

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	17
Program Memory Size	4KB (4K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0430ph020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Priority	Program Memory Vector Address	Interrupt or Trap Source
Highest	0002H	Reset (not an interrupt)
	0004H	Watchdog Timer (see Watchdog Timer chapter)
	003AH	Primary oscillator fail trap (not an interrupt)
	003CH	Watchdog Oscillator fail trap (not an interrupt)
	0006H	Illegal instruction trap (not an interrupt)
	0008H	Reserved
	000AH	Timer 1
	000CH	Timer 0
	000EH	Reserved
	0010H	Reserved
	0012H	Reserved
	0014H	Reserved
	0016H	ADC
	0018H	Port A7, selectable rising or falling input edge
	001AH	Port A6, selectable rising or falling input edge or Comparator Output
	001CH	Port A5, selectable rising or falling input edge
	001EH	Port A4, selectable rising or falling input edge
	0020H	Port A3, selectable rising or falling input edge
	0022H	Port A2, selectable rising or falling input edge
	0024H	Port A1, selectable rising or falling input edge
	0026H	Port A0, selectable rising or falling input edge
	0028H	Reserved
	002AH	Reserved
	002CH	Reserved
	002EH	Reserved
	0030H	Port C3, both input edges
	0032H	Port C2, both input edges
	0034H	Port C1, both input edges
	0036H	Port C0, both input edges
_owest	0038H	Reserved

Table 34. Trap and Interrupt Vectors in Order of Priority

Port A D High Drive Enable Subregisters

The Port A D High Drive Enable Subregisters in Table 24, is accessed through the Port A D Control Register by writing to the Port A D Address Register. Setting the bits in the Port A D High Drivable subregisters to ignores the specified port pins for high-output current drive operation. The Port A D High Drive Enable Subregister affects the pins directly and, alt antes at functions are also affected.

						/- · · >
Table 21	Dort A	D Hiah	Driva	Fnahlo	Subregisters	(DVHDF)
	IUILA	DINGI	DIIVE	LIIUDIC	JUDIEQISIEIS	

Bit	7	6	5	4	3	2	1	0		
Field	PHDE7	PHDE6	PHDE5	PHDE4	PHDE3	PHDE2	PHDE1	PHDEO		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address	s If O4H in Port A D Address Register, accides through the PoAtD Control Register									
Bit	Description									

[7:0] Port High Drive Enable

PHDEx 0 = The port pin is configured **\$b** and ard output current drive.

1 = The port pin is configurfood high output current drive.

Note: x indicates the specific GPIO port pin number (7 0).

Port A D Stop Mode RecoverySource Enable Subregisters

The Port A D Stop Mode Recovery Sound the Bound the Port A D Address accessed through the Port And Register by writing to the Port A D Address Register. Setting the bits in the Port AND Stop Recovery Source Enable subregisters to 1 configures the specified port pins as a Stop Mode Recovery source. During STOP Mode, any logic transition on a port pind as able top Mode Recovery source initiates a Stop Mode Recovery event.

 Table 25. Port A D Stop Mode Recovery Source Enable Subregisters (PxSMRE)

Bit	7	6	5	4	3	2	1	0		
Field	PSMRE7	PSMRE6	PSMRE5	PSMRE4	PSMRE3	PSMRE2	PSMRE1	PSMREO		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address	If 05H in Port A D Address Register, accides through the PoAtD Control Register									

Bit Description

[7:0] Port Stop Mode Recovery Source Enable

PSMREx O = The port pin is not configured as a Stop Mode Recovery source. Transitions on this pin during STOP Mode do not initiate Stop Mode Recovery.

1 = The port pin is configured as a Stop Mode Recovery source. Any logic transition on this pin during STOP Mode initiates Stop Mode Recovery.

Note: x indicates the specific GPIO port pin number (7 0).

LDX r0, IRQ0 AND r0, MASK LDX IRQ0, r0

To avoid missing interrupts, use the codiing Extay hple 2 to clear bits in the Interrupt Request O Register:

Example 2. A good coding style thotavlost interrupt requests:

ANDX IRQ0, MASK

Software Interrupt Assertion

Program code can generate interrupts Wainition by 1 to the correct bit in the interrupt request register triggers an interrupt (absolution the grupt is enabled). When the interrupt request is acknowledged by the elige CCPU in the interrupt request register is automatically cleared to O.

Caution: Zilog recommends not using a coding geglerable software interrupts by setting bits in the Interrupt Request registers. All in give terrupts received between execution of the first LDX command and the final LDX and are lost. See Example 3, which follows.

