

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	23
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0430hj020eg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Data Memory

The Z8 Encore! F0830 Series does not use the eZ8 CPU's 64KB data memory address space.

Flash Information Area

Table 7 maps the Z8 Encore! F0830 Series Flash information area. The 128-byte information area is accessed, by setting bit 7 of the Flash Page Select Register to 1. When access is enabled, the Flash information area is mapped into program memory and overlays these 128 bytes at addresses FE00H to FE7FH. When information area access is enabled, all reads from these program memory addresses return information area data rather than program memory data. Access to the Flash information area is read-only.

Program Memory Address (Hex)	Function
FE00–FE3F	Zilog option bits
FE40–FE53	Part Number 20-character ASCII alphanumeric code Left-justified and filled with FH
FE54–FE5F	Reserved
FE60–FE7F	Reserved
FE80–FFFF	Reserved

Table 7. Z8 Encore! F0830 Series Flash Memory Information Area Map

31

HALT Mode

Executing the eZ8 CPU HALT instruction places the device into HALT Mode. In HALT Mode, the operating characteristics are:

- Primary oscillator is enabled and continues to operate
- System clock is enabled and continues to operate
- eZ8 CPU is stopped
- Program counter (PC) stops incrementing
- Watchdog Timer's internal RC oscillator continues to operate
- If enabled, the Watchdog Timer continues to operate
- All other on-chip peripherals continue to operate

The eZ8 CPU can be brought out of HALT Mode by any one of the following operations:

- Interrupt
- Watchdog Timer time-out (interrupt or reset)
- Power-On Reset
- Voltage Brown-Out reset
- External **RESET** pin assertion

To minimize current in HALT Mode, all GPIO pins that are configured as digital inputs must be driven to V_{DD} when pull-up register bit is enabled or to one of power rail (V_{DD} or GND) when pull-up register bit is disabled.

Peripheral Level Power Control

In addition to the STOP and HALT modes, it is possible to disable each peripheral on each of the Z8 Encore! F0830 Series devices. Disabling a given peripheral minimizes its power consumption.

Power Control Register Definitions

Power Control Register 0

Each bit of the following registers disables a peripheral block, either by gating its system clock input or by removing power from the block.

32

Note: This register is only reset during a Power-On Reset sequence. Other system reset events do not affect it.

				-	-	-			
Bit	7	6	5	4	3	2	1	0	
Field		Reserved		VBO	Reserved	Reserved	COMP	Reserved	
RESET	1	0	0	0	1	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address				F8	юн				
Bit	Descriptio	Description							
[7:5]	Reserved These regis	sters are res	erved and n	nust be prog	grammed to	000.			
[4] VBO	Voltage Br This bit take is always d VBO_AO F 0 = VBO er 1 = VBO dia	own-Out de es only effect isabled whe lash option l nabled. sabled.	etector disa et when the ` n the VBO_, bit function,	ble √BO_AO Fl AO Flash op see the <u>Fla</u> e	ash option b otion bit is dis <u>sh Option Bi</u>	it is disabled sabled. To le <u>ts</u> chapter or	In STOP M arn more al n page 124.	Mode, VBO bout the	
[3]	Reserved This bit is re	eserved and	must be pr	ogrammed t	o 1.				
[2]	Reserved This bit is re	eserved and	must be pr	ogrammed t	o 0.				
[1] COMP	Comparato 0 = Compa 1 = Compa	Comparator Disable 0 = Comparator is enabled. 1 = Comparator is disabled.							
[0]	Reserved This bit is re	eserved and	must be pr	ogrammed t	o 0.				

Table 14. Power Control Register 0 (PWRCTL0)

>

Port A–D Output Control Subregisters

The Port A–D Output Control Subregister, shown in Table 23, is accessed through the Port A–D Control Register by writing 03H to the Port A–D Address Register. Setting the bits in the Port A–D Output Control subregisters to 1 configures the specified port pins for opendrain operation. These subregisters affect the pins directly and, as a result, alternate functions are also affected.

