E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	17
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VQFN Exposed Pad
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0230qh020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Z8 Encore![®] F0830 Series Product Specification

Table 59.	Watchdog Timer Control Register (WDTCTL)
Table 60.	Watchdog Timer Reload Upper Byte Register (WDTU)
Table 61.	Watchdog Timer Reload High Byte Register (WDTH)
Table 62.	Watchdog Timer Reload Low Byte Register (WDTL)
Table 63.	ADC Control Register 0 (ADCCTL0) 102
Table 64.	ADC Data High Byte Register (ADCD_H) 103
Table 65.	ADC Data Low Bits Register (ADCD_L) 103
Table 66.	Sample Settling Time (ADCSST) 104
Table 67.	Sample Time (ADCST) 105
Table 68.	Comparator Control Register (CMP0) 107
Table 69.	Z8 Encore! F0830 Series Flash Memory Configuration 108
Table 70.	Z8F083 Flash Memory Area Map 112
Table 71.	Flash Code Protection using the Flash Option Bits 115
Table 72.	Flash Control Register (FCTL) 119
Table 73.	Flash Status Register (FSTAT) 120
Table 74.	Flash Page Select Register (FPS) 121
Table 75.	Flash Sector Protect Register (FPROT) 122
Table 76.	Flash Frequency High Byte Register (FFREQH) 123
Table 77.	Flash Frequency Low Byte Register (FFREQL) 123
Table 78.	Trim Bit Address Register (TRMADR) 126
Table 79.	Trim Bit Address Map 126
Table 80.	Trim Bit Data Register (TRMDR) 127
Table 81.	Flash Option Bits at Program Memory Address 0000H 127
Table 82.	Flash Options Bits at Program Memory Address 0001H 128
Table 83.	Trim Option Bits at 0000H (ADCREF) 130
Table 84.	Trim Option Bits at 0001H (TADC_COMP) 130
Table 85.	Trim Bit Address Space
Table 86.	Trim Option Bits at 0002H (TIPO) 131
Table 87.	Trim Option Bits at 0003H (TVBO) 131
Table 88.	VBO Trim Definition

Block Diagram

Figure 1 displays a block diagram of the Z8 Encore! F0830 Series architecture.

Figure 1. Z8 Encore! F0830 Series Block Diagram

The analog supply pins (AV_{DD} and AV_{SS}) are also not available on these parts and are replaced by PB6 and PB7.

At reset, by default, all pins of Port A, B and C are in Input state. The alternate functionality is also disabled, so the pins function as general purpose input ports until programmed otherwise. At power-up, the Port D0 pin defaults to the RESET Alternate function.

The pin configurations listed are preliminary and subject to change based on manufacturing limitations.

Figure 2. Z8F0830 Series in 20-Pin SOIC, SSOP, PDIP Package

Figure 3. Z8F0830 Series in 28-Pin SOIC, SSOP, PDIP Package

Figure 6. Power-On Reset Operation

Voltage Brown-Out Reset

The devices in the Z8 Encore! F0830 Series provide low Voltage Brown-Out (VBO) protection. The VBO circuit forces the device to the Reset state, when the supply voltage drops below the VBO threshold voltage (unsafe level). While the supply voltage remains below the Power-On Reset threshold voltage (V_{POR}), the VBO circuit holds the device in reset.

After the supply voltage exceeds the Power-On Reset threshold voltage, the device progresses through a full system reset sequence, as described in the POR section. Following Power-On Reset, the POR status bit in the Reset Status (RSTSTAT) Register is set to 1. Figure 7 displays the Voltage Brown-Out operation. See the <u>Electrical Characteristics</u> chapter on page 184 for the VBO and POR threshold voltages (V_{VBO} and V_{POR}).

The POR level is greater than the VBO level by the specified hysteresis value. This ensures that the device undergoes a POR after recovering from a VBO condition.

External Clock Setup

For systems using an external TTL drive, PB3 is the clock source for 20- and 28-pin devices. In this case, configure PB3 for Alternate function CLKIN. Write to the Oscillator Control Register (see the <u>Oscillator Control Register Definitions</u> section on page 154) to select the PB3 as the system clock.

