

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product StatusActiveCore Processore38Core Size8-BitSpeed20MHzConnectivity-PeripheralsBrown-out Detect/Reset, LED, POR, PWM, WDTNumber of I/O23Program Memory Size2KB (2K × 8)FLASHEXEROM SizeRAM Size256 × 8Voltage - Supply (Vcc/Vdd)2.7 v - 3.6VData ConvertersA/D 81/D6Operating Temperature4.0° c ~ 105°C (TA)Mounting TypeSirace MountProkage / Case2.8 vQFNSupplier Device Package-Procesure III1.9 vorwersfLocm/product-detail/zilog/28f0230g/020eg	Details	
Core Size8-BitSpeed20MHzConnectivity-PeripheralsBrown-out Detect/Reset, LED, POR, PWM, WDTNumber of I/O23Program Memory Size2KB (2K x 8)Program Memory TypeFLASHEEPROM Size-XAM Size256 x 8Voltage - Supply (Vcc/Vdd)27 v ~ 3.6VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case8-VQFN	Product Status	Active
Speed20MHzConnectivity-PeripheralsBrown-out Detect/Reset, LED, POR, PWM, WDTNumber of I/O23Program Memory Size2KB (2K × 8)Program Memory TypeFLASHEEPROM Size-RAM Size256 × 8Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersA/D 8x10bOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case82-VQFNSupplier Device Package-	Core Processor	eZ8
Connectivity-Connectivity-PeripheralsBrown-out Detect/Reset, LED, POR, PWM, WDTNumber of I/O23Program Memory Size2KB (2K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size256 x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case28-VQFN	Core Size	8-Bit
PeripheralsBrown-out Detect/Reset, LED, POR, PWM, WDTNumber of I/O23Program Memory Size2KB (2K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size256 x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting Type28-VOFNSupplier Device Package-	Speed	20MHz
Number of I/O23Program Memory Size2KB (2K × 8)Program Memory TypeFLASHEEPROM Size-RAM Size256 × 8Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case28-VQFN	Connectivity	-
Program Memory Size2KB (2K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size256 x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case28-VQFNSupplier Device Package-	Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Program Memory TypeFLASHEEPROM Size-RAM Size256 x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case8-VQFNSupplier Device Package-	Number of I/O	23
EEPROM Size-RAM Size256 x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case28-VQFNSupplier Device Package-	Program Memory Size	2KB (2K x 8)
RAM Size256 x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case28-VQFNSupplier Device Package-	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case28-VQFNSupplier Device Package-	EEPROM Size	-
Data ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case28-VQFNSupplier Device Package-	RAM Size	256 x 8
Oscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case28-VQFNSupplier Device Package-	Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Operating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case28-VQFNSupplier Device Package-	Data Converters	A/D 8x10b
Mounting Type Surface Mount Package / Case 28-VQFN Supplier Device Package -	Oscillator Type	Internal
Package / Case 28-VQFN Supplier Device Package -	Operating Temperature	-40°C ~ 105°C (TA)
Supplier Device Package -	Mounting Type	Surface Mount
	Package / Case	28-VQFN
Purchase URL https://www.e-xfl.com/product-detail/zilog/z8f0230qj020eg	Supplier Device Package	•
	Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0230qj020eg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Electrical Characteristics 1	184
Absolute Maximum Ratings 1	184
DC Characteristics 1	185
AC Characteristics	189
On-Chip Peripheral AC and DC Electrical Characteristics 1	190
General Purpose I/O Port Input Data Sample Timing 1	195
General Purpose I/O Port Output Timing 1	196
On-Chip Debugger Timing 1	197
Packaging 1	199
Ordering Information	200
Part Number Suffix Designations 2	205
Appendix A. Register Tables	208
General Purpose RAM	208
Timer 0	208
Analog-to-Digital Converter	213
Low Power Control	216
LED Controller	216
Oscillator Control	217
Comparator 0	218
Interrupt Controller	218
GPIO Port A 2	222
Watchdog Timer	226
Trim Bit Control	228
Flash Memory Controller 2	228
Index	231
Customer Support	239

