

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	23
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0230sj020eg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Z8 Encore![®] F0830 Series Product Specification

Master Interrupt Enable	. 55
Interrupt Vectors and Priority	. 56
Interrupt Assertion	. 56
Software Interrupt Assertion	. 57
Interrupt Control Register Definitions	. 57
Interrupt Request 0 Register	. 58
Interrupt Request 1 Register	. 59
Interrupt Request 2 Register	. 60
IRQ0 Enable High and Low Bit Registers	. 60
IRQ1 Enable High and Low Bit Registers	. 62
IRQ2 Enable High and Low Bit Registers	. 63
Interrupt Edge Select Register	. 65
Shared Interrupt Select Register	. 66
Interrupt Control Register	. 67
Timers	. 68
Architecture	. 68
Operation	. 69
Timer Operating Modes	. 69
Reading the Timer Count Values	. 82
Timer Pin Signal Operation	. 82
Timer Control Register Definitions	. 83
Timer 0–1 High and Low Byte Registers	. 83
Timer Reload High and Low Byte Registers	. 85
Timer 0–1 PWM High and Low Byte Registers	. 86
Timer 0–1 Control Registers	. 87
Watchdog Timer	. 92
Operation	. 92
Watchdog Timer Refresh	. 93
Watchdog Timer Time-Out Response	. 93
Watchdog Timer Reload Unlock Sequence	. 94
Watchdog Timer Control Register Definitions	. 95
Watchdog Timer Control Register	. 95
Watchdog Timer Reload Upper, High and Low Byte Registers	. 96
Analog-to-Digital Converter	. 98
Architecture	. 98
Operation	. 99
ADC Timing	100
ADC Interrupt	101
Reference Buffer	101
Internal Voltage Reference Generator	101

Reset Controller

The Z8 Encore! F0830 Series products are reset using any one of the following: the RESET pin, Power-On Reset, Watchdog Timer (WDT) time-out, STOP Mode exit or Voltage Brown-Out (VBO) warning signal. The RESET pin is bidirectional; i.e., it functions as a reset source as well as a reset indicator.

On-Chip Debugger

The Z8 Encore! F0830 Series products feature an integrated On-Chip Debugger (OCD). The OCD provides a rich set of debugging capabilities, such as reading and writing registers, programming Flash memory, setting breakpoints and executing code. The OCD uses one single-pin interface for communication with an external host.

Acronyms and Expansions

This document references a number of acronyms; each is expanded in Table 2 for the reader's understanding.

Acronyms	Expansions
ADC	Analog-to-Digital Converter
NVDS	Nonvolatile Data Storage
WDT	Watchdog Timer
GPIO	General-Purpose Input/Output
OCD	On-Chip Debugger
POR	Power-On Reset
VBO	Voltage Brown-Out
IPO	Internal Precision Oscillator
PDIP	Plastic Dual Inline Package
SOIC	Small Outline Integrated Circuit
SSOP	Small Shrink Outline Package
QFN	Quad Flat No Lead
IRQ	Interrupt request
ISR	Interrupt service routine
MSB	Most significant byte
LSB	Least significant byte
PWM	Pulse Width Modulation
SAR	Successive Approximation Regis-

Table 2. Acronyms and Expansions

Reset Sources

Table 10 lists the possible sources of a system reset.

Table 10. Reset Sources and Resulting Reset Type	Table 10	. Reset Sources	and Resulting	Reset Type
--	----------	-----------------	---------------	------------

Operating Mode	Reset Source	Special Conditions
NORMAL or HALT modes	Power-On Reset/Voltage Brown-Out	Reset delay begins after supply voltage exceeds POR level.
	Watchdog Timer time-out when con- figured for reset	None.
	RESET pin assertion	All reset pulses less than four system clocks in width are ignored.
	On-Chip Debugger initiated reset (OCDCTL[0] set to 1)	System, except the On-Chip Debugger is unaffected by the reset.
STOP Mode	Power-On Reset/Voltage Brown-Out	Reset delay begins after supply voltage exceeds POR level.
	RESET pin assertion	All reset pulses less than 12 ns are ignored.
	DBG pin driven Low	None.