Port Pin		Mnemonic	Alternate Function Set Register AFS1	
Port A ¹	PA0	T0IN/T0OUT	Timer 0 input/Timer 0 output complement	N/A
		Reserved		
	PA1	TOOUT	Timer 0 output	
		Reserved		
	PA2	Reserved	Reserved	
		Reserved		
	PA3	Reserved	Reserved	
		Reserved		
	PA4	Reserved	Reserved	
		Reserved		
	PA5	Reserved	Reserved	
		Reserved		
	PA6	T1IN/T1OUT	Timer 1 input/Timer 1 output complement	
		Reserved		
	PA7	T1OUT	Timer 1 output	
		Reserved		

Table 16. Port Alternate Function Mapping

Notes:

- Because there is only a single alternate function for each Port A and Port D (PD0) pin, the Alternate Function Set registers are not implemented for Port A and Port D (PD0). Enabling alternate function selections (as described in the <u>Port A–D Alternate Function Subregisters</u> section on page 42) automatically enables the associated alternate function.
- Because there are at most two choices of alternate functions for any Port B pin, the AFS2 Alternate Function Set Register is implemented but is not used to select the function. Additionally, alternate function selection (as described in the <u>Port A–D Alternate Function Subregisters</u> section on page 42) must also be enabled.
- 3. Because there are at most two choices of alternate functions for any Port C pin, the AFS2 Alternate Function Set Register is implemented but is not used to select the function. Additionally, alternate function selection (as described in the Port A–D Alternate Function Subregisters section on page 42) must also be enabled.

Port A–D Alternate Function Subregisters

The Port A–D Alternate Function Subregister is accessed through the Port A–D Control Register by writing 02H to the Port A–D Address Register. See Table 22 on page 42. The Port A–D Alternate Function subregisters enable the alternate function selection on pins. If disabled, the pins function as GPIOs. If enabled, select one of four alternate functions using Alternate Function Set subregisters 1 and 2, as described in the the <u>Port A–D Alternate Function</u> <u>Set 1 Subregisters</u> section on page 47 and the <u>Port A–D Alternate Function</u> <u>Set 2 Subregisters</u> section on page 48. See the <u>GPIO Alternate Functions</u> section on page 34 to determine the alternate functions associated with each port pin.

Caution: Do not enable alternate functions for GPIO port pins for which there is no associated Alternate function. Failure to follow this guideline can result in unpredictable operation.

Bit	7	6	5	4	3	2	1	0	
Field	AF7	AF6	AF5	AF4	AF3	AF2	AF1	AF0	
RESET			00	H (Ports A–C	C); 01H (Por	t D)			
R/W				R/	W				
Address	If 02H in F	Port A–D Ad	dress Regis	ter, then acc	essible thro	ugh the Por	t A–D Contro	ol Register	
Bit	Descriptio	n							
[7:0]	Port Alterr	Port Alternate Function Enable							
AFx	0 = The poi	rt pin is in N	ORMAL Mod	de and the D	Dx bit in the	e Port A–D D	Data Directio	n Subregis-	

Table 22. Port A–D Alternate Function Subregisters (PxAF)

ter determines the direction of the pin. 1 = The alternate function selected through Alternate function set subregisters is enabled. Port

= The alternate function selected through Alternate function set subregisters is enabled. Port pin operation is controlled by the Alternate function.

Note: x indicates the specific GPIO port pin number (7-0).

45

Port A–D Stop Mode Recovery Source Enable Subregisters

The Port A–D Stop Mode Recovery Source Enable Subregister, shown in Table 25, is accessed through the Port A–D Control Register by writing 05H to the Port A–D Address Register. Setting the bits in the Port A–D Stop Mode Recovery Source Enable subregisters to 1 configures the specified port pins as a Stop Mode Recovery source. During STOP Mode, any logic transition on a port pin enabled as a Stop Mode Recovery source initiates a Stop Mode Recovery event.

Table 25. Port A–D Stop Mode Recovery Source Enable Subregisters (PxSMRE)

Bit	7	6	5	4	3	2	1	0
Field	PSMRE7	PSMRE6	PSMRE5	PSMRE4	PSMRE3	PSMRE2	PSMRE1	PSMRE0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	If 05H ii	n Port A–D A	Address Reg	gister, acces	sible throug	h the Port A	–D Control I	Register

Bit Description

[7:0] **Port Stop Mode Recovery Source Enable**

PSMREx 0 = The port pin is not configured as a Stop Mode Recovery source. Transitions on this pin during STOP Mode do not initiate Stop Mode Recovery.