ix

xi

Figure 27.	Typical RC Oscillator Frequency as a Function of External Capacitance with a 45 k Ω Resistor
Figure 28.	Op Code Map Cell Description 180
Figure 29.	First Op Code Map
Figure 30.	Second Op Code Map after 1FH 183
Figure 31.	I_{CC} Versus System Clock Frequency (HALT Mode) 187
Figure 32.	I _{CC} Versus System Clock Frequency (NORMAL Mode) 188
Figure 33.	Port Input Sample Timing 195
Figure 34.	GPIO Port Output Timing 196
Figure 35.	On-Chip Debugger Timing 197
Figure 36.	Flash Current Diagram

17

Register Map

Table 8 provides an address map of the Z8 Encore! F0830 Series register file. Not all devices and package styles in the Z8 Encore! F0830 Series support the ADC or all of the GPIO ports. Consider registers for unimplemented peripherals as reserved.

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No.
General Purpos	e RAM			
000–0FF	General purpose register file RAM		XX	
100–EFF	Reserved	_	XX	
Timer 0				
F00	Timer 0 high byte	T0H	00	83
F01	Timer 0 low byte	TOL	01	83
F02	Timer 0 reload high byte	TORH	FF	85
F03	Timer 0 reload low byte	TORL	FF	85
F04	Timer 0 PWM high byte	T0PWMH	00	86
F05	Timer 0 PWM low byte	TOPWML	00	86
F06	Timer 0 control 0	T0CTL0	00	87
F07	Timer 0 control 1	T0CTL1	00	88
Timer 1				
F08	Timer 1 high byte	T1H	00	83
F09	Timer 1 low byte	T1L	01	83
F0A	Timer 1 reload high byte	T1RH	FF	85
F0B	Timer 1 reload low byte	T1RL	FF	85
F0C	Timer 1 PWM high byte	T1PWMH	00	86
F0D	Timer 1 PWM low byte	T1PWML	00	86
F0E	Timer 1 control 0	T1CTL0	00	87
F0F	Timer 1 control 1	T1CTL1	00	83
F10–F6F	Reserved	_	XX	
Analog-to-Digita	al Converter (ADC)			
F70	ADC control 0	ADCCTL0	00	102
F71	Reserved		XX	
F72	ADC data high byte	ADCD_H	XX	103

Table 8. Register File Address Map

Note: XX = Undefined.

	Reset Characteristics and Latency						
Reset Type	Control Registers	eZ8 CPU	Reset Latency (Delay)				
System Reset	Reset (as applicable)	Reset	About 66 Internal Precision Oscillator Cycles				
System Reset with Crystal Oscillator Enabled	Reset (as applicable)	Reset	About 5000 Internal Precision Oscillator Cycles				
Stop Mode Recovery	Unaffected, except WDT_CTL and OSC_CTL registers	Reset	About 66 Internal Precision Oscillator cycles				
Stop Mode Recovery with crystal oscillator enabled	Unaffected, except WDT_CTL and OSC_CTL registers	Reset	About 5000 Internal Precision Oscillator cycles				

Table 9. Reset and Stop Mode Recovery Characteristics and Latency

During a system RESET or Stop Mode Recovery, the Z8 Encore! F0830 Series device is held in reset for about 66 cycles of the Internal Precision Oscillator. If the crystal oscillator is enabled in the Flash option bits, the reset period is increased to about 5000 IPO cycles. When a reset occurs because of a low voltage condition or Power-On Reset, the reset delay is measured from the time that the supply voltage first exceeds the POR level (discussed later in this chapter). If the external pin reset remains asserted at the end of the reset period, the device remains in reset until the pin is deasserted.

At the beginning of reset, all GPIO pins are configured as inputs with pull-up resistor disabled, except PD0 which is shared with the reset pin. On reset, the Port D0 pin is configured as a bidirectional open-drain reset. This pin is internally driven low during port reset, after which the user code may reconfigure this pin as a general purpose output.