Bit	7	6	5	4	3	2	1	0
Field	POC7	POC6	POC5	POC4	POC3	POC2	POC1	POC0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	If 03H ir	n Port A–D A	Address Reg	gister, acces	sible throug	h the Port A	–D Control I	Register

Table 23. Port A–D Output Control Subregisters (PxOC)

Bit Description

[7:0] Port Output Control
 POCx These bits function independently of the Alternate function bit and always disable the drains, if set to 1.
 0 = The drains are enabled for any OUTPUT Mode (unless overridden by the Alternate function).
 1 = The drain of the associated pin is disabled (OPEN-DRAIN mode).

Note: x indicates the specific GPIO port pin number (7–0).

Interrupt Request 2 Register

The Interrupt Request 2 (IRQ2) Register, shown in Table 37, stores interrupt requests for both vectored and polled interrupts. When a request is sent to the Interrupt Controller, the corresponding bit in the IRQ2 Register becomes 1. If interrupts are globally enabled (vectored interrupts), the Interrupt Controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 2 Register to determine if any interrupt requests are pending.

Bit	7	6	5	4	3	2	1	0	
Field		Rese	erved		PC3I	PC2I	PC1I	PC0I	
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address				FC	6H				
Bit	Descriptio	n							
[7:4]	Reserved								
	These regis	sters are res	erved and n	nust be prog	rammed to	0000.			
[3]	Port C Pin	x Interrupt	Request						
PCxI	0 = No inter	= No interrupt request is pending for GPIO Port C pin x.							
	1 = An inter	rupt reques	t from GPIO	Port C pin 2	r is awaiting	service.			
Note: x inc	dicates the sp	ecific GPIO p	ort pin numbe	er (3–0).					

Table 37. Interrupt Request 2 Register (IRQ2)

IRQ0 Enable High and Low Bit Registers

Table 38 lists the priority control values for IRQ0. The IRQ0 Enable High and Low Bit registers, shown in Tables 39 and 40, form a priority-encoded enabling service for interrupts in the Interrupt Request 0 Register. Priority is generated by setting the bits in each register.

IRQ0I	ENH[<i>x</i>]	IRQ0ENL[x]	Priority	Description
	0	0	Disabled	Disabled
	0	1	Level 1	Low
	1	0	Level 2	Nominal
	1	1	Level 3	High
Note:	x indicate	es the register bits in	the range 7–0.	

Table 38. IRQ0 Enable and Priority Encoding

is enabled, the timer output pin changes state (from Low to High or from High to Low) at timer reload.

Observe the following steps for configuring a timer for COUNTER Mode and for initiating the count:

- 1. Write to the Timer Control Register to:
 - Disable the timer
 - Configure the timer for COUNTER Mode
 - Select either the rising edge or falling edge of the timer input signal for the count. This selection also sets the initial logic level (High or Low) for the timer output alternate function. However, the timer output function is not required to be enabled.
- 2. Write to the Timer High and Low Byte registers to set the starting count value. This only affects the first pass in COUNTER Mode. After the first timer reload in COUNTER Mode, counting always begins at the reset value 0001H. In COUNTER Mode, the Timer High and Low Byte registers must be written with the value 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the reload value.
- 4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. Configure the associated GPIO port pin for the timer input alternate function.
- 6. If using the timer output function, configure the associated GPIO port pin for the timer output alternate function.
- 7. Write to the Timer Control Register to enable the timer.

In COUNTER Mode, the number of timer input transitions is calculated with the following equation:

Counter Mode Timer Input Transitions = Current Count Value – Start Value

COMPARATOR COUNTER Mode

In COMPARATOR COUNTER Mode, the timer counts the input transitions from the analog comparator output. The TPOL bit in the Timer Control Register determines whether the count occurs on the rising edge or the falling edge of the comparator output signal. In COMPARATOR COUNTER Mode, the prescaler is disabled.

Timer Reload High and Low Byte Registers

The Timer 0–1 Reload High and Low Byte (TxRH and TxRL) registers, shown in Tables 52 and 53, store a 16-bit reload value, {TRH[7:0], TRL[7:0]}. Values written to the Timer Reload High Byte Register are stored in a temporary holding register. When a write to the Timer Reload Low Byte Register occurs, the temporary holding register value is written to the Timer High Byte Register. This operation allows simultaneous updates of the 16-bit timer reload value. In COMPARE Mode, the Timer Reload High and Low Byte registers store the 16-bit compare value.

