator fail trap
- Watchdog Oscillator fail trap

Interrupt Vectors and Priority


The Interrupt Controller supports three levels of interrupt priority. Level 3 is the highest priority, level 2 is the second highest priority and level 1 is the lowest priority. If all of the interrupts are enabled with identical interrupt priority (all as level 2 interrupts, for example), the interrupt priority is assigned from highest to lowest as specified in <u>Table 34</u> on page 54. Level 3 interrupts are always assigned higher priority than level 2 interrupts and level 2 interrupts are assigned higher priority than level 1 interrupts. Within each interrupt priority level (level 1, level 2 or level 3), priority is assigned as specified in Table 34, above. Reset, Watchdog Timer interrupt (if enabled), primary oscillator fail trap, Watchdog Oscillator fail trap and illegal instruction trap always have highest (level 3) priority.

Interrupt Assertion

Interrupt sources assert their interrupt requests for only a single system clock period (single pulse). When the interrupt request is acknowledged by the eZ8 CPU, the corresponding bit in the interrupt request register is cleared. Writing 0 to the corresponding bit in the interrupt request register clears the interrupt request.

Caution: Zilog recommends not using a coding style that clears bits in the Interrupt Request registers. All incoming interrupts received between execution of the first LDX command and the final LDX command are lost. See Example 1, which follows.

Example 1. A poor coding style that can result in lost interrupt requests:

Operation

The timers are 16-bit up-counters. Minimum time-out delay is set by loading the value 0001H into the Timer Reload High and Low Byte registers and setting the prescale value to 1. Maximum time-out delay is set by loading the value 0000H into the Timer Reload High and Low Byte registers and setting the prescale value to 128. If the Timer reaches FFFFH, the timer resets back to 0000H and continues counting.

Timer Operating Modes

The timers can be configured to operate in the following modes:

ONE-SHOT Mode

In ONE-SHOT Mode, the timer counts up to the 16-bit reload value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon reaching the reload value, the timer generates an interrupt and the count value in the Timer High and Low Byte registers is reset to 0001H. The timer is automatically disabled and stops counting.

Additionally, if the timer output alternate function is enabled, the timer output pin changes state for one system clock cycle (from Low to High or from High to Low) upon timer

- Disable the timer
- Configure the timer for CONTINUOUS Mode
- Set the prescale value
- If using the timer output Alternate function, set the initial output level (High or Low)
- 2. Write to the Timer High and Low Byte registers to set the starting count value (usually 0001H). This action only affects the first pass in CONTINUOUS Mode. After the first timer reload in CONTINUOUS Mode, counting always begins at the reset value of 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the reload value.
- 4. Enable the timer interrupt (if appropriate) and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. Configure the associated GPIO port pin (if using the timer output function) for the timer output alternate function.
- 6. Write to the Timer Control Register to enable the timer and initiate counting.

In CONTINUOUS Mode, the system clock always provides the timer input. The timer period is calculated with the following equation:

Continuous Mode Time-Out Period (s) = $\frac{\text{Reload Value} \times \text{Prescale}}{\text{System Clock Frequency (Hz)}}$

If an initial starting value other than 0001H is loaded into the Timer High and Low Byte registers, use the ONE-SHOT Mode equation to determine the first time-out period.

COUNTER Mode

In COUNTER Mode, the timer counts input transitions from a GPIO port pin. The timer input is taken from the GPIO port pin: timer input alternate function. The TPOL bit in the Timer Control Register determines whether the count occurs on the rising edge or the falling edge of the timer input signal. In COUNTER Mode, the prescaler is disabled.

Caution: The input frequency of the timer input signal must not exceed one-fourth the system clock frequency.

Upon reaching the reload value stored in the Timer Reload High and Low Byte registers, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. Additionally, if the timer output alternate function

 $PWM Period (s) = \frac{Reload Value \times Prescale}{System Clock Frequency (Hz)}$

If an initial starting value other than 0001H is loaded into the Timer High and Low Byte registers, use the ONE-SHOT Mode equation to determine the first PWM time-out period.

