E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	17
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VQFN Exposed Pad
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0430qh020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

iii

Revision History

Each instance in this document's revision history reflects a change from its previous edition. For more details, refer to the corresponding page(s) or appropriate links furnished in the table below.

Data	Revision	Chantor/Soction	Description	Page
Dale	Level	Chapter/Section	Description	NO.
Dec 2012	13	GPIO	Modified GPIO Port D0 language in Shared Reset Pin section and Port Alternate Func- tion Mapping table.	<u>35, 36</u>
Sep 2011	12	LED Drive Enable Register	Clarified statement surrounding the Alternate Function Register as it relates to the LED function; revised Sector Based Flash Protec- tion description; revised Packaging chapter.	<u>51,</u> <u>115,</u> <u>199</u>
Dec 2007	11	n/a	Updated all instances of <i>Z8 Encore! XP</i> <i>F0830</i> to <i>Z8 Encore! F0830</i> .	All
Nov 2007	10	DC Characteristics, On-Chip Peripheral AC and DC Electri- cal Characteristics	Updated Tables 116 and and 122.	<u>185,</u> 193
Sep 2007	09	Timers, PWM SINGLE OUT- PUT Mode, PWM DUAL OUT- PUT Mode, Analog-to-Digital Converter, Reference Buffer.	Updated Figures 2 and 4, Table 4.	<u>8, 9,</u> <u>11, 68,</u> <u>74, 75,</u> <u>98,</u> <u>101</u>
Apr 2007	08	Optimizing NVDS Memory Usage for Execution Speed, On-Chip Peripheral AC and DC Electrical Characteristics	Added a note under Table 93 in Nonvolatile Data Storage chapter. Updated Table 121 and Table 122 in Electrical Characteristics chapter. Other style updates.	<u>137,</u> <u>193,</u> <u>193</u>
Dec	07	General Purpose Input/Output	Added PD0 in Table 16.	<u>38</u>
2006		Overview, Interrupt Controller	Changed the number of interrupts to 17.	<u>1,5, 53</u>
		Nonvolatile Data Storage	Updated chapter.	<u>136</u>
		Oscillator Control Register Defi- nitions, AC Characteristics, On- Chip Peripheral AC and DC Electrical Characteristics	Updated Tables 117 and 122. Added Figure 24.	<u>156,</u> <u>189,</u> <u>193</u>
		Ordering Information	Updated Part Number Suffix Designations.	<u>205</u>
		n/a	Removed Preliminary stamp from footer.	All

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No.
Analog-to-Digita	l Converter (ADC, cont'd)			
F73	ADC data low bits	ADCD_L	XX	103
F74	ADC sample settling time	ADCSST	0F	104
F75	ADC sample time	ADCST	3F	105
F76	Reserved	_	XX	
F77–F7F	Reserved	_	XX	
Low Power Cont	rol			
F80	Power control 0	PWRCTL0	88	32
F81	Reserved	_	XX	
LED Controller				
F82	LED drive enable	LEDEN	00	51
F83	LED drive level high	LEDLVLH	00	51
F84	LED drive level low	LEDLVLL	00	52
F85	Reserved	_	XX	
Oscillator Contro	ol			
F86	Oscillator control	OSCCTL	A0	154
F87–F8F	Reserved	—	XX	
Comparator 0				
F90	Comparator 0 control	CMP0	14	107
F91–FBF	Reserved	_	XX	
Interrupt Contro	ller			
FC0	Interrupt request 0	IRQ0	00	58
FC1	IRQ0 enable high bit	IRQ0ENH	00	61
FC2	IRQ0 enable low Bit	IRQ0ENL	00	61
FC3	Interrupt request 1	IRQ1	00	59
FC4	IRQ1 enable high bit	IRQ1ENH	00	62
FC5	IRQ1 enable low bit	IRQ1ENL	00	63
FC6	Interrupt request 2	IRQ2	00	60
FC7	IRQ2 enable high bit	IRQ2ENH	00	64
FC8	IRQ2 enable low bit	IRQ2ENL	00	64
FC9–FCC	Reserved		XX	
FCD	Interrupt edge select	IRQES	00	66

Table 8. Register File Address Map (Continued)

Note: XX = Undefined.