During reset, the eZ8 CPU and on-chip peripherals are idle; however, the on-chip crystal oscillator and Watchdog Timer Oscillator continues to run.

On reset, control registers within the register file that have a defined reset value are loaded with their reset values. Other control registers (including the Stack Pointer, Register Pointer and Flags) and general purpose RAM are undefined following the reset. The eZ8 CPU fetches the reset vector at program memory addresses 0002H and 0003H and loads that value into the program counter. Program execution begins at the reset vector address.

Because the control registers are reinitialized by a system reset, the system clock after reset is always the IPO. User software must reconfigure the oscillator control block, to enable and select the correct system clock source.

Port A–D High Drive Enable Subregisters

The Port A–D High Drive Enable Subregister, shown in Table 24, is accessed through the Port A–D Control Register by writing 04H to the Port A–D Address Register. Setting the bits in the Port A–D High Drive Enable subregisters to 1 configures the specified port pins for high-output current drive operation. The Port A–D High Drive Enable Subregister affects the pins directly and, as a result, alternate functions are also affected.

Table 24. Port A–D High Drive Enable Subregisters (PxHDE)

Bit	7	6	5	4	3	2	1	0
Field	PHDE7	PHDE6	PHDE5	PHDE4	PHDE3	PHDE2	PHDE1	PHDE0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	lf 04H ir	If 04H in Port A–D Address Register, accessible through the Port A–D Control Register						

Bit Description

[7:0] Port High Drive Enable
 PHDEx 0 = The port pin is configured for standard output current drive.
 1 = The port pin is configured for high output current drive.

Note: x indicates the specific GPIO port pin number (7–0).

Timer Control Register Definitions

This section defines the features of the following Timer Control registers. <u>Timer 0–1 High and Low Byte Registers</u>: see page 83

Timer Reload High and Low Byte Registers: see page 85

Timer 0-1 PWM High and Low Byte Registers: see page 86

Timer 0-1 Control Registers: see page 87

Timer 0–1 High and Low Byte Registers

The Timer 0–1 High and Low Byte (TxH and TxL) registers, shown in Tables 50 and 51, contain the current 16-bit timer count value. When the timer is enabled, a read from TxH causes the value in TxL to be stored in a temporary holding register. A read from TxL always returns this temporary register content when the timer is enabled; however, when the timer is disabled, a read from the TxL reads the TxL Register content directly.

Writing to the Timer High and Low Byte registers while the timer is enabled is not recommended. There are no temporary holding registers available for write operations; therefore, simultaneous 16-bit writes are not possible. If either the timer High or Low Byte registers are written during counting, the 8-bit written value is placed in the counter (High or Low byte) at the next clock edge. The counter continues counting from the new value.

Bit	7	6	5	4	3	2	1	0
Field				Т	Н			
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W						
Address				F00H,	F08H			

Table 50. Timer 0–1 High Byte Register (TxH)

Table 51	. Timer 0–1	Low Byte	Register	(TxL)

Bit	7	6	5	4	3	2	1	0
Field		TL						
RESET	0	0	0	0	0	0	0	1
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W						
Address				F01H,	F09H			

Timer 0–1 PWM High and Low Byte Registers

The Timer 0–1 PWM High and Low Byte (TxPWMH and TxPWML) registers, shown in Tables 54 and 55, control PWM operations. These registers also store the capture values for the CAPTURE and CAPTURE/COMPARE modes.

Bit	7	6	5	4	3	2	1	0
Field				PW	MH			
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W R/W R/W R/W R/W R/W						
Address		F04H, F0CH						

Table 54. Timer 0–1 PWM High Byte Register (TxPWMH)

Table 55. Timer 0–1 PWM Low Byte Register (TxPWML)

Bit	7	6	5	4	3	2	1	0
Field		PWML						
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	F05H, F0DH							

Bit Description

[7:0]	Pulse Width Modulator High and Low Bytes
PWMH,	These two bytes, {PWMH[7:0], PWML[7:0]}, form a 16-bit value that is compared to the current
PWML	16-bit timer count. When a match occurs, the PWM output changes state. The PWM output
	value is set by the TPOL bit in the Timer Control Register (TxCTL1).
	The TxPWMH and TxPWML registers also store the 16-bit captured timer value when operat-
	ing in capture or CAPTURE/COMPARE modes.