Bit	7	6	5	4	3	2	1	0		
Field		TRH								
RESET	1	1	1	1	1	1	1	1		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address				F02H,	F0AH					

Table 52. Timer 0–1 Reload High Byte Register (TxRH)

Table 53. Timer 0–1 Reload Low Byte Register (TxRL)

Bit	7	6	5	4	3	2	1	0		
Field		TRL								
RESET	1	1	1	1	1	1	1	1		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address				F03H,	F0BH					

Bit	Description
[7:0]	Timer Reload Register High and Low
TRH, TRL	These two bytes form the 16-bit reload value, {TRH[7:0], TRL[7:0]}. This value sets the maximum count value, which initiates a timer reload to 0001H. In COMPARE Mode, these two bytes form the 16-bit compare value.

Flash Operation Timing Using the Flash Frequency Registers

Before performing either a Program or Erase operation on Flash memory, the user must first configure the Flash Frequency High and Low Byte registers. The Flash frequency registers allow programming and erasing of the Flash with system clock frequencies ranging from 10kHz to 20MHz.

The Flash Frequency High and Low Byte registers combine to form a 16-bit value, FFREQ, to control the timing for Flash Program and Erase operations. The 16-bit binary Flash frequency value must contain the system clock frequency (in kHz). This value is calculated using the following equation:

 $FFREQ[15:0] = \frac{System Clock Frequency (Hz)}{1000}$

Caution: Flash programming and erasure are not supported for system clock frequencies below 10kHz or above 20MHz. The Flash Frequency High and Low Byte registers must be loaded with the correct value to ensure operation of the Z8 Encore! F0830 Series devices.

Flash Code Protection Against External Access

The user code contained within Flash memory can be protected against external access by using the On-Chip Debugger. Programming the FRP Flash option bit prevents reading of the user code using the On-Chip Debugger. For more information, see the <u>Flash Option</u> <u>Bits</u> chapter on page 124 and the <u>On-Chip Debugger</u> chapter on page 139.

Flash Code Protection Against Accidental Program and Erasure

The Z8 Encore! F0830 Series provides several levels of protection against accidental program and erasure of the Flash memory contents. This protection is provided by a combination of the Flash option bits, the register locking mechanism, the page select redundancy and the sector level protection control of the Flash Controller.

Flash Code Protection Using the Flash Option Bits

The FHSWP and FWP Flash option bits combine to provide three levels of Flash program memory protection, as listed in Table 71. See the <u>Flash Option Bits</u> chapter on page 124 for more information.

Flash Frequency High and Low Byte Registers

The Flash Frequency High and Low Byte registers, shown in Tables 76 and 77, combine to form a 16-bit value, FFREQ, to control timing for Flash program and erase operations. The 16-bit binary Flash frequency value must contain the system clock frequency (in kHz) and is calculated using the following equation:

 $FFREQ[15:0] = \{FFREQH[7:0], FFREQL[7:0]\} = \frac{System Clock Frequency}{1000}$

Caution: Flash programming and erasure is not supported for system clock frequencies below 10kHz or above 20MHz. The Flash Frequency High and Low Byte registers must be loaded with the correct value to ensure proper operation of the device.

Bit	7	6	5	4	3	2	1	0		
Field		FFREQH								
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address				FF	AH					

Table 76. Flas	h Frequency	/ High Byte	Register	(FFREQH)
----------------	-------------	-------------	----------	----------

Bit	Description
[7:0]	Flash Frequency High Byte
FFREQH	High byte of the 16-bit Flash frequency value.

Table 77. Flash Frequency Low Byte Register (FFREQL)

Bit	7	6	5	4	3	2	1	0
Field	FFREQL							
RESET		0						
R/W	R/W							
Address				FF	BH			

Bit	Description
[7:0]	Flash Frequency High Byte
FFREQL	Low byte of the 16-bit Flash frequency value.