Power-On Reset

Each device in the Z8 Encore! F0830 Series contains an internal Power-On Reset circuit. The POR circuit monitors the digital supply voltage and holds the device in the Reset state until the digital supply voltage reaches a safe operating level. After the supply voltage exceeds the POR voltage threshold (V_{POR}), the device is held in the Reset state until the POR counter has timed out. If the crystal oscillator is enabled by the option bits, the time-out is longer.

After the Z8 Encore! F0830 Series device exits the Power-On Reset state, the eZ8 CPU fetches the reset vector. Following the Power-On Reset, the POR status bit in the Reset Status (RSTSTAT) Register is set to 1.

Figure 6 displays the Power-On Reset operation. See the <u>Electrical Characteristics</u> chapter on page 184 for the POR threshold voltage (V_{POR}).

Port A–C Input Data Registers

Reading from the Port A–C Input Data registers, shown in Table 29, return the sampled values from the corresponding port pins. The Port A–C Input Data registers are read-only. The value returned for any unused ports is 0. Unused ports include those not included in the 8- and 28-pin packages, as well as those not included in the ADC-enabled 28-pin packages.

Dit	7	6	5	4	3	2	1	0
Field	PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	R	R	R	R	R	R	R	R
Address	FD2H, FD6H, FDAH							

Table 29. Port A–C Input Data Registers (PxIN)

Bit Description

[7:0] Port Input Data

PxIN Sampled data from the corresponding port pin input. 0 = Input data is logical 0 (Low).

1 =Input data is logical 1 (High).

Note: x indicates the specific GPIO port pin number (7–0).

Interrupt Request 0 Register

The Interrupt Request 0 (IRQ0) Register, shown in Table 35 stores the interrupt requests for both vectored and polled interrupts. When a request is sent to the Interrupt Controller, the corresponding bit in the IRQ0 Register becomes 1. If interrupts are globally enabled (vectored interrupts), the Interrupt Controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 0 Register to determine if any interrupt requests are pending.

Bit	7	6	5	4	3	2	1	0
Field	Reserved	T1I	TOI		Rese	erved		ADCI
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	FC0H							
Bit Description								

Table 35. Interrupt Request 0 Register (IRQ0)

Bit	Description
[7]	Reserved This bit is reserved and must be programmed to 0.
[6] T1I	Timer 1 Interrupt Request 0 = No interrupt request is pending for timer 1. 1 = An interrupt request from timer 1 is awaiting service.
[5] T0I	 Timer 0 Interrupt Request 0 = No interrupt request is pending for timer 0. 1 = An interrupt request from timer 0 is awaiting service.
[4:1]	Reserved These registers are reserved and must be programmed to 0000.
[0] ADCI	 ADC Interrupt Request 0 = No interrupt request is pending for the analog-to-digital converter. 1 = An interrupt request from the analog-to-digital converter is awaiting service.

Interrupt Request 1 Register

The Interrupt Request 1 (IRQ1) Register, shown in Table 36, stores interrupt requests for both vectored and polled interrupts. When a request is sent to the Interrupt Controller, the corresponding bit in the IRQ1 Register becomes 1. If interrupts are globally enabled (vectored interrupts), the Interrupt Controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 1 Register to determine if any interrupt requests are pending.

Bit	7	6	5	4	3	2	1	0
Field	PA7I	PA6CI	PA5I	PA4I	PA3I	PA2I	PA1I	PA0I
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	FC3H							
Bit	Descriptio	n						

Table 36. Interrupt Request 1 Register (IRQ1)

Bit	Description
[7] PA7I	Port A7 0 = No interrupt request is pending for GPIO Port A. 1 = An interrupt request from GPIO Port A.
[6] PA6CI	Port A6 or Comparator Interrupt Request 0 = No interrupt request is pending for GPIO Port A or comparator. 1 = An interrupt request from GPIO Port A or comparator.
[5] PAxl	 Port A Pin x Interrupt Request 0 = No interrupt request is pending for GPIO Port A pin x. 1 = An interrupt request from GPIO Port A pin x is awaiting service.
Note: x	indicates the specific GPIO port pin number (5–0).