113

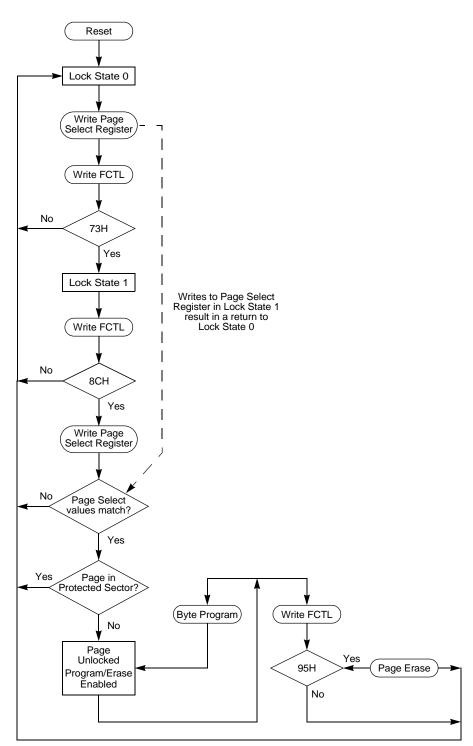


Figure 19. Flash Controller Operation Flow Chart

Bit	Description (Continued)
[3] VBO_AO	 Voltage Brown-Out Protection Always On 0 = Voltage Brown-Out protection is disabled in STOP Mode to reduce total power consumption. 1 = Voltage Brown-Out protection is always enabled, even during STOP Mode. This setting is the default setting for unprogrammed (erased) Flash.
[2] FRP	 Flash Read Protect 0 = User program code is inaccessible. Limited control features are available through the On-Chip Debugger. 1 = User program code is accessible. All On-Chip Debugger commands are enabled. This is the default setting for unprogrammed (erased) Flash.
[1]	Reserved This bit is reserved and must be programmed to 1.
[0] FWP	 Flash Write Protect This option bit provides Flash program memory protection. 0 = Programming and erasure disabled for all Flash program memory. Programming, page erase and mass erase through user code is disabled. Mass erase is available using the On-Chip Debugger. 1 = Programming, page erase and mass erase are enabled for all Flash program memory.

Table 82. Flash Options Bits at Program Memory Address 0001H

Bit	7	6	5	4	3	2	1	0	
Field	VBO_RES	Reserved		XTLDIS	Reserved				
RESET	U	U	U	U	U	U U U U			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address		Program Memory 0001H							
Note: U =	Note: U = Unchanged by Reset. R/W = Read/Write.								

Bit	Description
[7] VBO_RES	Voltage Brown-Out reset 1 = VBO detection causes a system reset. This setting is the default setting for unpro- grammed (erased) Flash.
[6:5]	Reserved These bits are reserved and must be programmed to 11.

128

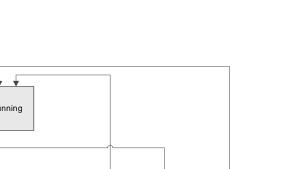
Nonvolatile Data Storage

Z8 Encore! F0830 Series devices contain a Nonvolatile Data Storage (NVDS) element of up to 64 bytes (except when in Flash 12KB mode). This type of memory can perform over 100,000 write cycles.

Operation

NVDS is implemented by special-purpose Zilog software stored in areas of program memory that are not user-accessible. These special-purpose routines use Flash memory to store the data, and incorporate a dynamic addressing scheme to maximize the write/erase endurance of the Flash.

Note: The products in the Z8 Encore! F0830 Series feature multiple NVDS array sizes. See the <u>Z8 Encore! F0830 Series Family Part Selection Guide</u> section on page 2 for details.