1 = The port pin is configured as a Stop Mode Recovery source. Any logic transition on this pin during STOP Mode initiates Stop Mode Recovery.

Note: x indicates the specific GPIO port pin number (7-0).

ADC Interrupt

The ADC can generate an interrupt request when a conversion has been completed. An interrupt request that is pending when the ADC is disabled is not cleared automatically.

Reference Buffer

The reference buffer, RBUF, supplies the reference voltage for the ADC. When enabled, the internal voltage reference generator supplies the ADC. When RBUF is disabled, the ADC must have the reference voltage supplied externally through the V_{REF} pin in 28-pin package. RBUF is controlled by the REFEN bit in the ADC Control Register.

Internal Voltage Reference Generator

The internal voltage reference generator provides the voltage VR2, for the RBUF. VR2 is 2V.

Calibration and Compensation

A user can perform calibration and store the values into Flash or the user code can perform a manual offset calibration. There is no provision for manual gain calibration.

ADC Control Register Definitions

The ADC Control registers are defined in this section.

Sample Settling Time Register

The <u>Sample Settling</u> Time Register, shown in Table 66, is used to program a delay after the <u>SAMPLE/HOLD</u> signal is asserted and before the START signal is asserted; an ADC conversion then begins. The number of clock cycles required for settling will vary from system to system depending on the system clock period used. The system designer should program this register to contain the number of clocks required to meet a $0.5 \mu s$ minimum settling time.

Bit	7	6	5	4	3	2	1	0	
Field	Reserved SST								
RESET		()		1	1	1	1	
R/W		F	र			R/	W		
Address		F74H							

Table 66. Sample Settling Time (ADCSST)

Bit	Description
[7:4]	Reserved These bits are reserved and must be programmed to 0000.
[3:0] SST	0h–Fh = Sample settling time in number of system clock periods to meet 0.5 μ s minimum.

Flash Sector Protect Register

The Flash Sector Protect Register is shared with the Flash Page Select Register. When the Flash Control Register is locked and written with 5EH, the next write to this address targets the Flash Sector Protect Register. In all other cases, it targets the Flash Page Select Register.

This register selects one of the eight available Flash memory sectors to be protected. The Reset state of each sector protect bit is the zero (unprotected) state. After a sector is protected by setting its corresponding register bit, the register bit cannot be cleared by the user.

To determine the appropriate Flash memory sector address range and sector number for your F0830 Series product, please refer to <u>Table 70</u> on page 112.

Bit	7	6	5	4	3	2	1	0
Field	SPROT7	SPROT6	SPROT5	SPROT4	SPROT3	SPROT2	SPROT1	SPROT0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address		FF9H						

lable 75.	Flash	Sector	Protect	Register	(FPROT)
-----------	-------	--------	---------	----------	--------	---

Bit Description

[7:0] Sector Protection

SPROT*x* For Z8F12xx, Z8F08xx and Z8F04xx devices, all bits are used. For Z8F02xx devices, the upper four bits remain unused. For Z8F01xx devices, the upper six bits remain unused. To determine the appropriate Flash memory sector address range and sector number for your F0830 Series product, please refer to Table 69 and to Figures 14 through 18.

Note: x indicates bits in the range 7–0.

Flash Option Bits

Programmable Flash option bits allow user configuration of certain aspects of Z8 Encore! F0830 Series operation. The feature configuration data is stored in the Flash program memory and read during reset. The features available for control through the Flash option bits are:

- Watchdog Timer time-out response selection-interrupt or system reset
- Watchdog Timer enabled at reset
- The ability to prevent unwanted read access to user code in program memory
- The ability to prevent accidental programming and erasure of all or a portion of the user code in program memory
- Voltage Brown-Out configuration always enabled or disabled during STOP Mode to reduce STOP Mode power consumption
- OSCILLATOR Mode selection for high, medium and low power crystal oscillators or external RC oscillator
- Factory trimming information for the Internal Precision Oscillator and VBO voltage

Operation

This section describes the type and configuration of the programmable Flash option bits.