Table 39. IRQ0 Enable High Bit Register (IRQ0ENH)

Bit	7	6	5	4	3	2	1	0
Field	Reserved	T1ENH	T0ENH		Rese	erved		ADCENH
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	FC1H							

Bit	Description
[7]	Reserved
	This bit is reserved and must be programmed to 0.
[6] T1ENH	Timer 1 Interrupt Request Enable High Bit
[5] T0ENH	Timer 0 Interrupt Request Enable High Bit
[4:1]	Reserved
	These registers are reserved and must be programmed to 0000.
[0] ADCENH	ADC Interrupt Request Enable High Bit

Table 40. IRQ0 Enable Low Bit Register (IRQ0ENL)

Bit	7	6	5	4	3	2	1	0	
Field	Reserved	T1ENL	T0ENL		ADCENL				
RESET	0	0	0	0	0	0	0	0	
R/W	R	R/W	R/W	R/W	R/W	R	R	R/W	
Address	FC2H								

Bit	Description						
[7]	Reserved						
	This bit is reserved and must be programmed to 0.						
[6] T1ENL	Timer 1 Interrupt Request Enable Low Bit						
[5] T0ENL	Timer 0 Interrupt Request Enable Low Bit						
[4:1]	Reserved						
	These registers are reserved and must be programmed to 0000.						
[0] ADCENL	ADC Interrupt Request Enable Low Bit						

Shared Interrupt Select Register

The shared interrupt select (IRQSS) register determines the source of the PADxS interrupts. See Table 48. The shared interrupt select register selects between Port A and alternate sources for the individual interrupts.

Because these shared interrupts are edge-triggered, it is possible to generate an interrupt just by switching from one shared source to another. For this reason, an interrupt must be disabled before switching between sources.

Bit	7	6	5	4	3	2	1	0	
Field	Reserved	PA6CS	Reserved						
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	FCEH								

Table 48. Shared Interrupt Select Register (IRQSS)

Bit	Description
[7]	Reserved
	This bit is reserved and must be programmed to 0.
[6]	PA6/Comparator Selection
PA6CS	0 = PA6 is used for the interrupt caused by PA6CS interrupt request.
	1 = The comparator is used for the interrupt caused by PA6CS interrupt request.
[5:0]	Reserved
	These registers are reserved and must be programmed to 000000.

- 5. Enable the timer interrupt, if appropriate and set the timer interrupt priority by writing to the relevant interrupt registers. By default, the timer interrupt is generated for both input capture and Reload events. If appropriate, configure the timer interrupt to be generated only at the input capture event or the reload event by setting the TICONFIG field of the TxCTL1 Register.
- 6. Configure the associated GPIO port pin for the timer input alternate function.
- 7. Write to the Timer Control Register to enable the timer and initiate counting.

In CAPTURE Mode, the elapsed time between the timer start and the capture event can be calculated using the following equation:

Capture Elapsed Time (s) = $\frac{(Capture Value - Start Value) \times Prescale}{System Clock Frequency (Hz)}$

CAPTURE RESTART Mode

In CAPTURE RESTART Mode, the current timer count value is recorded when the acceptable external timer input transition occurs. The capture count value is written to the timer PWM High and Low Byte registers. The timer input is the system clock. The TPOL bit in the Timer Control Register determines whether the capture occurs on a rising edge or a falling edge of the timer input signal. When the capture event occurs, an interrupt is generated and the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. The INPCAP bit in the TxCTL1 Register is set to indicate that the timer interrupt has been caused by an input capture event.

If no capture event occurs, the timer counts up to 16-bit compare value stored in the Timer Reload High and Low Byte registers. Upon reaching the reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. The INPCAP bit in the TxCTL1 Register is cleared to indicate that the timer interrupt has not been caused by an input capture event.

Observe the following steps for configuring a timer for CAPTURE RESTART Mode and for initiating the count:

- 1. Write to the Timer Control Register to:
 - Disable the timer
 - Configure the timer for CAPTURE RESTART Mode; setting the mode also involves writing to TMODEHI bit in the TxCTL1 Register
 - Set the prescale value
 - Set the capture edge (rising or falling) for the timer input
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H).