Note: The bit values used in Table 85 are set at the factory; no calibration is required.

Table 86. Trim Option Bits at 0002H (TIPO)

Bit	7	6	5	4	3	2	1	0	
Field	IPO_TRIM								
RESET		U							
R/W		R/W							
Address	Information Page Memory 0022H								
Note: U = Unchanged by Reset. R/W = Read/Write.									

Bit	Description
[7:0]	Internal Precision Oscillator Trim Byte
IPO_TRIM	Contains trimming bits for the Internal Precision Oscillator.

Note: The bit values used in Table 86 are set at the factory; no calibration is required.

Table 87. Trim Option Bits at 0003H (TVBO)

Bit	7	6	5	4	3	2	1	0	
Field	Reserved				Reserved	VBO_TRIM			
RESET	U				U	1	0	0	
R/W	R/W				R/W	R/W			
Address	Information Page Memory 0023H								
Note: U = Unchanged by Reset. R/W = Read/Write.									

Bit	Description
[7:3]	Reserved These bits are reserved and must be programmed to 11111.
[2] VBO_TRIM	VBO Trim Values Contains factory-trimmed values for the oscillator and the VBO.

>

Byte Read

To read a byte from the NVDS array, user code must first push the address onto the stack. User code issues a CALL instruction to the address of the byte-read routine (0×2000). At the return from the subroutine, the read byte resides in working register R0 and the read status byte resides in working register R1. The bit fields of this status byte are defined in Table 92. Additionally, the user code should pop the address byte off the stack.

The read routine uses 16 bytes of stack space in addition to the one byte of address pushed by the user code. Sufficient memory must be available for this stack usage.

Due to the Flash memory architecture, NVDS reads exhibit a nonuniform execution time. A read operation takes between $71 \mu s$ and $258 \mu s$ (assuming a 20MHz system clock). Slower system clock speeds result in proportionally higher execution times.

NVDS byte reads from invalid addresses (those exceeding the NVDS array size) return $0 \times ff$. Illegal read operations have a $6 \mu s$ execution time.

The status byte returned by the NVDS read routine is zero for a successful read. If the status byte is nonzero, there is a corrupted value in the NVDS array at the location being read. In this case, the value returned in R0 is the byte most recently written to the array that does not have an error.

Bit	7	6	5	4	3	2	1	0	
Field		Reserved		DE	Reserved	FE	IGADDR	Reserved	
Default Value	0	0	0	0	0	0	0	0	
Bit	Description								
[7:5]	Reserved These bits	are reserved	l and must b	e programn	ned to 000.				
[4] DE	Data Error When reading an NVDS address, if an error is found in the latest data corresponding to this NVDS address, this bit is set to 1. NVDS source code steps forward until it finds valid data at this address.								
[3]	Reserved This bit is re	eserved and	must be pro	ogrammed t	o 0.				
[2] FE	Flash Error If a Flash error is detected, this bit is set to 1.								
[1] IGADDR	Illegal Address When NVDS byte reads from invalid addresses (those exceeding the NVDS array size) occur, this bit is set to 1.								
[0]	Reserved This bit is re	eserved and	must be pro	ogrammed t	o 0.				

Table 92. Read Status Byte

ister, the user code must wait at least 5000 IPO cycles for the crystal to stabilize. After this period, the crystal oscillator may be selected as the system clock.

Figure 25 displays a recommended configuration for connection with an external fundamental-mode, parallel-resonant crystal operating at 20MHz. Recommended 20MHz crystal specifications are provided in Table 100. Resistor R₁ is optional and limits total power dissipation by the crystal. Printed circuit board layout must add no more than 4pF of stray capacitance to either the X_{IN} or X_{OUT} pins. If oscillation does not occur, reduce the values of capacitors C₁ and C₂ to decrease loading.