Option Bit Configuration by Reset

Each time the Flash option bits are programmed or erased, the device must be reset for the change to be effective. During any Reset operation (system reset or Stop Mode Recovery), the Flash option bits are automatically read from Flash program memory and written to the Option Configuration registers, which control Z8 Encore! F0830 Series device operation. Option bit control is established before the device exits reset and the eZ8 CPU begins code execution. The Option Configuration registers are not part of the register file and are not accessible for read or write access.

Note: The bit values used in Table 85 are set at the factory; no calibration is required.

Table 86. Trim Option Bits at 0002H (TIPO)

Bit	7	6	5	4	3	2	1	0		
Field	IPO_TRIM									
RESET		U								
R/W				R/	W					
Address			Infor	mation Page	e Memory 00	022H				
Note: U =	lote: U = Unchanged by Reset. R/W = Read/Write.									

Bit	Description
[7:0]	Internal Precision Oscillator Trim Byte
IPO_TRIM	Contains trimming bits for the Internal Precision Oscillator.

Note: The bit values used in Table 86 are set at the factory; no calibration is required.

Table 87. Trim Option Bits at 0003H (TVBO)

Bit	7	6	5	4	3	2	1	0		
Field		Rese	erved		Reserved	VBO_TRIM				
RESET		ι	J		U	1	1 0 0			
R/W		R/W					R/W			
Address		Information Page Memory 0023H								
Note: U =	Note: U = Unchanged by Reset. R/W = Read/Write.									

Bit	Description
[7:3]	Reserved These bits are reserved and must be programmed to 11111.
[2] VBO_TRIM	VBO Trim Values Contains factory-trimmed values for the oscillator and the VBO.

>

Example 2

In general, when an instruction format requires an 8-bit register address, the address can specify any register location in the range 0–255 or, using escaped mode addressing, a working register R0–R15. If the contents of register 43H and working register R8 are added and the result is stored in 43H, the assembly syntax and resulting object code is:

Table 102. Assembly Language Syntax Example 2

Assembly Language Code	ADD	43Н,	R8	(ADD dst,	src)
Object Code	04	E8	43	(OPC src,	dst)

See the device specific product specification to determine the exact register file range available. The register file size varies, depending on the device type.

eZ8 CPU Instruction Notation

In the eZ8 CPU instruction summary and description sections, the operands, condition codes, status flags and address modes are represented by the notational shorthand listed in Table 103.

Notation	Description	Operand	Range
b	Bit	b	b represents a value from 0 to 7 (000B to 111B).
СС	Condition Code	_	See condition codes overview in the eZ8 CPU User Manual.
DA	Direct Address	Addrs	Addrs. represents a number in the range of 0000H to FFFFH
ER	Extended Addressing Register	Reg	Reg. represents a number in the range of 000H to FFFH
IM	Immediate Data	#Data	Data is a number between 00H to FFH
lr	Indirect Working Register	@Rn	n = 0 –15
IR	Indirect Register	@Reg	Reg. represents a number in the range of 00H to FFH
Irr	Indirect Working Register Pair	@RRp	p = 0, 2, 4, 6, 8, 10, 12 or 14
IRR	Indirect Register Pair	@Reg	Reg. represents an even number in the range 00H to FEH
р	Polarity	р	Polarity is a single bit binary value of either 0B or 1B.
r	Working Register	Rn	n = 0 - 15

Table 103. Notational Shorthand

Table 110. Logical Instructions

Mnemonic	Operands	Instruction
AND	dst, src	Logical AND
ANDX	dst, src	Logical AND using Extended Addressing
COM	dst	Complement
OR	dst, src	Logical OR
ORX	dst, src	Logical OR using Extended Addressing
XOR	dst, src	Logical Exclusive OR
XORX	dst, src	Logical Exclusive OR using Extended Addressing

Table 111. Program Control Instructions

Mnemonic	Operands	Instruction
BRK		On-chip Debugger Break
BTJ	p, bit, src, DA	Bit Test and Jump
BTJNZ	bit, src, DA	Bit Test and Jump if Non-Zero
BTJZ	bit, src, DA	Bit Test and Jump if Zero
CALL	dst	Call Procedure
DJNZ	dst, src, RA	Decrement and Jump Non-Zero
IRET	_	Interrupt Return
JP	dst	Jump
JP cc	dst	Jump Conditional
JR	DA	Jump Relative
JR cc	DA	Jump Relative Conditional
RET	—	Return
TRAP	vector	Software Trap

Table 112. Rotate and Shift Instructions

Mnemonic	Operands	Instruction
BSWAP	dst	Bit Swap
RL	dst	Rotate Left
RLC	dst	Rotate Left through Carry

180

Op Code Maps

A description of the opcode map data and the abbreviations are provided in Figure 28. Table 114 on page 181 lists opcode map abbreviations.