Bit	Description
[7:0]	Timer High and Low Bytes
TH, TL	These 2 bytes, {TH[7:0], TL[7:0]}, contain the current 16-bit timer count value.

Figure 11. Analog-to-Digital Converter Block Diagram

Operation

The ADC converts the analog input, ANA_X , to a 10-bit digital representation. The equation for calculating the digital value is represented by:

ADCOutput = $1024 \times (ANA_x \div V_{REF})$

Assuming zero gain and offset errors, any voltage outside the ADC input limits of AV_{SS} and V_{REF} returns all 0s or 1s, respectively. A new conversion can be initiated by a software to the ADC Control Register's start bit.

Initiating a new conversion, stops any conversion currently in progress and begins a new conversion. To avoid disrupting a conversion already in progress, the START bit can be read to determine ADC operation status (busy or available).

Bit	Description (Continued)
[4] XTLDIS	 State of the Crystal Oscillator at Reset This bit enables only the crystal oscillator. Selecting the crystal oscillator as the system clock must be performed manually. 0 = The crystal oscillator is enabled during reset, resulting in longer reset timing. 1 = The crystal oscillator is disabled during reset, resulting in shorter reset timing.
[3:0]	Reserved These bits are reserved and must be programmed to 1111.

Trim Bit Address Space

All available trim bit addresses and their functions are listed in Tables 83 through 90.

Power Failure Protection

NVDS routines employ error-checking mechanisms to ensure that any power failure will only endanger the most recently written byte. Bytes previously written to the array are not perturbed. For this protection to function, the VBO must be enabled (see the <u>Low-Power</u> <u>Modes</u> chapter on page 30) and configured for a threshold voltage of 2.4V or greater (see *the* <u>Trim Bit Address Space</u> *section on page 129*).

A system reset (such as a pin reset or Watchdog Timer reset) that occurs during a write operation also perturbs the byte currently being written. All other bytes in the array are unperturbed.

Optimizing NVDS Memory Usage for Execution Speed

As indicated in Table 93, the NVDS read time varies drastically; this discrepancy being a trade-off for minimizing the frequency of writes that require post-write page erases. The NVDS read time of address N is a function of the number of writes to addresses other than N since the most recent write to address N as well as the number of writes since the most recent page erase. Neglecting the effects caused by page erases and results caused by the initial condition in which the NVDS is blank, a rule of thumb to consider is that every write since the most recent page erase causes read times of unwritten addresses to increase by $0.8\mu s$ up to a maximum of $258\mu s$.

Operation	Minimum Latency (µs)	Maximum Latency (µs)
Read	71	258
Write	126	136
Illegal Read	6	6
Illegal Write	7	7

Table 93. NVDS Read Time	Table	93.	NVDS	Read	Time
--------------------------	-------	-----	------	------	------

• **Note:** For every 200 writes, a maintenance operation is necessary. In this rare occurrence, the write takes up to 58 ms to complete.

If NVDS read performance is critical to your software architecture, you can optimize your code for speed by using either of the two methods listed below.

1. Periodically refresh all addresses that are used; this is the more useful method. The optimal use of NVDS, in terms of speed, is to rotate the writes evenly among all addresses planned for use, thereby bringing all reads closer to the minimum read time.

Clock Source	Characteristics	Required Setup
Internal precision RC oscillator	 32.8 kHz or 5.53MHz ± 4% accuracy when trimmed No external components required 	Unlock and write to the Oscillator Con- trol Register (OSCCTL) to enable and select oscillator at either 5.53MHz or 32.8 kHz
External crystal/res- onator	 32 kHz to 20MHz Very high accuracy (dependent on crystal or resonator used) Requires external components 	 Configure Flash option bits for correct external OSCILLATOR Mode Unlock and write OSCCTL to enable crystal oscillator, wait for it to stabilize and select as system clock (if the XTLDIS option bit has been de-asserted, no waiting is required)
External RC oscilla- tor	 32 kHz to 4MHz Accuracy dependent on external components 	 Configure Flash option bits for correct external OSCILLATOR Mode Unlock and write OSCCTL to enable crystal oscillator and select as system clock
External clock drive	 0 to 20MHz Accuracy dependent on external clock source 	 Write GPIO registers to configure PB3 pin for external clock function Unlock and write OSCCTL to select external system clock Apply external clock signal to GPIO
Internal Watchdog Timer Oscillator	 10 kHz nominal ± 40% accuracy; no external components required Low power consumption 	 Enable WDT if not enabled and wait until WDT oscillator is operating. Unlock and write to the Oscillator Con- trol Register (OSCCTL) to enable and select oscillator