Reset Sources

Table 10 lists the possible sources of a system reset.

Table 10. Reset Sources and Resulting Reset Type	Table 10	. Reset Sources	and Resulting	Reset Type
--	----------	-----------------	---------------	------------

Operating Mode	Reset Source	Special Conditions	
NORMAL or HALT modes	Power-On Reset/Voltage Brown-Out	Reset delay begins after supply voltage exceeds POR level.	
	Watchdog Timer time-out when con- figured for reset	None.	
	RESET pin assertion	All reset pulses less than four system clocks in width are ignored.	
	On-Chip Debugger initiated reset (OCDCTL[0] set to 1)	System, except the On-Chip Debugger is unaffected by the reset.	
STOP Mode	Power-On Reset/Voltage Brown-Out	Reset delay begins after supply voltage exceeds POR level.	
	RESET pin assertion	All reset pulses less than 12 ns are ignored.	
	DBG pin driven Low	None.	

Power-On Reset

Each device in the Z8 Encore! F0830 Series contains an internal Power-On Reset circuit. The POR circuit monitors the digital supply voltage and holds the device in the Reset state until the digital supply voltage reaches a safe operating level. After the supply voltage exceeds the POR voltage threshold (V_{POR}), the device is held in the Reset state until the POR counter has timed out. If the crystal oscillator is enabled by the option bits, the time-out is longer.

After the Z8 Encore! F0830 Series device exits the Power-On Reset state, the eZ8 CPU fetches the reset vector. Following the Power-On Reset, the POR status bit in the Reset Status (RSTSTAT) Register is set to 1.

Figure 6 displays the Power-On Reset operation. See the <u>Electrical Characteristics</u> chapter on page 184 for the POR threshold voltage (V_{POR}).

29

Table 12. Reset Status Register (RSTSTA	.T)
---	------------

Bit	7	6	5	4	3	2	1	0	
Field	POR	STOP	WDT	EXT		Reserved			
RESET	5	See Table 13	3	0	0	0	0	0	
R/W	R	R	R	R	R	R	R	R	
Address				FF	0H				
Bit	Description	n							
[7] POR	Power-On This bit is se Mode Reco	Reset Indic et to 1 if a Po very occurs	ator ower-On Rea . Reading th	set event oc iis register a	curs and is r Iso reset this	eset to 0, if a s bit to 0.	a WDT time-	out or Stop	
[6] STOP	Stop Mode This bit is so the Stop Mo bit is 0, the On Reset o resets this b	e Recovery et to 1 if a St ode Recover Stop Mode F r a WDT tim pit.	Indicator op Mode Re y occurs be Recovery is e-out that of	ecovery occu cause of a V not caused I ccurred while	urs. If the ST VDT time-ou by a WDT tir e not in STO	OP and WD t. If the STC ne-out. This P Mode. Re	T bits are bo P bit is 1 an bit is reset b ading this re	oth set to 1, d the WDT by a Power- egister also	
[5] WDT	Watchdog This bit is s Recovery fr This read m	Timer Time et to 1 if a W om a chang nust occur b	-Out Indica /DT time-ou e in an input efore clearin	i tor t occurs. A I t pin also res ig the WDT	Power-On R sets this bit. I interrupt.	eset resets Reading this	this pin. A Si register res	top Mode ets this bit.	
[4] EXT	External Re If this bit is a a Stop Mod resets this b	eset Indicat set to 1, a re e Recovery pit.	t or set initiated from a char	by the exter ige in an inp	nal RESET ut pin resets	pin occurred this bit. Re	l. A Power-C ading this re	n Reset or gister	
[3:0]	Reserved These regis	sters are res	erved and n	nust be prog	rammed to (0000.			