If TPOL bit is set to 0, the ratio of the PWM output high time to the total period is represented by:

PWM Output High Time Ratio (%) = $\frac{\text{Reload Value} - \text{PWM Value}}{\text{Reload Value}} \times 100$

If TPOL bit is set to 1, the ratio of the PWM output high time to the total period is represented by:

PWM Output High Time Ratio (%) = $\frac{\text{PWM Value}}{\text{Reload Value}} \times 100$

PWM DUAL OUTPUT Mode

In PWM DUAL OUTPUT Mode, the timer outputs a PWM output signal pair (basic PWM signal and its complement) through two GPIO port pins. The timer input is the system clock. The timer first counts up to 16-bit PWM match value stored in the timer PWM High and Low Byte registers. When the timer count value matches the PWM value, the timer output toggles. The timer continues counting until it reaches the reload value stored in the Timer Reload High and Low Byte registers. Upon reaching the reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes.

If the TPOL bit in the Timer Control Register is set to 1, the timer output signal begins as a High (1) and transitions to a Low (0) when the timer value matches the PWM value. The timer output signal returns to a High (1) after the timer reaches the reload value and is reset to 0001H.

If the TPOL bit in the Timer Control Register is set to 0, the timer output signal begins as a Low (0) and transitions to a High (1) when the timer value matches the PWM value. The timer output signal returns to a Low (0) after the timer reaches the reload value and is reset to 0001H.

The timer also generates a second PWM output signal: the timer output complement. The timer output complement is the complement of the timer output PWM signal. A programmable deadband delay can be configured to time delay (0 to 128 system clock cycles) PWM output transitions on these two pins from a Low to a High (inactive to active) to ensure a time gap between the deassertion of one PWM output to the assertion of its complement.

ADC Interrupt

The ADC can generate an interrupt request when a conversion has been completed. An interrupt request that is pending when the ADC is disabled is not cleared automatically.

Reference Buffer

The reference buffer, RBUF, supplies the reference voltage for the ADC. When enabled, the internal voltage reference generator supplies the ADC. When RBUF is disabled, the ADC must have the reference voltage supplied externally through the V_{REF} pin in 28-pin package. RBUF is controlled by the REFEN bit in the ADC Control Register.

Internal Voltage Reference Generator

The internal voltage reference generator provides the voltage VR2, for the RBUF. VR2 is 2V.

Calibration and Compensation

A user can perform calibration and store the values into Flash or the user code can perform a manual offset calibration. There is no provision for manual gain calibration.

ADC Control Register Definitions

The ADC Control registers are defined in this section.

Sample Settling Time Register

The <u>Sample Settling</u> Time Register, shown in Table 66, is used to program a delay after the <u>SAMPLE/HOLD</u> signal is asserted and before the START signal is asserted; an ADC conversion then begins. The number of clock cycles required for settling will vary from system to system depending on the system clock period used. The system designer should program this register to contain the number of clocks required to meet a $0.5 \mu s$ minimum settling time.

Bit	7	6	5	4	3	2	1	0			
Field		Rese	erved		SST						
RESET		()		1	1	1	1			
R/W		F	२			R/	W				
Address											

Table 66. Sample Settling Time (ADCSST)

Bit	Description
[7:4]	Reserved These bits are reserved and must be programmed to 0000.
[3:0] SST	0h–Fh = Sample settling time in number of system clock periods to meet 0.5 μ s minimum.

Comparator Control Register Definitions

The Comparator Control Register (CMP0) configures the comparator inputs and sets the value of the internal voltage reference. The GPIO pin is always used as positive comparator input.