Example 3. A poor coding style that sault rie lost interrupt requests:

LDX r0, IRQ0 OR r0, MASK LDX IRQ0, r0

To avoid missing interrupts, use the coding style in Example 4 to set bits in the Interru Request registers:

Example 4. A good coding style thotdsvlost interrupt requests:

ORX IRQ0, MASK

Interrupt Control Register Definitions

The Interrupt Control registers enable under the interrupts, set interrupt priorities and indicate interrupt requests of the interrupts other than the Watchdog Timer interrupt, the primary oscillatort faip and the Watchdog lass fail trap interrupts.

Assembly		Addr Mc		Op Code(s)			F	laç	gs			_ Fetch	Instr.
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	5	V	D	Н		Cycles
AND dst, src	ds∉ dst AND src	r	r	52			*	;	*	0		2	3
		r	lr	53	_							2	4
		R	R	54	_							3	3
		R	IR	55	_							3	4
		R	IM	56	_							3	3
		IR	IM	57	_							3	4
ANDX dst, src	: dsŧ– dst AND src	ER	ER	58			*	*	(C		4	3
		ER	IM	59	_							4	3
ATM	Block all interrupt and DMA requests during execution of the next instructions			2F								1	2
BCLR bit, dst	dst[b it] 0	r		E2		*		*	C)		2	2
BIT p, bit, dst	dst[b it]p	r		E2		*		*	0			2	2
BRK	Debugger Break			00								1	1
BSET bit, dst	dst[bi t] 1	r		E2		*	1	*	0			2	2
BSWAP dst	dst[7:0] dst[0:7]	R		D5	Х	*		*	0)		2	2
	, if src[bit] = p		r	F6								3	3
dst	PC← PC + X		lr	F7	_							3	4
	, if src[bit] = 1		r	F6								3	3
dst	PC← PC + X		lr	F7	_							3	4
	if src[bit] = 0		r	F6								3	3
dst	PC← PC + X		lr	F7	_							3	4
CALL dst	SP← SP 2	IRR		D4								2	6
	@SP ← PC PC ← dst	DA		D6								3	3
CCF	$C \leftarrow \sim C$			EF	*						-	1	2

Table 113. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

= Unaffected.

X = Undefined.

O = Reset to O.

1 = Set to 1.

172

Z8 Encore!^{fi} F0830 Series Product Specification

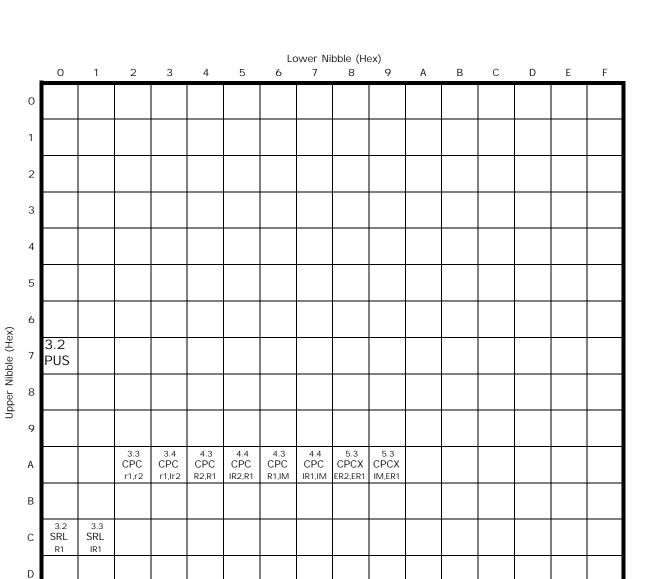


Figure 30. Second Op Code Map after 1FH

5, 4 LDWX

ER2,ER1

Е

F

Hex Address: F09

Table 139. Timer 1 Low Byte Register (T1L)

Bit	7	6	5	4	3	2	1	0
Field				Т	L			
RESET	0	0	0	0	0	0	0	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				FO	9H			

Hex Address: FOA

Table 140. Timer 1 Reload High Byte Register (T1RH)

Bit	7	6	5	4	3	2	1	0			
Field		TRH									
RESET	1	1	1	1	1	1	1	1			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Address		FOAH									

Hex Address: FOB

Table 141. Timer 1 Reload Low Byte Register (T1RL)

Bit	7	6	5	4	3	2	1	0			
Field		TRL									
RESET	1	1	1	1	1	1	1	1			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Address		FOBH									

Hex Address: FOC

Table 142. Timer 1 PWM High Byte Register (T1PWMH)

Bit	7	6	5	4	3	2	1	0
Field				PW	ΜH			
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				FO	СН			