Table 98. Oscillator Configuration and Selection

Caution: Unintentional accesses to the Oscillator Control Register can actually stop the chip by switching to a nonfunctioning oscillator. To prevent this condition, the oscillator control block employs a register unlocking/locking scheme.

OSC Control Register Unlocking/Locking

To write the Oscillator Control Register, unlock it by making two writes to the OSCCTL Register with the values E7H followed by 18H. A third write to the OSCCTL Register changes the value of the actual register and returns the register to a Locked state. Any other sequence of Oscillator Control Register writes have no effect. The values written to unlock the register must be ordered correctly, but are not necessarily consecutive. It is possible to write to or read from other registers within the unlocking/locking operation.

							L	ower Ni	bble (He	x)						
	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
	1.1	2.2	2.3	2.4	3.3	3.4	3.3	3.4	4.3	4.3	2.3	2.2	2.2	3.2	1.2	1.2
0	BRK	SRP	ADD	ADD								JR		JP	INC	NOP
	22	2.3	23	2.4	33	3.4	33	3.4	4 3	13	11,∧	00,7	11,111	CC,DA		See 2nd
1	RLC	RLC	ADC	ADC	ADC	ADC	ADC	ADC	ADCX	ADCX						Op Code
	R1	IR1	r1,r2	r1,lr2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1						Мар
	2.2	2.3	2.3	2.4	3.3	3.4	3.3	3.4	4.3	4.3						
2			50B	50B	50B R2 R1	SUB IR2 R1	SUB R1 IM		SUBX	SUBX						
	22	2.3	2.3	2.4	3.3	3.4	3.3	3.4	4.3	4.3						
3	DEC	DEC	SBC	SBC	SBC	SBC	SBC	SBC	SBCX	SBCX						
	R1	IR1	r1,r2	r1,lr2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1						
	2.2	2.3	2.3	2.4	3.3	3.4	3.3	3.4	4.3	4.3						
4	R1	IR1	r1 r2	r1 lr2	82 R1	IR2 R1			ER2 ER1							
	2.2	2.3	2.3	2.4	3.3	3.4	3.3	3.4	4.3	4.3						1.2
5	POP	POP	AND	AND	AND	AND	AND	AND	ANDX	ANDX						WDT
	R1	IR1	r1,r2	r1,Ir2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1						
6	2.2 COM	2.3 COM	2.3 TCM	2.4 TCM	3.3 TCM	3.4 TCM	3.3 TCM	3.4 TCM	4.3 TCMX	4.3 TCMX						1.2 STOP
0	R1	IR1	r1,r2	r1,lr2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1						0101
	2.2	2.3	2.3	2.4	3.3	3.4	3.3	3.4	4.3	4.3						1.2
7	PUSH	PUSH	ТМ	ТМ	ТМ	ТМ	ТМ	ТМ	тмх	тмх						HALT
	R2	IR2	r1,r2	r1,lr2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1						4.0
8	DECW	DECW	LDE	LDEI	LDX	LDX	LDX	LDX	LDX	LDX						1.2 DI
•	RR1	IRR1	r1,Irr2	lr1,lrr2	r1,ER2	lr1,ER2	IRR2,R1	IRR2,IR1	r1,rr2,X	rr1,r2,X						
	2.2	2.3	2.5	2.9	3.2	3.3	3.4	3.5	3.3	3.5						1.2
9	RL	RL	LDE	LDEI	LDX											EI
	2.5	2.6	23	2.4	3.3	112,EKT	33	3.4	11,12,7	11,112,1						1.4
А	INCW	INCW	ĈP	ĈP	CP	CP	CP	ČP	CPX	CPX						RET
	RR1	IRR1	r1,r2	r1,Ir2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1						
Б	2.2	2.3	2.3	2.4	3.3	3.4	3.3	3.4	4.3	4.3						1.5
в	R1	IR1	r1.r2	r1.lr2	R2.R1	IR2.R1	R1.IM	IR1.IM	ER2.ER1	IM.ER1						INET
	2.2	2.3	2.5	2.9	2.3	2.9	,	3.4	3.2	,						1.2
С	RRC	RRC	LDC	LDCI	JP	LDC		LD	PUSHX							RCF
	R1	IR1	r1,Irr2	lr1,lrr2	IRR1	lr1,lrr2		r1,r2,X	ER2							
П	2.2 SRA	2.3 SRA	2.5	2.9	2.6 CALL	2.2 BSWAP	3.3 CALL	3.4	3.2 POPX							1.2 SCF
U	R1	IR1	r2,Irr1	Ir2,Irr1	IRR1	R1	DA	r2,r1,X	ER1							001
	2.2	2.3	2.2	2.3	3.2	3.3	3.2	3.3	4.2	4.2						1.2
Е	RR	RR	BIT	LD	LD	LD	LD	LD	LDX	LDX						CCF
	R1	IR1	p,b,r1	r1,lr2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1						
F	SWAP	SWAP	TRAP	2.3 LD	MULT	3.3 LD	3.3 BTJ	3.4 BTJ				•	🚽	🚽	🚽	
•	R1	IR1	Vector	lr1 r2	RR1	R2 IR1	n h r1 X	n h lr1 X				V				