NVDS Code Interface

Two routines are required to access the NVDS: a write routine and a read routine. Both of these routines are accessed with a CALL instruction to a predefined address outside of program memory that is accessible to the user. Both the NVDS address and data are singlebyte values. In order to not disturb the user code, these routines save the working register set before using it so that 16 bytes of stack space are required to preserve the site. After finishing the call to these routines, the working register set of the user code is recovered.

During both read and write accesses to the NVDS, interrupt service is not disabled. Any interrupts that occur during NVDS execution must not disturb the working register and existing stack contents; otherwise, the array can become corrupted. Zilog recommends the user disable interrupts before executing NVDS operations.

Use of the NVDS requires 16 bytes of available stack space. The contents of the working register set are saved before calling NVDS read or write routines.

For correct NVDS operation, the Flash Frequency registers must be programmed based on the system clock frequency. See *the* <u>Flash Operation Timing Using the Flash Frequency</u><u>Registers</u> *section on page 114*.

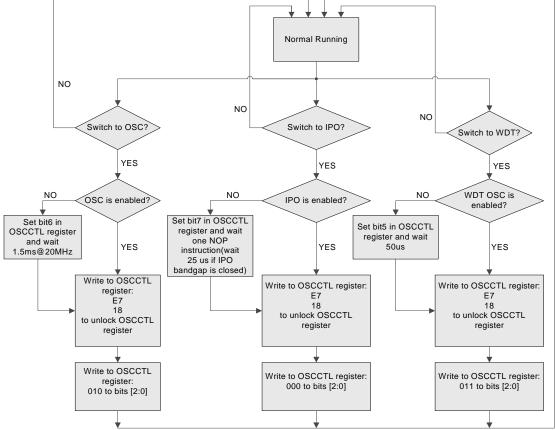


Figure 24. Oscillator Control Clock Switching Flow Chart

eZ8 CPU Instruction Summary

Table 113 summarizes the eZ8 CPU instructions. The table identifies the addressing modes employed by the instruction, the effect upon the Flags register, the number of CPU clock cycles required for the instruction fetch and the number of CPU clock cycles required for the instruction.

Assembly		Address Mode		Op Code(s)	Flags						Fetch	Instr.
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	۷	D	Н		
ADC dst, src	$dst \gets dst + src + C$	r	r	12	*	*	*	*	0	*	2	3
		r	lr	13	-						2	4
		R	R	14	-						3	3
		R	IR	15	-						3	4
		R	IM	16	-						3	3
		IR	IM	17	_						3	4
ADCX dst, src	$dst \gets dst + src + C$	ER	ER	18	*	*	*	*	0	*	4	3
		ER	IM	19	_						4	3
ADD dst, src	dst ← dst + src	r	r	02	*	*	*	*	0	*	2	3
		r	Ir	03	_						2	4
		R	R	04	_						3	3
		R	IR	05	_						3	4
		R	IM	06	_						3	3
		IR	IM	07	_						3	4
ADDX dst, src	$dst \gets dst + src$	ER	ER	08	*	*	*	*	0	*	4	3
		ER	IM	09	-						4	3

Table 113. eZ8 CPU Instruction Summary

Note: Flags Notation:

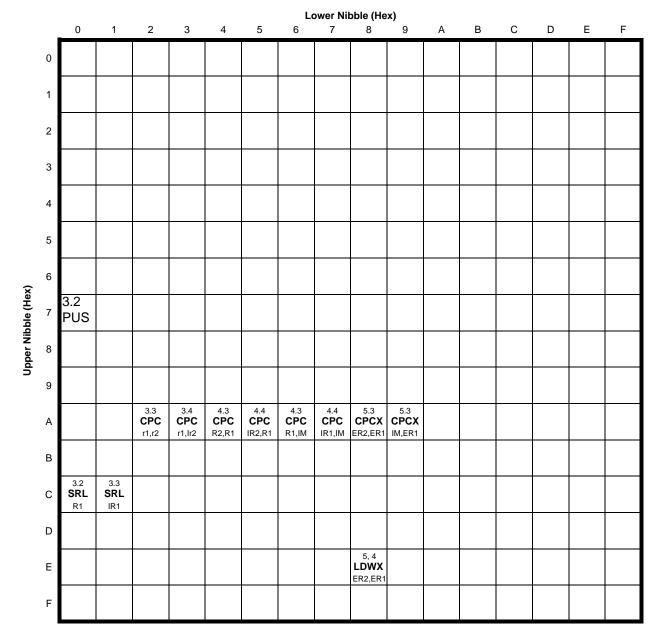
* = Value is a function of the result of the operation.