Bit	7	6	5	4	3	2	1	0					
Field	Reserved	INNSEL		REF	LVL		Rese	erved					
RESET	0	0	0	1	0	1	0 0						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
Address		F90H											
Bit	Descriptio	escription											
[7]	Reserved This bit is re	eserved and	must be pro	ogrammed to	o 0.								
[6] INNSEL	0 = internal	Signal Select for Negative Input) = internal reference disabled, GPIO pin used as negative comparator input. I = internal reference enabled as negative comparator input.											
[5:2] REFLVL	This referent $0000 = 0.0^{\circ}$ $0001 = 0.2^{\circ}$ $0010 = 0.4^{\circ}$ $0110 = 0.8^{\circ}$ $0100 = 0.8^{\circ}$ $0101 = 1.2^{\circ}$ $0111 = 1.4^{\circ}$ $1000 = 1.6^{\circ}$ $1001 = 1.8^{\circ}$	V. V. V. V (Default). V. V.	endent of th	e ADC volta	ge reference	9.							
[1:0]	Reserved These bits a	are reserved	l and must b	e programm	ned to 00.								

Table 68. Comparator Control Register (CMP0)

Read OCD Control Register (05H). The read OCD Control Register command reads the value of the OCDCTL register.

```
DBG \leftarrow 05H
DBG \rightarrow OCDCTL[7:0]
```

Write Program Counter (06H). The write program counter command, writes the data that follows to the eZ8 CPU's program counter (PC). If the device is not in DEBUG Mode or if the Flash read protect option bit is enabled, the program counter (PC) values are discarded.

```
DBG ← 06H
DBG ← ProgramCounter[15:8]
DBG ← ProgramCounter[7:0]
```

Read Program Counter (07H). The read program counter command, reads the value in the eZ8 CPUs program counter (PC). If the device is not in DEBUG Mode or if the Flash read protect option bit is enabled, this command returns FFFFH.

```
DBG \leftarrow 07H
DBG \rightarrow ProgramCounter[15:8]
DBG \rightarrow ProgramCounter[7:0]
```

Write Register (08H). The write register command, writes data to the register file. Data can be written 1–256 bytes at a time (256 bytes can be written by setting size to 0). If the device is not in DEBUG Mode, the address and data values are discarded. If the Flash read protect option bit is enabled, only writes to the Flash control registers are allowed and all other register write data values are discarded.

```
DBG \leftarrow 08H
DBG \leftarrow {4'h0,Register Address[11:8]}
DBG \leftarrow Register Address[7:0]
DBG \leftarrow Size[7:0]
DBG \leftarrow 1-256 data bytes
```

Read Register (09H). The read register command, reads data from the register file. Data can be read 1–256 bytes at a time (256 bytes can be read by setting size to 0). If the device is not in DEBUG Mode or if the Flash read protect option bit is enabled, this command returns FFH for all of the data values.

```
DBG \leftarrow 09H
DBG \leftarrow {4'h0,Register Address[11:8]
DBG \leftarrow Register Address[7:0]
DBG \leftarrow Size[7:0]
DBG \rightarrow 1-256 data bytes
```

Write Program Memory (0AH). The write program memory command, writes data to program memory. This command is equivalent to the LDC and LDCI instructions. Data can be written 1–65536 bytes at a time (65536 bytes can be written by setting size to 0). The on-chip Flash Controller must be written to and unlocked for the programming operation to occur. If the Flash Controller is not unlocked, the data is discarded. If the device is not in DEBUG Mode or if the Flash read protect option bit is enabled, the data is discarded.