Table 13. POR Indicator Values

Reset or Stop Mode Recovery Event	POR	STOP	WDT	EXT
Power-On Reset	1	0	0	0
Reset using RESET pin assertion	0	0	0	1
Reset using Watchdog Timer time-out	0	0	1	0
Reset using the On-Chip Debugger (OCTCTL[1] set to 1)	1	0	0	0
Reset from STOP Mode using DBG pin driven Low	1	0	0	0
Stop Mode Recovery using GPIO pin transition	0	1	0	0
Stop Mode Recovery using WDT time-out	0	1	1	0

General Purpose Input/Output

The Z8 Encore! F0830 Series products support a maximum of 25 port pins (Ports A–D) for General Purpose Input/Output (GPIO) operations. Each port contains control and data registers. The GPIO control registers determine data direction, open-drain, output drive current, programmable pull-ups, Stop Mode Recovery functionality and alternate pin functions. Each port pin is individually programmable. In addition, the Port C pins are capable of direct LED drive at programmable drive strengths.

GPIO Port Availability by Device

Table 15 lists the port pins available with each device and package type.

Devices	Package	10-Bit ADC	Port A	Port B	Port C	Port D	Total I/O
Z8F1232, Z8F0830, Z8F0430, Z8F0230, Z8F0130	20-pin	Yes	[7:0]	[3:0]	[3:0]	[0]	17
Z8F1233, Z8F0831 Z8F0431, Z8F0231 Z8F0131	20-pin	No	[7:0]	[3:0]	[3:0]	[0]	17
Z8F1232, Z8F0830, Z8F0430, Z8F0230, Z8F0130	28-pin	Yes	[7:0]	[5:0]	[7:0]	[0]	23
Z8F1233, Z8F0831 Z8F0431, Z8F0231 Z8F0131	28-pin	No	[7:0]	[7:0]	[7:0]	[0]	25
Note: 20-pin and 28-pin	and 10-bit ADC	Enabled or	r Disabled ca	n be selected	via the optio	n bits.	

Table 15. Port Availability by Device and Package Type

PA0 and PA6 contain two different Timer functions, a timer input and a complementary timer output. Both of these functions require the same GPIO configuration, the selection between the two is based on the TIMER mode. For more details, see the <u>Timers</u> chapter on page 68.

Direct LED Drive

The Port C pins provide a sinked current output, capable of driving an LED without requiring an external resistor. The output sinks current at programmable levels, 3mA, 7mA, 13mA and 20mA. This mode is enabled through the LED Control registers.

For proper function, the LED anode must be connected to $V_{\rm DD}$ and the cathode to the GPIO pin.

Using all Port C pins in LED drive mode with maximum current may result in excessive total current. See the <u>Electrical Characteristics</u> chapter on page 184 for the maximum total current for the applicable package.

Shared Reset Pin

On the 20- and 28-pin devices, the Port D0 pin shares function with a bidirectional reset pin. Unlike all other I/O pins, this pin does not default to GPIO function on power-up. This pin acts as a bidirectional input/output open-drain reset with an internal pull-up until the user software reconfigures it as a GPIO PD0. When in GPIO mode, the Port D0 pin functions as output only, and must be configured as an output. PD0 supports the high drive feature, but not the stop-mode recovery feature.

Crystal Oscillator Override

For systems using a crystal oscillator, the pins PA0 and PA1 are connected to the crystal. When the crystal oscillator is enabled, the GPIO settings are overridden and PA0 and PA1 are disabled. See the <u>Oscillator Control Register Definitions</u> section on page 154.

5V Tolerance

In the 20- and 28-pin versions of this device, any pin, which shares functionality with an ADC, crystal or comparator port is not 5V-tolerant, including PA[1:0], PB[5:0] and PC[2:0]. All other signal pins are 5V-tolerant and can safely handle inputs higher than V_{DD} even with the pull-ups enabled, but with excess power consumption on pull-up resistor.

Port A–D Address Registers

The Port A–D Address registers select the GPIO port functionality accessible through the Port A–D Control registers. The Port A–D Address and Control registers combine to provide access to all GPIO port controls; see Tables 18 and 19.