Figures 29 and 30 provide information about each of the eZ8 CPU instructions.

Figure 29. First Op Code Map

Upper Nibble (Hex)

195

General Purpose I/O Port Input Data Sample Timing

Figure 33 displays timing of the GPIO port input sampling. The input value on a GPIO port pin is sampled on the rising edge of the system clock. The port value is available to the eZ8 CPU on the second rising clock edge following the change of the port value.

Figure 33. Port Input Sample Timing

Table 124. GPIO Port Input Timing

		Delay (ns)			
Parameter	Abbreviation	Minimum	Maximum		
T _{S_PORT}	Port Input Transition to X _{IN} Rise Setup Time (not pictured)	5	-		
T _{H_PORT}	X _{IN} Rise to Port Input Transition Hold Time (not pictured)	0	-		
T _{SMR}	GPIO port pin pulse width to ensure Stop Mode Recovery (for GPIO port pins enabled as SMR sources)	1µs			

Part Number	Flash	RAM	NVDS	ADC Channels	Description
Z8F0430QH020EG	4KB	256	Yes	7	QFN 20-pin
Z8F0431SH020EG	4KB	256	Yes	0	SOIC 20-pin
Z8F0431HH020EG	4KB	256	Yes	0	SSOP 20-pin
Z8F0431PH020EG	4KB	256	Yes	0	PDIP 20-pin
Z8F0431QH020EG	4KB	256	Yes	0	QFN 20-pin
Z8F0430SJ020EG	4KB	256	Yes	8	SOIC 28-pin
Z8F0430HJ020EG	4KB	256	Yes	8	SSOP 28-pin
Z8F0430PJ020EG	4KB	256	Yes	8	PDIP 28-pin
Z8F0430QJ020EG	4KB	256	Yes	8	QFN 28-pin
Z8F0431SJ020EG	4KB	256	Yes	0	SOIC 28-pin
Z8F0431HJ020EG	4KB	256	Yes	0	SSOP 28-pin
Z8F0431PJ020EG	4KB	256	Yes	0	PDIP 28-pin
Z8F0431QJ020EG	4KB	256	Yes	0	QFN 28-pin
Z8 Encore! F0830 with	a 2KB Flash				
Standard Temperature	e: 0°C to 70°	°C			
Z8F0230SH020SG	2KB	256	Yes	7	SOIC 20-pin
Z8F0230HH020SG	2KB	256	Yes	7	SSOP 20-pin
Z8F0230PH020SG	2KB	256	Yes	7	PDIP 20-pin
Z8F0230QH020SG	2KB	256	Yes	7	QFN 20-pin
Z8F0231SH020SG	2KB	256	Yes	0	SOIC 20-pin
Z8F0231HH020SG	2KB	256	Yes	0	SSOP 20-pin
Z8F0231PH020SG	2KB	256	Yes	0	PDIP 20-pin
Z8F0231QH020SG	2KB	256	Yes	0	QFN 20-pin
Z8F0230SJ020SG	2KB	256	Yes	8	SOIC 28-pin
Z8F0230HJ020SG	2KB	256	Yes	8	SSOP 28-pin
Z8F0230PJ020SG	2KB	256	Yes	8	PDIP 28-pin
Z8F0230QJ020SG	2KB	256	Yes	8	QFN 28-pin
Z8F0231SJ020SG	2KB	256	Yes	0	SOIC 28-pin
Z8F0231HJ020SG	2KB	256	Yes	0	SSOP 28-pin
Z8F0231PJ020SG	2KB	256	Yes	0	PDIP 28-pin
Z8F0231QJ020SG	2KB	256	Yes	0	QFN 28-pin