Z8 Encore![®] F0830 Series Product Specification

Internal Precision Oscillator

The Internal Precision Oscillator (IPO) is designed for use without external components. The user can either manually trim the oscillator for a nonstandard frequency or use the automatic factory-trimmed version to achieve a 5.53 MHz frequency with $\pm 4\%$ accuracy and 45%~55% duty cycle over the operating temperature and supply voltage of the device. The maximum start-up time of the IPO is 25µs. IPO features include:

- On-chip RC oscillator that does not require external components
- Output frequency of either 5.53 MHz or 32.8kHz (contains both a FAST and a SLOW mode)
- Trimming possible through Flash option bits, with user override
- Elimination of crystals or ceramic resonators in applications where high timing accuracy is not required

Operation

The internal oscillator is an RC relaxation oscillator with a minimized sensitivity to power supply variations. By using ratio-tracking thresholds, the effect of power supply voltage is cancelled out. The dominant source of oscillator error is the absolute variance of chip-level fabricated components, such as capacitors. An 8-bit trimming register, incorporated into the design, compensates for absolute variation of oscillator frequency. Once trimmed, the oscillator frequency is stable and does not require subsequent calibration. Trimming was performed during manufacturing and is not necessary for the user to repeat unless a frequency other than 5.53 MHz (FAST mode) or 32.8 kHz (SLOW mode) is required.

Note: The user can power down the IPO block for minimum system power.

By default, the oscillator is configured through the Flash option bits. However, the user code can override these trim values, as described in *the* <u>Trim Bit Address Space</u> section on page 129.

Select one of two frequencies for the oscillator: 5.53 MHz or 32.8 kHz, using the OSCSEL bits described in the <u>Oscillator Control</u> chapter on page 151.

Assembly			ress ode	Op Code(s)			Fla	ags			Fetch	Instr.
Mnemonic	Symbolic Operation	dst	src	(Hex)	C Z S			V D		Η		
POPX dst	dst \leftarrow @SP SP \leftarrow SP + 1	ER		D8	-	_	_	-	_	-	3	2
PUSH src	$SP \leftarrow SP - 1$	R		70	-	-	_	-	_	-	2	2
	$@SP \leftarrow src$	IR		71	-						2	3
	-	IM		IF70	-						3	2
PUSHX src	$SP \leftarrow SP - 1$ @SP ← src	ER		C8	_	-	-	_	_	-	3	2
RCF	C ← 0			CF	0	-	-	-	_	-	1	2
RET	$\begin{array}{l} PC \leftarrow @SP \\ SP \leftarrow SP + 2 \end{array}$			AF	-	-	-	-	_	-	1	4
RL dst		R		90	*	*	*	*	_	_	2	2
	C	IR		91							2	3
RLC dst		R		10	*	*	*	*	-	_	2	2
	C D7 D6 D5 D4 D3 D2 D1 D0 dst	IR		11							2	3
RR dst		R		E0	*	*	*	*	_	-	2	2
	► D7 D6 D5 D4 D3 D2 D1 D0 ► C	IR		E1							2	3
RRC dst		R		C0	*	*	*	*	_	-	2	2
	► D7D6D5D4D3D2D1D0 ► C	IR		C1							2	3
SBC dst, src	$dst \gets dst - src - C$	r	r	32	*	*	*	*	1	*	2	3
		r	lr	33	_						2	4
		R	R	34							3	3
	-	R	IR	35							3	4
	-	R	IM	36	_						3	3
		IR	IM	37							3	4
SBCX dst, src	$dst \gets dst - src - C$	ER	ER	38	*	*	*	*	1	*	4	3
	-	ER	IM	39	_						4	3
SCF	C ← 1			DF	1	_	_	_	_	_	1	2

Table 113. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

- = Unaffected.

X = Undefined.

0 = Reset to 0.

1 =Set to 1.