Bit	7	6	5	4	3	2	1	0
Field				PADD	R[7:0]			
RESET				00)H			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address			FI	D0H, FD4H,	FD8H, FDC	H		

Table 18. Port A–D GPIO Address Registers (PxADDR)

Bit	Description
[7:0]	Port Address
PADDR	The port address selects one of the subregisters accessible through the Port Control Register.

Table 19. Port Control Subregister Access

PADDR[7:0]	Port Control Subregister accessible using the Port A–D Control registers
00H	No function. Provides some protection against accidental port reconfiguration.
01H	Data Direction
02H	Alternate Function
03H	Output Control (open-drain)
04H	High Drive Enable
05H	Stop Mode Recovery Source Enable
06H	Pull-Up Enable
07H	Alternate Function Set 1
08H	Alternate Function Set 2
09H–FFH	No function

Port A–D Alternate Function Set 2 Subregisters

The Port A–D Alternate Function Set 2 Subregister, shown in Table 28, is accessed through the Port A–D Control Register by writing 08H to the Port A–D Address Register. The Alternate Function Set 2 subregisters select the alternate function available at a port pin. Alternate functions selected by setting or clearing bits in this register are defined in Table 16 in the <u>GPIO Alternate Functions</u> section on page 34.

Note: Alternate function selection on the port pins must also be enabled, as described in the <u>Port</u> <u>A–D Alternate Function Subregisters</u> section on page 42.

Bit	7	6	5	4	3	2	1	0			
Field	PAFS27	PAFS26	PAFS25	PAFS24	PAFS23	PAFS22	PAFS21	PAFS20			
RESET	0	0	0	0	0	0	0	0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Address	If 08H ir	If 08H in Port A–D Address Register, accessible through the Port A–D Control Register									

Table 28. Port A–D Alternate Function Set 2 Subregisters (PxAFS2)

Bit Description

[7:0] Port Alternate Function Set 2

PAFS2x 0 = The Port Alternate function is selected, as defined in Table 16 in the <u>GPIO Alternate Func-</u> tions section on page 34.

> 1 = The Port Alternate function is selected, as defined in Table 16 in the <u>GPIO Alternate Func-</u> tions section on page 34.

Note: x indicates the specific GPIO port pin number (7–0).

PWM Output High Time Ratio (%) = $\frac{\text{Reload Value} - \text{PWM Value}}{\text{Reload Value}} \times 100$

If TPOL is set to 1, the ratio of the PWM output high time to the total period is represented by:

PWM Output High Time Ratio (%) =
$$\frac{PWM \text{ Value}}{\text{Reload Value}} \times 100$$

CAPTURE Mode

In CAPTURE Mode, the current timer count value is recorded when the appropriate external timer input transition occurs. The capture count value is written to the timer PWM High and Low Byte registers. The timer input is the system clock. The TPOL bit in the Timer Control Register determines if the capture occurs on a rising edge or a falling edge of the timer input signal.

When the capture event occurs, an interrupt is generated and the timer continues counting. The INPCAP bit in the TxCTL1 Register is set to indicate the timer interrupt because of an input capture event.

The timer continues counting up to the 16-bit reload value stored in the Timer Reload High and Low Byte registers. Upon reaching the reload value, the timer generates an interrupt and continues counting. The INPCAP bit in the TxCTL1 Register clears, indicating that the timer interrupt has not occurred because of an input capture event.

Observe the following steps for configuring a timer for CAPTURE Mode and initiating the count:

- 1. Write to the Timer Control Register to:
 - Disable the timer
 - Configure the timer for CAPTURE Mode
 - Set the prescale value
 - Set the capture edge (rising or falling) for the timer input
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H).
- 3. Write to the Timer Reload High and Low Byte registers to set the reload value.
- 4. Clear the timer PWM High and Low Byte registers to 0000H. Clearing these registers allows user software to determine if interrupts were generated either by a capture event or by a reload. If the PWM High and Low Byte registers still contain 0000H after the interrupt, the interrupt were generated by a reload.