Figure 28. Op Code Map Cell Description

		Power Consumption	
Category	Block	Typical	Maximum
Logic	CPU/Peripherals @20MHz	5mA	
Flash	Flash @20MHz		12mA
	ADC @20MHz	4mA	4.5mA
	IPO	350µA	400µA
	Comparator @10MHz	330µA	450µA
Analog	POR & VBO	120µA	150µA
	WDT Oscillator	2µA	ЗµА
	OSC @ 20MHz	600µA	900µA
	Clock Filter	120µA	150µA
Note: The valu	ues in this table are subject to change	after characteri	zation.

Table 127. Power Consumption Reference Table

Figure 36. Flash Current Diagram

200

Ordering Information

Order your F0830 Series products from Zilog using the part numbers shown in Table 128. For more information about ordering, please consult your local Zilog sales office. The <u>Sales Location page</u> on the Zilog website lists all regional offices.

Part Number	Flash	RAM	NVDS	ADC Channels	Description
Z8 Encore! F0830 Ser	ies MCUs w	ith 12KB F	lash		
Standard Temperatur	e: 0°C to 70°	°C			
Z8F1232SH020SG	12KB	256	No	7	SOIC 20-pin
Z8F1232HH020SG	12KB	256	No	7	SSOP 20-pin
Z8F1232PH020SG	12KB	256	No	7	PDIP 20-pin
Z8F1232QH020SG	12KB	256	No	7	QFN 20-pin
Z8F1233SH020SG	12KB	256	No	0	SOIC 20-pin
Z8F1233HH020SG	12KB	256	No	0	SSOP 20-pin
Z8F1233PH020SG	12KB	256	No	0	PDIP 20-pin
Z8F1233QH020SG	12KB	256	No	0	QFN 20-pin
Z8F1232SJ020SG	12KB	256	No	8	SOIC 28-pin
Z8F1232HJ020SG	12KB	256	No	8	SSOP 28-pin
Z8F1232PJ020SG	12KB	256	No	8	PDIP 28-pin
Z8F1232QJ020SG	12KB	256	No	8	QFN 28-pin
Z8F1233SJ020SG	12KB	256	No	0	SOIC 28-pin
Z8F1233HJ020SG	12KB	256	No	0	SSOP 28-pin
Z8F1233PJ020SG	12KB	256	No	0	PDIP 28-pin
Z8F1233QJ020SG	12KB	256	No	0	QFN 28-pin
Extended Temperatu	re: -40°C to	105°C			
Z8F1232SH020EG	12KB	256	No	7	SOIC 20-pin
Z8F1232HH020EG	12KB	256	No	7	SSOP 20-pin
Z8F1232PH020EG	12KB	256	No	7	PDIP 20-pin
Z8F1232QH020EG	12KB	256	No	7	QFN 20-pin
Z8F1233SH020EG	12KB	256	No	0	SOIC 20-pin
Z8F1233HH020EG	12KB	256	No	0	SSOP 20-pin
Z8F1233PH020EG	12KB	256	No	0	PDIP 20-pin