Figure 25. Recommended 20MHz Crystal Oscillator Configuration

Parameter	Value	Units	Comments
Frequency	20	MHz	
Resonance	Parallel		
Mode	Fundamental		
Series Resistance (R _S)	60	Ω	Maximum
Load Capacitance (CL)	30	pF	Maximum
Shunt Capacitance (C ₀)	7	pF	Maximum
Drive Level	1	mW	Maximum

Table 100. Recommended Crystal Oscillator Specifications

eZ8 CPU Instruction Set

This chapter describes the following features of the eZ8 CPU instruction set: <u>Assembly Language Programming Introduction</u>: see page 162 <u>Assembly Language Syntax</u>: see page 163 <u>eZ8 CPU Instruction Notation</u>: see page 164 <u>eZ8 CPU Instruction Classes</u>: see page 166 <u>eZ8 CPU Instruction Summary</u>: see page 171

Assembly Language Programming Introduction

The eZ8 CPU assembly language provides a means for writing an application program without concern for actual memory addresses or machine instruction formats. A program written in assembly language is called a source program. Assembly language allows the use of symbolic addresses to identify memory locations. It also allows mnemonic codes (op codes and operands) to represent the instructions themselves. The op codes identify the instruction while the operands represent memory locations, registers or immediate data values.

Each assembly language program consists of a series of symbolic commands called statements. Each statement contains labels, operations, operands and comments.

Labels can be assigned to a particular instruction step in a source program. The label identifies that step in the program as an entry point for use by other instructions.

The assembly language also includes assembler directives that supplement the machine instruction. The assembler directives, or pseudo-ops, are not translated into a machine instruction. Rather, these pseudo-ops are interpreted as directives that control or assist the assembly process.

The source program is processed (assembled) by the assembler to obtain a machine language program called the object code. The object code is executed by the eZ8 CPU. An example segment of an assembly language program is provided in the following example.

Table 105. Arithmetic Instructions (Continued)

Mnemonic	Operands	Instruction
INCW	dst	Increment Word
MULT	dst	Multiply
SBC	dst, src	Subtract with Carry
SBCX	dst, src	Subtract with Carry using Extended Addressing
SUB	dst, src	Subtract
SUBX	dst, src	Subtract using Extended Addressing

Table 106. Bit Manipulation Instructions

Mnemonic	Operands	Instruction
BCLR	bit, dst	Bit Clear
BIT	p, bit, dst	Bit Set or Clear
BSET	bit, dst	Bit Set
BSWAP	dst	Bit Swap
CCF	—	Complement Carry Flag
RCF	—	Reset Carry Flag
SCF	—	Set Carry Flag
ТСМ	dst, src	Test Complement Under Mask
TCMX	dst, src	Test Complement Under Mask using Extended Addressing
ТМ	dst, src	Test Under Mask
ТМХ	dst, src	Test Under Mask using Extended Addressing

Table 107. Block Transfer Instructions

Mnemonic	Operands	Instruction
LDCI	dst, src	Load Constant to/from Program Memory and Auto- Increment Addresses
LDEI	dst, src	Load External Data to/from Data Memory and Auto- Increment Addresses

Electrical Characteristics

The data in this chapter represents all known data prior to qualification and characterization of the F0830 Series of products, and is therefore subject to change. Additional electrical characteristics may be found in the individual chapters of this document.

Absolute Maximum Ratings

Stresses greater than those listed in Table 115 may cause permanent damage to the device. These ratings are stress ratings only. Operation of the device at any condition outside those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For improved reliability, tie unused inputs to one of the supply voltages (V_{DD} or V_{SS}).

Parameter	Minimum	Maximum	Units	Notes
Ambient temperature under bias	0	+105	°C	
Storage temperature	-65	+150	°C	
Voltage on any pin with respect to V _{SS}	-0.3	+5.5	V	
Voltage on V_{DD} pin with respect to V_{SS}	-0.3	+3.6	V	
Maximum current on input and/or inactive output pin	-5	+5	μA	
Maximum output current from active output pin	-25	+25	mA	
20-pin Packages Maximum Ratings at 0°C to 70°C				
Total power dissipation		430	mW	
Maximum current into V _{DD} or out of V _{SS}		120	mA	
28-pin Packages Maximum Ratings at 0°C to 70°C				
Total power dissipation		450	mW	
Maximum current into V _{DD} or out of V _{SS}		125	mA	

Table 115. Absolute Maximum Ratings

AC Characteristics

The section provides information about the AC characteristics and timing. All AC timing information assumes a standard load of 50pF on all outputs.