Sample Time Register

The Sample Time Register, shown in Table 67, is used to program the length of active time for a sample after a conversion has begun by setting the START bit in the ADC Control Register. The number of system clock cycles required for the sample time varies from system to system, depending on the clock period used. The system designer should program this register to contain the number of system clocks required to meet a $1 \mu s$ minimum sample time.

Bit	7	6	5	4	3	2	1	0			
Field	Reserved		ST								
RESET	0		1	1	1	1	1	1			
R/W	R/	W	R/W								
Address	F75H										

Table 67.	Sample	Time	(ADCST)
-----------	--------	------	---------

Bit	Description
[7:6]	Reserved These bits are reserved and must be programmed to 00.
[5:0] ST	0h–Fh = Sample-hold time in number of system clock periods to meet 1 μ s minimum.

Z8 Encore![®] F0830 Series Product Specification

113

Figure 19. Flash Controller Operation Flow Chart

FHSWP	FWP	Flash Code Protection Description
0	0	Programming and erasing disabled for all Flash program memory. In user code pro- gramming, page erase and mass erase are all disabled. Mass erase is available through the On-Chip Debugger.
0 or 1	1	Programming, page erase and mass erase are enabled for all of the Flash program memory.

Table 71. Flash Code Protection using the Flash Option Bits

At reset, the Flash Controller is locked to prevent accidental program or erasure of Flash memory. To program or erase Flash memory, first write the target page to the page select register. Unlock the Flash Controller by making two consecutive writes to the Flash Control Register with the values 73H and 8CH, sequentially. The page select register must be rewritten with the same page previously stored there. If the two page select writes do not match, the controller reverts to a Locked state. If the two writes match, the selected page becomes active. See Figure 19 for details.

After unlocking a specific page, you can enable either page program or erase. Writing the value 95H causes a page erase only if the active page resides in a sector that is not protected. Any other value written to the Flash Control Register locks the Flash Controller. Mass erase is not allowed in the user code, but is allowed through the debug port.

After unlocking a specific page, the user can also write to any byte on that page. After a byte is written, the page remains unlocked, allowing for subsequent writes to other bytes on the same page. Further writes to the Flash Control Register causes the active page to revert to a Locked state.

Sector Based Flash Protection

The final protection mechanism is implemented on a per-sector basis. The Flash memories of Z8 Encore! devices are divided into maximum number of eight sectors. A sector is oneeighth of the total size of Flash memory, unless this value is smaller than the page size, in which case the sector and page sizes are equal. On Z8 Encore! F0830 Series devices, the sector size is varied according to the Z8 Encore! F0830 Series Flash Memory Configuration shown in Table 69 on page 108 and in Figures 14 through 18, which follow the table

The Flash Sector Protect Register can be configured to prevent sectors from being programmed or erased. After a sector is protected, it cannot be unprotected by user code. The Flash Sector Protect Register is cleared after reset and any previously written protection values is lost. User code must write this register in their initialization routine if they want to enable sector protection.

The Flash Sector Protect Register shares its Register File address with the Page Select Register. The Flash Sector Protect Register is accessed by writing the Flash Control Register with 5EH. After the Flash Sector Protect Register is selected, it can be accessed at the Page Select Register address. When user code writes the Flash Sector Protect Register,

Flash Status Register

The Flash Status Register indicates the current state of the Flash Controller. This register can be read at any time. The read-only Flash Status Register shares its register file address with the write-only Flash Control Register.

Bit	7	6	5	4	3	2	1	0		
Field	Rese	erved	FSTAT							
RESET	0	0	0	0	0	0	0	0		
R/W	R	R	R	R R R R R R						
Address	FF8H									

Table 73. Flash Status Register (FSTAT)

Bit	Description						
[7:6]	Reserved						
	These bits are reserved and must be programmed to 00.						
[5:0]	Flash Controller Status						
FSTAT	000000 = Flash Controller locked.						
	000001 = First unlock command received (73H written).						
	000010 = Second unlock command received (8CH written).						
	000011 = Flash Controller unlocked.						
	000100 = Sector protect register selected.						
	001xxx = Program operation in progress.						
	010xxx = Page Erase operation in progress.						
	100xxx = Mass Erase operation in progress.						