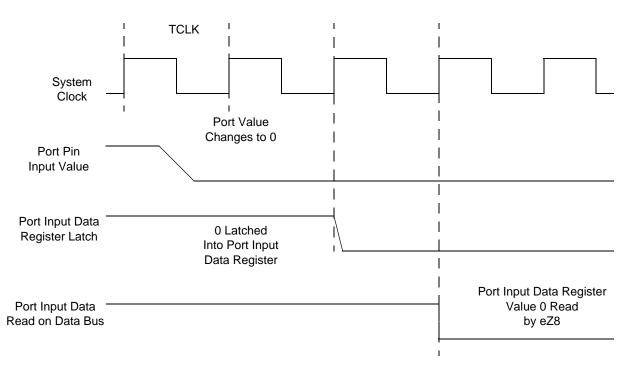
– = Unaffected.

X = Undefined.

0 = Reset to 0.

1 = Set to 1.




Figure 30. Second Op Code Map after 1FH

183

195

General Purpose I/O Port Input Data Sample Timing

Figure 33 displays timing of the GPIO port input sampling. The input value on a GPIO port pin is sampled on the rising edge of the system clock. The port value is available to the eZ8 CPU on the second rising clock edge following the change of the port value.

Figure 33. Port Input Sample Timing

Table 124. GPIO Port Input Timing

		Delay (ns)			
Parameter	Abbreviation	Minimum	Maximum		
T _{S_PORT}	Port Input Transition to X _{IN} Rise Setup Time (not pictured)	5	-		
T _{H_PORT}	X _{IN} Rise to Port Input Transition Hold Time (not pictured)	0	-		
T _{SMR}	GPIO port pin pulse width to ensure Stop Mode Recovery (for GPIO port pins enabled as SMR sources)	1µs			

Part Number	Flash	RAM	NVDS	ADC Channels	Description
Z8F0131PJ020SG	1KB	256	Yes	0	PDIP 28-pin
Z8F0131QJ020SG	1KB	256	Yes	0	QFN 28-pin
Extended Temperature	: −40°C to	105°C			
Z8F0130SH020EG	1KB	256	Yes	7	SOIC 20-pin
Z8F0130HH020EG	1KB	256	Yes	7	SSOP 20-pin
Z8F0130PH020EG	1KB	256	Yes	7	PDIP 20-pin
Z8F0130QH020EG	1KB	256	Yes	7	QFN 20-pin
Z8F0131SH020EG	1KB	256	Yes	0	SOIC 20-pin
Z8F0131HH020EG	1KB	256	Yes	0	SSOP 20-pin
Z8F0131PH020EG	1KB	256	Yes	0	PDIP 20-pin
Z8F0131QH020EG	1KB	256	Yes	0	QFN 20-pin
Z8F0130SJ020EG	1KB	256	Yes	8	SOIC 28-pin
Z8F0130HJ020EG	1KB	256	Yes	8	SSOP 28-pin
Z8F0130PJ020EG	1KB	256	Yes	8	PDIP 28-pin
Z8F0130QJ020EG	1KB	256	Yes	8	QFN 28-pin
Z8F0131SJ020EG	1KB	256	Yes	0	SOIC 28-pin
Z8F0131HJ020EG	1KB	256	Yes	0	SSOP 28-pin
Z8F0131PJ020EG	1KB	256	Yes	0	PDIP 28-pin
Z8F0131QJ020EG	1KB	256	Yes	0	QFN 28-pin
ZUSBSC00100ZACG					USB Smart Cable Accessory Kit
ZUSBOPTSC01ZACG					Opto-Isolated USB Smart Cable Accessory Kit

Table 128. Z8 Encore! XP F0830 Series Ordering Matrix

Part Number Suffix Designations

Zilog part numbers consist of a number of components, as indicated in the following example.