Table 128. Z8 Encore! XP F0830 Series Ordering Matrix

Part Number	Flash	RAM	NVDS	ADC Channels	Description
Z8F0831HH020EG	8KB	256	Yes	0	SSOP 20-pin
Z8F0831PH020EG	8KB	256	Yes	0	PDIP 20-pin
Z8F0831QH020EG	8KB	256	Yes	0	QFN 20-pin
Z8F0830SJ020EG	8KB	256	Yes	8	SOIC 28-pin
Z8F0830HJ020EG	8KB	256	Yes	8	SSOP 28-pin
Z8F0830PJ020EG	8KB	256	Yes	8	PDIP 28-pin
Z8F0830QJ020EG	8KB	256	Yes	8	QFN 28-pin
Z8F0831SJ020EG	8KB	256	Yes	0	SOIC 28-pin
Z8F0831HJ020EG	8KB	256	Yes	0	SSOP 28-pin
Z8F0831PJ020EG	8KB	256	Yes	0	PDIP 28-pin
Z8F0831QJ020EG	8KB	256	Yes	0	QFN 28-pin
Z8 Encore! F0830 with	4KB Flash	1			
Standard Temperature	: 0°C to 70	°C			
Z8F0430SH020SG	4KB	256	Yes	7	SOIC 20-pin
Z8F0430HH020SG	4KB	256	Yes	7	SSOP 20-pin
Z8F0430PH020SG	4KB	256	Yes	7	PDIP 20-pin
Z8F0430QH020SG	4KB	256	Yes	7	QFN 20-pin
Z8F0431SH020SG	4KB	256	Yes	0	SOIC 20-pin
Z8F0431HH020SG	4KB	256	Yes	0	SSOP 20-pin
Z8F0431PH020SG	4KB	256	Yes	0	PDIP 20-pin
Z8F0431QH020SG	4KB	256	Yes	0	QFN 20-pin
Z8F0430SJ020SG	4KB	256	Yes	8	SOIC 28-pin
Z8F0430HJ020SG	4KB	256	Yes	8	SSOP 28-pin
Z8F0430PJ020SG	4KB	256	Yes	8	PDIP 28-pin
Z8F0430QJ020SG	4KB	256	Yes	8	QFN 28-pin
Z8F0431SJ020SG	4KB	256	Yes	0	SOIC 28-pin
Z8F0431HJ020SG	4KB	256	Yes	0	SSOP 28-pin
Z8F0431PJ020SG	4KB	256	Yes	0	PDIP 28-pin
Z8F0431QJ020SG	4KB	256	Yes	0	QFN 28-pin
Extended Temperature	: -40°C to	105°C			
Z8F0430SH020EG	4KB	256	Yes	7	SOIC 20-pin
Z8F0430HH020EG	4KB	256	Yes	7	SSOP 20-pin
Z8F0430PH020EG	4KB	256	Yes	7	PDIP 20-pin

Table 128. Z8 Encore! XP F0830 Series Ordering Matrix

Hex Address: F0D

Table 143. Timer 1 PWM Low Byte Register (T1PWML)

Bit	7	6	5	4	3	2	1	0	
Field		PWML							
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address		F0DH							

Hex Address: F0E

Table 144. Timer 1 Control Register 0 (T1CTL0)

Bit	7	6	5	4	3	2	1	0	
Field	TMODEHI	TICO	NFIG	Reserved	PWMD		INPCAP		
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address		F0EH							

Hex Address: F0F

Table 145. Timer 1 Control Register 1 (T1CTL1)

Bit	7	6	5	4	3	2	1	0
Field	TEN	TPOL	PRES				TMODE	
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address		F0FH						

Hex Addresses: F10–F6F

This address range is reserved.

Z8 Encore![®] F0830 Series Product Specification

Index

Symbols

@ 165# 165% 165

Numerics

10-bit ADC 4

Α

absolute maximum ratings 184 AC characteristics 189 ADC 166 block diagram 99 overview 98 ADC Channel Register 1 (ADCCTL) 102 ADC Data High Byte Register (ADCDH) 103 ADC Data Low Bit Register (ADCDL) 103, 104, 105 **ADCX 166** ADD 166 add - extended addressing 166 add with carry 166 add with carry - extended addressing 166 additional symbols 165 address space 14 **ADDX 166** analog block/PWM signal synchronization 100 analog block/PWM signal zynchronization 100 analog signals 11 analog-to-digital converter overview 98 AND 169 **ANDX 169** architecture voltage measurements 98 arithmetic instructions 166 assembly language programming 162 assembly language syntax 163

В

B 165 b 164 **BCLR 167** binary number suffix 165 BIT 167 bit 164 clear 167 manipulation instructions 167 set 167 set or clear 167 swap 167 test and jump 169 test and jump if non-zero 169 test and jump if zero 169 bit jump and test if non-zero 166 bit swap 169 block diagram 3 block transfer instructions 167 **BRK 169 BSET 167** BSWAP 167. 169 **BTJ** 169 BTJNZ 166, 169 **BTJZ 169**

С

calibration and compensation, motor control measurements 101 CALL procedure 169 capture mode 89, 90 capture/compare mode 89 cc 164 CCF 168 characteristics, electrical 184 clear 168 CLR 168 COM 169 compare 89