Nonvolatile Data Storage

Z8 Encore! F0830 Series devices contain a Nonvolatile Data Storage (NVDS) element of up to 64 bytes (except when in Flash 12KB mode). This type of memory can perform over 100,000 write cycles.

Operation

NVDS is implemented by special-purpose Zilog software stored in areas of program memory that are not user-accessible. These special-purpose routines use Flash memory to store the data, and incorporate a dynamic addressing scheme to maximize the write/erase endurance of the Flash.

Note: The products in the Z8 Encore! F0830 Series feature multiple NVDS array sizes. See the <u>Z8 Encore! F0830 Series Family Part Selection Guide</u> section on page 2 for details.

NVDS Code Interface

Two routines are required to access the NVDS: a write routine and a read routine. Both of these routines are accessed with a CALL instruction to a predefined address outside of program memory that is accessible to the user. Both the NVDS address and data are singlebyte values. In order to not disturb the user code, these routines save the working register set before using it so that 16 bytes of stack space are required to preserve the site. After finishing the call to these routines, the working register set of the user code is recovered.

During both read and write accesses to the NVDS, interrupt service is not disabled. Any interrupts that occur during NVDS execution must not disturb the working register and existing stack contents; otherwise, the array can become corrupted. Zilog recommends the user disable interrupts before executing NVDS operations.

Use of the NVDS requires 16 bytes of available stack space. The contents of the working register set are saved before calling NVDS read or write routines.

For correct NVDS operation, the Flash Frequency registers must be programmed based on the system clock frequency. See *the* <u>Flash Operation Timing Using the Flash Frequency</u> <u>Registers</u> *section on page 114*.

		$T_A = 0$)°C to ⊦	⊦70°C	$T_A = -4$	l0°C to ⋅	+105°C			
Symbol	Parameter	Min	Тур	Max	Min Typ Max		Units	Conditions		
I _{LED}	Controlled				1.5	3	4.5	mA	See GPIO section on	
	Current Drive				2.8	7	10.5	mA	LED description	
					7.8	13	19.5	mA	-	
					12	20	30	mA	-	
C _{PAD}	GPIO Port Pad Capacitance				_	8.0 ²	-	pF	TBD	
C _{XIN}	XIN Pad Capacitance				_	8.0 ²	-	pF	TBD	
C _{XOUT}	XOUT Pad Capacitance				-	9.5 ²	-	pF	TBD	
I _{PU}	Weak Pull-up Current				50	120	220	μA	V _{DD} = 2.7 - 3.6V	
ICCH ³	Supply Current in HALT Mode					TBD		mA	TBD	
ICCS	Supply Current in STOP Mode			2			8	μA	Without Watchdog Timer running	

Table 116. DC Characteristics (Continued)

Notes:

1. This condition excludes all pins that have on-chip pull-ups, when driven Low.

2. These values are provided for design guidance only and are not tested in production.

3. See Figure 31 for HALT Mode current.

186

188

Figure 32 displays the typical current consumption versus the system clock frequency in NORMAL Mode.

Figure 32. I_{CC} Versus System Clock Frequency (NORMAL Mode)

	V _{DD} = 2.7 to 3.6V T _A = 0°C to +70°C			V _{DD} = 2.7 to 3.6V T _A = -40°C to +105°C					
Parameter	Min	Тур	Max	Min	Тур	Мах	Units	Notes	
NVDS Byte Read Time				71	-	258	μs	Withsystemclockat 20MHz	
NVDS Byte Pro- gram Time				126	-	136	μs	Withsystemclockat 20MHz	
Data Retention				10	_	_	years	25°C	
Endurance				100,000	_	-	cycles	Cumulative write cycles for entire memory	

Table 121. Nonvolatile Data Storage

Note: For every 200 writes, a maintenance operation is necessary. In this rare occurrence, the write can take up to 58 ms to complete.