177

							Lo	ower Nil	bble (He	x)						
	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0	1.1 BRK	2.2 SRP IM	2.3 ADD r1,r2	2.4 ADD r1,lr2	3.3 ADD R2,R1	3.4 ADD IR2,R1	3.3 ADD R1,IM	3.4 ADD IR1,IM	4.3 ADDX ER2,ER1	4.3 ADDX IM,ER1	2.3 DJNZ r1,X	2.2 JR cc,X	2.2 LD r1,IM	3.2 JP cc,DA	1.2 INC r1	1.2 NOP
1	2.2 RLC R1	2.3 RLC IR1	2.3 ADC r1,r2	2.4 ADC r1,lr2	3.3 ADC R2,R1	3.4 ADC IR2,R1	3.3 ADC R1,IM	3.4 ADC IR1,IM	4.3 ADCX ER2,ER1	4.3 ADCX IM,ER1				00,271		See 2nd Op Code Map
2	2.2 INC R1	2.3 INC IR1	2.3 SUB r1,r2	2.4 SUB r1,lr2	3.3 SUB R2,R1	3.4 SUB IR2,R1	3.3 SUB R1,IM	3.4 SUB IR1,IM	4.3 SUBX ER2,ER1	4.3 SUBX						map
3	2.2 DEC R1	2.3 DEC IR1	2.3 SBC r1,r2	2.4 SBC r1,lr2	3.3 SBC R2,R1	3.4 SBC IR2,R1	3.3 SBC R1,IM	3.4 SBC IR1,IM	4.3 SBCX ER2,ER1	4.3 SBCX IM,ER1						
4	2.2 DA R1	2.3 DA IR1	2.3 OR r1,r2	2.4 OR r1,lr2	3.3 OR R2,R1	3.4 OR IR2,R1	3.3 OR R1,IM	3.4 OR IR1,IM	4.3 ORX ER2,ER1	4.3 ORX IM,ER1						
5	2.2 POP R1	2.3 POP IR1	2.3 AND r1,r2	2.4 AND r1,lr2	3.3 AND R2,R1	3.4 AND IR2,R1	3.3 AND R1,IM	3.4 AND IR1,IM	4.3 ANDX ER2,ER1	4.3 ANDX IM,ER1						1.2 WDT
6	2.2 COM R1	2.3 COM IR1	2.3 TCM r1,r2	2.4 TCM r1,lr2	3.3 TCM R2,R1	3.4 TCM IR2,R1	3.3 TCM R1,IM	3.4 TCM IR1,IM	4.3 TCMX ER2,ER1	4.3 TCMX IM,ER1						1.2 STOP
7	2.2 PUSH R2	2.3 PUSH IR2	2.3 TM r1,r2	2.4 TM r1,lr2	3.3 TM R2,R1	3.4 TM IR2,R1	3.3 TM R1,IM	3.4 TM IR1,IM	4.3 TMX ER2,ER1	4.3 TMX IM,ER1						1.2 HALT
8	2.5 DECW RR1	2.6 DECW IRR1	2.5 LDE r1,lrr2	2.9 LDEI Ir1,Irr2	3.2 LDX r1,ER2	3.3 LDX Ir1,ER2	3.4 LDX	3.5 LDX IRR2,IR1	3.4 LDX r1,rr2,X	3.4 LDX rr1,r2,X						1.2 DI
9	2.2 RL R1	2.3 RL IR1	2.5 LDE r2,lrr1	2.9 LDEI Ir2,Irr1	3.2 LDX r2,ER1	3.3 LDX Ir2,ER1	3.4 LDX	3.5 LDX IR2,IRR1	3.3 LEA r1,r2,X	3.5 LEA rr1,rr2,X						1.2 El
A	2.5 INCW RR1	2.6 INCW IRR1	2.3 CP r1,r2	2.4 CP r1,lr2	3.3 CP R2,R1	3.4 CP IR2,R1	3.3 CP R1,IM	3.4 CP IR1,IM	4.3 CPX ER2,ER1	4.3 CPX IM,ER1						1.4 RET
В	2.2 CLR R1	2.3 CLR IR1	2.3 XOR r1,r2	2.4 XOR r1,lr2	3.3 XOR R2,R1	3.4 XOR IR2,R1	3.3 XOR R1,IM	3.4 XOR IR1,IM	4.3 XORX ER2,ER1	4.3 XORX IM,ER1						1.5 IRET
С	2.2 RRC R1	2.3 RRC IR1	2.5 LDC r1,lrr2	2.9 LDCI Ir1,Irr2	2.3 JP IRR1	2.9 LDC Ir1,Irr2		3.4 LD r1,r2,X	3.2 PUSHX ER2							1.2 RCF
D	2.2 SRA R1	2.3 SRA IR1	2.5 LDC r2,Irr1	2.9 LDCI Ir2,Irr1	2.6	2.2 BSWAP R1	3.3 CALL DA	3.4 LD r2,r1,X	3.2 POPX ER1							1.2 SCF
E	2.2 RR R1	2.3 RR IR1	2.2 BIT p,b,r1	2.3 LD r1,lr2	3.2 LD R2,R1	3.3 LD IR2,R1	3.2 LD R1,IM	3.3 LD IR1,IM	4.2 LDX ER2,ER1	4.2 LDX IM,ER1						1.2 CCF
F	2.2 SWAP R1	2.3 SWAP IR1	2.6 TRAP Vector	2.3 LD lr1,r2	2.8 MULT RR1	3.3 LD R2,IR1	3.3 BTJ	3.4 BTJ p,b,lr1,X		-	V	V	V	▼	▼	