		V _{DD} = 2.7 to 3.6V T _A = 0°C to +70°C		$V_{DD} = 2.7 \text{ to } 3.6 \text{ V}$ $T_A = -40^{\circ}\text{C to}$ +105°C				
Symbol	Parameter	Min	Max	Min	Max	Units	Conditions	
F _{SYSCLK}	System Clock Fre- quency			-	20.0	MHz	Read-only from Flash memory	
				0.03276 8	20.0	MHz	Program or erasure of the Flash memory	
F _{XTAL}	Crystal Oscillator Frequency			1.0	20.0	MHz	System clock frequen- cies below the crystal oscillator minimum require an external	
F _{IPO}	Internal Precision Oscillator Frequency			0.03276 8	5.5296	MHz	Oscillator is not adjust- able over the entire range. User may select Min or Max value only.	
F _{IPO}	Internal Precision Oscillator Frequency			5.31	5.75	MHz	High speed with trim- ming	
F _{IPO}	Internal Precision Oscillator Frequency			4.15	6.91	MHz	High speed without trimming	
F _{IPO}	Internal Precision Oscillator Frequency			30.7	33.3	KHz	Low speed with trim- ming	
F _{IPO}	Internal Precision Oscillator Frequency			24	40	KHz	Low speed without trimming	
T _{XIN}	System Clock Period			50	-	ns	T _{CLK} = 1/F _{syscik}	
T _{XINH}	System Clock High Time			20	30	ns	T _{CLK} = 50 ns	
T _{XINL}	System Clock Low Time			20	30	ns	T _{CLK} = 50 ns	

Table 117. AC Characteristics

General Purpose I/O Port Output Timing

Figure 34 and Table 125 provide timing information for the GPIO port pins.

Figure 34	. GPIO	Port	Output	Timing
-----------	--------	------	--------	--------

		Delay (ns)		
Parameter	Abbreviation	Minimum	Maximum	
GPIO Port I	Pins			
T ₁	XIN Rise to Port Output Valid Delay	_	15	
T ₂	XIN Rise to Port Output Hold Time	2	-	

Table 125. GPIO Port Output Timing

Hex Addresses: F87–F8F

This address range is reserved.

Comparator 0

For more information about the Comparator Register, see the <u>Comparator Control Register Definitions</u> section on page 107.

Hex Address: F90

Bit	7	6	5	4	3	2	1	0		
Field	Reserved	INNSEL		REF	Rese	erved				
RESET	0	0	0	1	0	1	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address		F90H								

Table 156. Comparator Control Register (CMP0)

Hex Addresses: F91–FBF

This address range is reserved.

Interrupt Controller

For more information about the Interrupt Control registers, see the <u>Interrupt Control Reg-</u> <u>ister Definitions</u> section on page 57.

Hex Address: FC0

Bit	7	6	5	4	3	2	1	0
Field	Reserved	T1I	TOI	Reserved	Reserved	Reserved	Reserved	ADCI
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				FC	0H			

Table 157. Interrupt Request 0 Register (IRQ0)

GPIO Port A

For more information about the GPIO registers, see the <u>GPIO Control Register Definitions</u> section on page 39.

Hex Address: FD0

Table 169. Port A GPIO Address Register (PAADDR)

Bit	7	6	5	4	3	2	1	0			
Field	PADDR[7:0]										
RESET		00H									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Address		FD0H									

Hex Address: FD1

Table 170. Port A Control Registers (PACTL)

Bit	7	6	5	4	3	2	1	0			
Field	PCTL										
RESET		00H									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Address				FD	1H						

Hex Address: FD2

Table 171. Port A Input Data Registers (PAIN)

Bit	7	6	5	4	3	2	1	0
Field	PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	R	R	R	R	R	R	R	R
Address				FD	2H			

Hex Address: FFB

Table 196. Flash Frequency Low Byte Register (FFREQL)

Bit	7	6	5	4	3	2	1	0			
Field	FFREQL										
RESET		0									
R/W		R/W									
Address				FF	BH						