Table 122. Analog-to-Digital Converter Electrical Characteristics and Timing

		V _{DD} = 2.7 to 3.6V T _A = 0°C to +70°C			V _{DD} T _A = -4	= 2.7 to 40°C to	3.6V +105°C			
Symbol	Parameter	Min	Тур	Max	Min	Тур	Max	Units	Conditions	
	Resolution				_	10	_	bits		
	Differential Nonlinearity (DNL) ¹				-1	_	+4	LSB		
	Integral Nonlinearity (INL) ¹				-5	_	+5	LSB		
	Gain Error					15		LSB		
	Offset Error				-15	_	15	LSB	PDIP package	
	=				-9	_	9	LSB	Other packages	
V _{REF}	On chip reference				1.9	2.0	2.1	V		
	Active Power Consumption					4		mA		
	Power Down Current						1	μA		

Note: ¹When the input voltage is lower than 20mV, the conversion error is out of spec.

193

>

Hex Address: F05

Table 135. Timer 0 PWM Low Byte Register (T0PWML)

Bit	7	6	5	4	3	2	1	0			
Field	PWML										
RESET	0	0	0	0	0	0	0	0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Address	F05H										

Hex Address: F06

Table 136. Timer 0 Control Register 0 (T0CTL0)

Bit	7	6	5	4	3	2	1	0		
Field	TMODEHI	TICO	NFIG	Reserved		INPCAP				
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address	F06H									

Hex Address: F07

Table 137. Timer 0 Control Register 1 (T0CTL1)

Bit	7	6	5	4	3	2	1	0
Field	TEN	TPOL	PRES TMODE					
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	F07H							

Hex Address: F08

Table 138. Timer 1 High Byte Register (T1H)

Bit	7	6	5	4	3	2	1	0	
Field		TH							
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	F08H								

GPIO Port A

For more information about the GPIO registers, see the <u>GPIO Control Register Definitions</u> section on page 39.

Hex Address: FD0

Table 169. Port A GPIO Address Register (PAADDR)

Bit	7	6	5	4	3	2	1	0		
Field	PADDR[7:0]									
RESET		00H								
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W								
Address	FD0H									

Hex Address: FD1

Table 170. Port A Control Registers (PACTL)

Bit	7	6	5	4	3	2	1	0		
Field	PCTL									
RESET	00H									
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W								
Address	FD1H									

Hex Address: FD2

Table 171. Port A Input Data Registers (PAIN)

Bit	7	6	5	4	3	2	1	0
Field	PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	R	R	R	R	R	R	R	R
Address	FD2H							

Z8 Encore![®] F0830 Series Product Specification

load external data to/from data memory and autoincrement addresses 167 load external to/from data memory and auto-increment addresses 168 load instructions 168 load using extended addressing 168 logical AND 169 logical AND/extended addressing 169 logical exclusive OR 169 logical exclusive OR/extended addressing 169 logical OR 169 logical OR 169 logical OR/extended addressing 169

Μ

master interrupt enable 55 memory data 16 program 15 mode capture 89, 90 capture/compare 89 continuous 89 counter 89 gated 89 one-shot 89 PWM 89.90 modes 89 motor control measurements ADC Control register definitions 101 calibration and compensation 101 interrupts 101 overview 98 **MULT 167** multiply 167

Ν

noise, electrical 98 NOP (no operation) 168 notation b 164

DA 164 ER 164 IM 164 IR 164 Ir 164 IRR 164 Irr 164 p 164 R 165 r 164 RA 165 RR 165 rr 165 vector 165 X 165 notational shorthand 164

cc 164

0

OCD architecture 139 auto-baud detector/generator 142 baud rate limits 142 block diagram 139 breakpoints 143 commands 144 control register 148 data format 142 DBG pin to RS-232 Interface 140 debug mode 141 debugger break 169 interface 140 serial errors 143 status register 150 timing 197 OCD commands execute instruction (12H) 148 read data memory (0DH) 147 read OCD control register (05H) 146 read OCD revision (00H) 145 read OCD status register (02H) 145 read program counter (07H) 146 read program memory (0BH) 147