Figures 29 and 30 provide information about each of the eZ8 CPU instructions.

Figure 29. First Op Code Map

Upper Nibble (Hex)

	V _{DD} = 2.7 to 3.6V T _A = 0°C to +70°C				= 2.7 to 0°C to +				
Parameter	Min	Тур	Max	Min	Тур	Max	Units	Notes	
NVDS Byte Read Time				71	-	258	μs	Withsystemclockat 20MHz	
NVDS Byte Pro- gram Time				126	-	136	μs	Withsystemclockat 20MHz	
Data Retention				10	_	_	years	25°C	
Endurance				100,000	-	-	cycles	Cumulative write cycles for entire memory	

Table 121. Nonvolatile Data Storage

Note: For every 200 writes, a maintenance operation is necessary. In this rare occurrence, the write can take up to 58 ms to complete.

Table 122. Analog-to-Digital Converter Electrical Characteristics and Timing

		V _{DD} = 2.7 to 3.6V T _A = 0°C to +70°C				= 2.7 to 40°C to			
Symbol	Parameter	Min	Тур	Max	Min	Тур	Мах	Units	Conditions
	Resolution				_	10	_	bits	
	Differential Nonlinearity (DNL) ¹				-1	-	+4	LSB	
	Integral Nonlinearity (INL) ¹				-5	_	+5	LSB	
	Gain Error					15		LSB	
	Offset Error				-15	_	15	LSB	PDIP package
	-				-9	-	9	LSB	Other packages
V _{REF}	On chip reference				1.9	2.0	2.1	V	
	Active Power Consumption					4		mA	
	Power Down Current						1	μA	

Note: ¹When the input voltage is lower than 20mV, the conversion error is out of spec.

193

>

Z8 Encore![®] F0830 Series Product Specification

Hex Addresses: FC9–FCC

This address range is reserved.

Hex Address: FCD

Table 166. Interrupt Edge Select Register (IRQES)

Bit	7	6	5	4	3	2	1	0
Field	IES7	IES6	IES5	IES4	IES3	IES2	IES1	IES0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				FC	DH			

Hex Address: FCE

Table 167. Shared Interrupt Select Register (IRQSS)

Bit	7	6	5	4	3	2	1	0			
Field	Reserved	PA6CS			Rese	erved					
RESET	0	0	0	0	0	0	0	0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Address		FCEH									

Hex Address: FCF

Table 168. Interrupt Control Register (IRQCTL)

Bit	7	6	5	4	3	2	1	0			
Field	IRQE				Reserved						
RESET	0	0	0	0	0	0	0	0			
R/W	R/W	R	R	R	R	R	R	R			
Address		FCFH									