Example. Part number Z8F0830SH020SG is an 8-bit 20MHz Flash MCU with 8KB Program Memory and equipped with ADC and NVDS in a 20-pin SOIC package, operating within a 0°C to +70°C temperature range and built using lead-free solder.

207

Table 129 lists the pin count by package.

	Pin Count				
Package	20	28			
PDIP	\checkmark				
QFN	\checkmark				
SOIC	\checkmark				
SSOP	\checkmark				

Table 129. Package and Pin Count Description

Appendix A. Register Tables

For the reader's convenience, this appendix lists all F0830 Series registers numerically by hexadecimal address.

General Purpose RAM

In the F0830 Series, the 000–EFF hexadecimal address range is partitioned for general-purpose random access memory, as follows.

Hex Addresses: 000–0FF

This address range is reserved for general-purpose register file RAM. For more details, see the <u>Register File</u> section on page 14.

Hex Addresses: 100-EFF

This address range is reserved.

Timer 0

For more information about these Timer Control registers, see the <u>Timer Control Register</u> <u>Definitions</u> section on page 83.

Hex Address: F00

Bit	7	6	5	4	3	2	1	0	
Field		TH							
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address		F00H							

Table 130. Timer 0 High Byte Register (T0H)

Hex Address: F74

Table 149. ADC Sample Settling Time (ADCSST)

Bit	7	6	5	4	3	2	1	0		
Field	Reserved				SST					
RESET		()		1	1	1	1		
R/W		F	२			R/	W			
Address		F74H								

Bit	Description
[7:4]	Reserved These bits are reserved and must be programmed to 0000.
[3:0] SST	Sample Settling Time 0h–Fh = Number of system clock periods to meet 0.5 μs minimum.

Hex Address: F75

Table 150. ADC Sample Time (ADCST)

Bit	7	6	5	4	3	2	1	0	
Field	Rese	erved	ST						
RESET	()	1	1	1	1	1	1	
R/W	R/	W		R/W					
Address				F75H					

Bit	Description
[7:6]	Reserved This register is reserved and must be programmed to 0.
[5:0] ST	Sample/Hold Time 0h–Fh = Number of system clock periods to meet 1 µs minimum.

Hex Addresses: F77–F7F

This address range is reserved.

Hex Address: FDB

Bit	7	6	5	4	3	2	1	0	
Field	POUT7	POUT6	POUT5	POUT4	POUT3	POUT2	POUT1	POUT0	
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address		FDBH							

Hex Address: FDC

Table 181. Port D GPIO Address Register (PDADDR)

Bit	7	6	5	4	3	2	1	0	
Field		PADDR[7:0]							
RESET		00H							
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W							
Address	FDCH								

Hex Address: FDD

Table 182. Port D Control Registers (PDCTL)

Bit	7	6	5	4	3	2	1	0	
Field		PCTL							
RESET		00H							
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W							
Address		FDDH							

Hex Address: FDE

This address range is reserved.

Hex Address: FF8

Table 192. Flash Status Register (FSTAT)

Bit	7	6	5	4	3	2	1	0
Field	Rese	erved	FSTAT					
RESET	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R	R	R	R
Address		FF8H						

Hex Address: FF9

The Flash Page Select Register is shared with the Flash Sector Protect Register.

Table 193. Flash Page Select Register (FPS)

Bit	7	6	5	4	3	2	1	0
Field	INFO_EN		PAGE					
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address		FF9H						

Table 194. Flash Sector Protect Register (FPROT)

Bit	7	6	5	4	3	2	1	0	
Field	SPROT7	SPROT6	SPROT5	SPROT4	SPROT3	SPROT2	SPROT1	SPROT0	
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address		FF9H							

Hex Address: FFA

Table 195. Flash Frequency High Byte Register (FFREQH)

Bit	7	6	5	4	3	2	1	0		
Field		FFREQH								
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address		FFAH								