Table 128. Z8 Encore! XP F0830 Series Ordering Matrix

Hex Address: F71

This address range is reserved.

Hex Address: F72

Table 147. ADC Data High Byte Register (ADCD_H)

Bit	7	6	5	4	3	2	1	0			
Field		ADCDH									
RESET		Х									
R/W		R									
Address				F7	2H						

Bit	Description
[7:0]	ADC High Byte
	00h–FFh = The last conversion output is held in the data registers until the next ADC conver-
	sion is completed.

Hex Address: F73

Table 148. ADC Data Low Bits Register (ADCD_L)

Bit	7	6	5	4	3	2	1	0	
Field	ADO	CDL	Reserved						
RESET)	K		Х					
R/W	F	२	R						
Address			F73H						

Bit Position	Description
[7:6]	ADC Low Bits 00–11b = These bits are the two least significant bits of the 10-bit ADC output. These bits are undefined after a reset. The low bits are latched into this register whenever the ADC Data High Byte Register is read.
[5:0]	Reserved These bits are reserved and must be programmed to 000000.

Low Power Control

For more information about the Power Control Register, see the <u>Power Control Register</u> <u>Definitions</u> section on page 31.

Hex Address: F80

Bit	7	6	5	4	3	2	1	0	
Field	Reserved			VBO	Reserved	Reserved	COMP	Reserved	
RESET	1	0	0	0	1	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address		F80H							

Table 151. Power Control Register 0 (PWRCTL0)

Hex Address: F81

This address range is reserved.

LED Controller

For more information about the LED Drive registers, see the <u>GPIO Control Register Definitions</u> section on page 39.

Hex Address: F82

Bit	7	6	5	4	3	2	1	0	
Field		LEDEN[7:0]							
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address				F8	2H				

Table 152. LED Drive Enable (LEDEN)

Hex Address: FDF

Table 183.	Port D	Output	Data	Reaister	(PDOUT)
			_		(,

Bit	7	6	5	4	3	2	1	0
Field	POUT7	POUT6	POUT5	POUT4	POUT3	POUT2	POUT1	POUT0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				FD	FH			

Hex Addresses: FE0–FEF

This address range is reserved.

Watchdog Timer

For more information about the Watchdog Timer registers, see the <u>Watchdog Timer Con-</u> trol Register Definitions section on page 95.

Hex Address: FF0

The Watchdog Timer Control Register address is shared with the read-only Reset Status Register.

Bit	7	6	5	4	3	2	1	0	
Field		WDTUNLK							
RESET	Х	Х	Х	Х	Х	Х	Х	Х	
R/W	W	w w w w w w w							
Address				FF	ОH				

Table 184	. Watchdog	Timer	Control	Register	(WDTCTL))
-----------	------------	-------	---------	----------	----------	---

Bit	7	6	5	4	3	2	1	0
Field	POR	STOP	WDT	EXT	Reserved			
RESET	See <u>Ta</u>	e <u>Table 12</u> on page 29 0 0			0	0	0	0
R/W	R	R	R	R	R R R F			R
Address	FF0H							

Table 185. Reset Status Register (RSTSTAT)